Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1638-1652.doi: 10.3864/j.issn.0578-1752.2021.08.006
• PLANT PROTECTION • Previous Articles Next Articles
ZHAO Ke(),ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun(),ZOU XiuPing()
[1] | ADKAR-PURUSHOTHAMA C R, QUAGLINO F, CASATI P, RAMANAYAKA J G, BIANCO P A. Genetic diversity among ‘Candidatus Liberibacter asiaticus’ isolates based on single nucleotide polymorphisms in 16S rRNA and ribosomal protein genes. Annals of Microbiology, 2009,59(4):681-688. |
[2] |
GOTTAWALD T R. Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology, 2010,48:119-139.
doi: 10.1146/annurev-phyto-073009-114418 pmid: 20415578 |
[3] | 林积秀. 柑橘黄龙病的防治进展. 东南园艺, 2018,6(5):45-52. |
LIN J X. Progress on control of citrus Huanglongbing. Southeast Horticulture, 2018,6(5):45-52. (in Chinese) | |
[4] | 白晓晶, 许兰珍, 贾瑞瑞, 周鹏飞, 陈敏, 何永睿, 彭爱红, 雷天刚, 李强, 姚利晓, 陈善春, 邹修平. 柑橘黄龙病相关水杨酸羧基甲基转移酶基因CsSAMT-1的克隆与表达分析. 园艺学报, 2017,44(12):2265-2274. |
BAI X J, XU L Z, JIA R R, ZHOU P F, CHEN M, HE Y R, PENG A H, LEI T G, LI Q, YAO L X, CHEN S C, ZOU X P. Cloning and expression analysis of HLB-associated salicylic acid carboxyl methyltransferase gene CsSAMT-1 in citrus. Acta Horticulturae Sinica, 2017,44(12):2265-2274. (in Chinese) | |
[5] | MALAMY J, CARR J P, KLESSIG D F, RASKIN I. Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 1990,250(4983):1002-1004. |
[6] | DA GRAÇA J V, DOUHAN G W, HALBERT S E, KEREMANE M L, LEE R F, VIDALAKIS G, ZHAO H W. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. Journal of Integrative Plant Biology, 2016,58(4):373-387. |
[7] |
WANG N, PIERSON E A, SETUBAL J C, XU J, LEVY J G, ZHANG Y Z, LI J Y, RANGEL L T, MARTINS J. The Candidatus Liberibacter-host interface: Insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology, 2017,55:451-482.
pmid: 28637377 |
[8] | ALBRECHT U, BOWMAN K D. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Science, 2012,185/186:118-130. |
[9] | WANG Y, ZHOU L, YU X, STOVER E, LUO F, DUAN Y. Transcriptome profiling of Huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 2016,7:933. |
[10] |
MARTINELLI F, REAGAN R L, URATSU S L, PHU M L, ALBRECHT U, ZHAO W, DAVID C E, BOWMAN K D, DANDEKAR A M. Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLoS ONE, 2013,8(9):e74256.
pmid: 24086326 |
[11] | CLARK K, FRANCO J Y, SCHWIZER S, PANG Z Q, HAWARA E, LIEBAND T W H, PAGLIACCIA D, ZENG L P, GURUNG F B, WANG P C, et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications, 2018,9:1718. |
[12] |
LI J Y, PANG Z Q, TRIVEDI P, ZHOU X F, YING X B, JIA H G, WANG N A. ‘Candidatus Liberibacter asiaticus’ encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defenses. Molecular Plant-Microbe Interactions, 2017,30(8):620-630.
doi: 10.1094/MPMI-12-16-0257-R pmid: 28488467 |
[13] | DUTT M, BARTHE G, IREY M, GROSSER J. Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS ONE, 2015,10(9):e0137134. |
[14] |
ZUBIETA C, ROSS J R, KOSCHESKI P, YANG Y, PICHERSKY E, NOEL J P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. The Plant Cell, 2003,15(8):1704-1716.
pmid: 12897246 |
[15] | KOO Y J, KIM M A, KIM E H, SONG J T, JUNG C, MOON J K, KIM J H, SEO H S, SONG S I, KIM J K, LEE J S, CHEONG J J, CHOI Y D. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 2007,64(1/2):1-15. |
[16] |
VLOT A C, LIU P P, CAMERON R K, PARK S W, YANG Y, KUMAR D, ZHOU F, PADUKKAVIDANA T, GUSTAFSSON C, PICHERSKY E, KLESSIG D F. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. The Plant Journal, 2008,56(3):445-456.
doi: 10.1111/j.1365-313X.2008.03618.x pmid: 18643994 |
[17] | MANOSALVA P M, PARK S W, FOROUHAR F, TONG L, FRY W E, KLESSIG D F. Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Molecular Plant-Microbe Interactions, 2010,23(9):1151-1163. |
[18] | ZOU X P, BAI X J, WEN Q L, XIE Z, WU L, PENG A H, HE Y R, XU L Z, CHEN S C. Comparative analysis of tolerant and susceptible citrus reveals the role of methyl salicylate signaling in the response to Huanglongbing. Journal of Plant Growth Regulation, 2019,38(4):1516-1528. |
[19] | SESKAR M, SHULAEV V, RASKIN I. Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiology, 1998,116(1):387-392. |
[20] | FOROUHAR F, YANG Y, KUMAR D, CHEN Y, FRIDMAN E, PARK S W, CHIANG Y, ACTON T B, MONTELIONE G T, PICHERSKY E, KLESSIG D F, TONG L. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(5):1773-1778. |
[21] |
PARK S W, KAIMOYO E, KUMAR D, MOSHER S, KLESSIG D F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007,318(5847):113-116.
pmid: 17916738 |
[22] | 董慧霞. SABP2和SAMT基因在杨树与溃疡病菌(Botryosphaeria dothidea)互作中的功能分析[D]. 北京: 中国林业科学研究院, 2017. |
DONG H X. Gene function analysis of SABP2 and SAMT in poplar interactions with Botryosphaeria dothidea[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese) | |
[23] | KUMAR D, KLESSIG D F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(26):16101-16106. |
[24] | 程世亚, 袁澍, 席德慧, 林宏辉. 植物系统获得性抗性的分子机理. 生命的化学, 2008,28(3):256-259. |
CHENG S Y, YUAN S, XI D H, LIN H H. Molecular mechanism of systemic acquired resistance in plant. Chemistry of Life, 2008,28(3):256-259. (in Chinese) | |
[25] | 佟志鹏, 安梦楠, 丁铖松, 孙慧颖, 梁月. 植物病程相关蛋白PR-NP24研究进展. 分子植物育种, 2019,17(11):3542-3548. |
TONG Z P, AN M N, DING C S, SUN H Y, LIANG Y. Progress on plant pathogenesis-related protein PR-NP24. Molecular Plant Breeding, 2019,17(11):3542-3548. (in Chinese) | |
[26] | SHINE M B, XIAO X Q, KACHROO P, KACHROO A. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science, 2019,279:81-86. |
[27] | 白晓晶. CsSAMT-1基因在水杨酸信号响应柑橘黄龙病侵染中的功能研究[D]. 重庆: 西南大学, 2018. |
BAI X J. Function of CsSAMT-1 in citrus salicylic acid signal response to Huanglongbing infection[D]. Chongqing: Southwest University, 2018. (in Chinese) | |
[28] |
ZOU X, JIANG X, XU L, LEI T, PENG A, HE Y, YAO L, CHEN S. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology, 2017,93:341-353.
pmid: 27866312 |
[29] |
XU Q, CHEN L L, RUAN X, CHEN D, ZHU A, CHEN C, BERTRAND D, JIAO W B, HAO B H, LYON M P, et al. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013,45(1):59-66.
doi: 10.1038/ng.2472 pmid: 23179022 |
[30] | SHOKROLLAH H, ABDULLAH T L, SIJAM K, ABDULLAH S N A, ABDULLAH N A P. Differential reaction of citrus species in Malysia to Huanglongbing (HLB) disease using grafting method. American Journal of Agricultural and Biological Sciences, 2009,4(1):32-38. |
[31] | 贾亚军, 王晓婷, 许娜, 郭娜, 邢邯. 大豆水杨酸结合蛋白基因GmSABP2的克隆及功能分析. 中国农业科学, 2015,48(18):3580-3588. |
JIA Y J, WANG X T, XU N, GUO N, XING H. Cloning and function analysis of salicylic acid binding protein gene GmSABP2 from soybean. Scientia Agricultura Sinica, 2015,48(18):3580-3588. (in Chinese) | |
[32] | SHULAEV V, SILVERMAN P, RASKIN I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 1997,385(6618):718-721. |
[1] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[2] | ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143. |
[3] | HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728. |
[4] | LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574. |
[5] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[6] | GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716. |
[7] | KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766. |
[8] | YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. |
[9] | JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359. |
[10] | LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84. |
[11] | YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855. |
[12] | SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038. |
[13] | ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854. |
[14] | ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513. |
[15] | YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649. |
|