Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 845-854.doi: 10.3864/j.issn.0578-1752.2021.04.015

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats

ZHAO Le(),YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu()   

  1. College of Animal Science and Technology, Southwest University/Chongqing Key Laboratory of Forage & Herbivore/Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715
  • Received:2020-03-12 Accepted:2020-07-10 Online:2021-02-16 Published:2021-02-16
  • Contact: YongJu ZHAO E-mail:zhaole0228@163.com;zyongju@163.com

Abstract:

【Objective】The ten-eleven translocation (TET) protein family play crucial roles in embryo and placental development. The balance of cell death between oviduct and endometrial would affect the development of gametes and early embryos. In this study, the expression patterns and their potential regulatory role of TETs, programmed cell death related genes and blastocyst implantation-related genes in oviduct and uterus of goats in early pregnancy were mainly explored, so as to provide a basis for studying development of gametes and early embryos.【Method】In this study, the uterus and oviduct of Hechuan white goats during non-pregnant 19 days (C19) and pregnant 19 days (P19) were collected, and then the morphology uterine horn was showed by HE staining. Then, the genes, including blastocyst implantation-related genes (Wnt5a, OPN, VEGFA), TET family genes (TET1, TET2, TET3), programmed cell death-related genes (BAX, BCL2, Caspase9, GSDMD, NLRP3 and Caspase1) and inflammation-related genes (NF-kBTNF-α) were detected by qRT-PCR. Finally, the correlation between TETs and programmed cell death-related genes expression were analyzed.【Result】The results showed that the gland number increased, and its morphology varied in uterine horn in P19 group. Compared with C19 group, OPN gene expression and Bax/BCL2 in uterine horn tissue were significantly increased in P19 group (P<0.01), however, there was no significant difference between Wnt5a and VEGFA. TET family genes were expressed in both oviduct and uterus. The expression of TET1 and TET2 was significantly higher than TET3 in uterine horn (P<0.01). TET2 (P<0.01), NF-kB (P<0.01), Caspase1 (P<0.01), and GSDMD (P<0.05) gene were significantly higher in P19 group of oviduct tissue. Correlation analysis showed that the relationship between TET2 and TET3 (P<0.01), NF-kB (P<0.01) and Caspase9 (P<0.01) in oviduct tissue were positive correlation. The TET3 were negative correlated with VEGFA (P<0.05) and WNT5a (P<0.01). Blastocyst implantation-related genes OPN was positively correlated with Caspase1 (P<0.01), NLRP3 (P<0.05) and GSDMD (P<0.05) in uterine horn. The GSDMD was positively correlated with Bax (P<0.05), Caspase1 (P<0.01) and NLRP3 (P<0.05) in oviduct and uterus horn.【Conclusion】It was indicated that there was correlation between TETs and programmed cell death related genes. So, it was speculated that TET family genes and programmed cell death related genes played a key role in regulating the development of oviduct, zygote, early embryo and uterus. The key genes for embryo implantation of OPN were significantly correlated with pyroptosis related genes, suggesting that proptosis had a certain influence on the attachment of early embryos. These finding provided heretical references for studying the effect of TETs family genes and programmed cell death related genes on oviduct and uterine horn of early pregnancy.

Key words: goat, uterine horn, oviduct, programmed cell death, gene expression

Table 1

The information of primers used in qRT-PCR"

基因名称
Gene name
引物序列(5'→3')
Primer sequence(5'→3')
产物长度
Product size (bp)
β-actin F:TGATATTGCTGCGCTCGTGGT
R:GTCAGGATGCCTCTCTTGCTC
189
WNT5a F:GCAAGGGCAATGTCTTCCA
R:TTCATACCTAGCGACCACCAA
104
OPN F: GTTAAACCGACCAGTTCTGGCA
R: GTTGTCATCAGTTTCCTCAGAGG
148
NF-kB F: GTGTAAAGAAGCGGGACTTGG
R: GCGGTTGTCAAAGATGGGATG
203
Caspase9 F: CAATAGCAACCCTGAGACGGA
R: AAAGCCTGGGAAGGTGGAGTA
130
GSDMD F: TTATTGGCTCTGACTGGGACG
R: GGCAAAGCTGAAGCACGAAC
128
BCL2 F: GAAACCCCGCCACGAATTA
R: CCAGCCAACAGTACGGAACAA
96
BAX F: TCTCCCCGAGAGGTCTTTTT
R: TGATGGTCCTGATCAACTCG
151
NLRP3 F: CCGTCTGGGTGAGAGCGTGAA
R: TCCTGTTGGCTCCTGTGTTCCT
78
Caspase1 F: GGATACAATAAATGGCTTGCTGG
R: CTCGGGCTTTATCCATAGTTGT
110
TNF-α F: CCACGTTGTAGCCAACATCAG
R: AGATGAGGTAAAGCCCGTCAG
134
VEGFA F: GTGACCCAGCACAGTTCCTCTT
R: TTCCGGGCTCGGTGATTTAG
74
TET1 F: CATCACTGTCCGTCTTTGGA
R: ACTTTCCTGTGCCTTTGTGG
126
TET2 F: GATACCATCTCCGTCTCCCATT
R: CTTGCTGTCTCCATTCACTTCC
109
TET3 F: CCTTCTCCTTCGGTTGTTCCTG
R: CACTTCTTCCTCTTTGGGGTTGTC
113

Table 2

qRT-PCR Set-up"

组成成分
Components
10 μL反应体系
10 μL reaction
Nuclease-Free Water 3.4 μL
cDNA 1 μL
Forward primer 0.3 μL
Reverse primer 0.3 μL
EvaGreen2x qPCR MasterMix 5 μL
Total 10 μL

Fig. 1

The morphology of goat uterine horn A: C19 goat uterine horn (4×); B: C19 goat uterine horn (10×);C: P19 goat uterine horn (4×); D: P19 goat uterine horn (10×)"

Fig. 2

The expression of blastocyst implantation-related genes in goat uterine horn * P0.05;** P0.01。下同 The same as below"

Fig. 3

The TETs family genes expression in goat oviduct and uterine horn"

Fig. 4

The apoptosis-related genes expression in goat oviduct and uterine horn"

Fig. 5

The pyroptosis-related genes expression in goat oviduct and uterine horn"

Fig. 6

The inflammation-related genes expression in goat oviduct and uterine horn"

Table 3

Correlation of TETs and programmed cell death related genes in oviduct of early pregnancy goat"

TET2 TET3 NFkB TNFa BAX Bcl2 Caspase9 Caspase1 NLRP3 GSDMD
TET1 r 0.657 0.667 0.657 0.829* -0.086 0.829* 0.371 0.314 0.257 0.429
p 0.156 0.148 0.156 P<0.05 0.872 P<0.05 0.468 0.544 0.623 0.397
TET2 0.928** 1.000** 0.714 0.486 0.657 0.829* 0.714 0.771 0.771
P<0.01 P<0.01 0.111 0.329 0.156 P<0.05 0.111 0.072 0.072
TET3 0.928** 0.696 0.522 0.667 0.696 0.696 0.638 0.754
P<0.01 0.125 0.288 0.148 0.125 0.125 0.173 0.084
NF-kB 0.714 0.486 0.657 0.829* 0.714 0.771 0.771
0.111 0.329 0.156 P<0.05 0.111 0.072 0.072
TNFa 0.086 0.886* 0.543 0.657 0.6 0.6
0.872 P<0.05 0.266 0.156 0.208 0.208
Bax 0.314 0.771 0.771 0.714 0.829*
0.544 0.072 0.072 0.111 P<0.05
Bcl2 0.657 0.714 0.6 0.771
0.156 0.111 0.208 0.072
Caspase9 0.886* 0.943** 0.943**
P<0.05 P<0.01 P<0.01
Caspase1 0.943** 0.943**
P<0.01 P<0.01
NLRP3 0.886*
P<0.05

Table 4

Correlation of TETs, programmed cell death genes and implantation-related genes in uterine horn of early pregnancy goat"

TET2 TET3 NFkB TNFa BAX Bcl2 Caspase9 Caspase1 NLRP3 GSDMD OPN WNT5a VEGFA
TET1 r -0.771 0.486 -0.257 0.086 0.029 0.143 -0.143 0.371 0.429 0.257 0.257 -0.429 -0.086
p 0.072 0.329 0.623 0.872 0.957 0.787 0.787 0.468 0.397 0.623 0.623 0.397 0.872
TET2 -0.200 0.371 0.371 0.314 -0.086 0.600 -0.257 -0.429 0.029 -0.200 0.086 -0.029
0.704 0.468 0.468 0.544 0.872 0.208 0.623 0.397 0.957 0.704 0.872 0.957
TET3 0.314 0.314 0.143 0.143 0.600 0.029 -0.086 0.086 0.200 -0.943** -0.886*
0.544 0.544 0.787 0.787 0.208 0.957 0.872 0.872 0.704 P<0.01 P<0.05
NFkB 0.714 0.600 0.600 0.714 -0.086 -0.029 0.086 -0.029 -0.543 -0.314
0.111 0.208 0.208 0.111 0.872 0.957 0.872 0.957 0.266 0.544
TNFa 0.943** 0.257 0.771 0.429 0.371 0.657 0.371 -0.486 -0.143
P<0.01 0.623 0.072 0.397 0.468 0.156 0.468 0.329 0.787
BAX 0.029 0.600 0.657 0.600 0.829* 0.600 -0.257 -0.029
0.957 0.208 0.156 0.208 P<0.05 0.208 0.623 0.957
Bcl2 0.200 -0.486 -0.257 -0.429 -0.600 -0.429 0.086
0.704 0.329 0.623 0.397 0.208 0.397 0.872
Caspase9 -0.029 -0.200 0.257 0.086 -0.714 -0.600
0.957 0.704 0.623 0.872 0.111 0.208
Caspase1 0.943** 0.943** 0.943** 0.086 0.086
P<0.01 P<0.01 P<0.01 0.872 0.872
NLRP3 0.829* 0.829* 0.143 0.257
P<0.01 P<0.05 0.787 0.623
GSDMD 0.886* -0.029 0.029
P<0.05 0.957 0.957
OPN -0.029 -0.200
0.957 0.704
WNT5a 0.771
0.072
[1] GUILLOMOT M. Cellular interactions during implantation in domestic ruminants. Journal of Reproduction and Fertility, 1995,49:39-51.
[2] GUILLOMOT M, REINAUD P, LA BONNARDIERE C, CHARPIGNY G. Characterization of conceptus-produced goat interferon tau and analysis of its temporal and cellular distribution during early pregnancy. Journal of Reproduction and Fertility, 1998,112(1):149-156.
[3] BAZER F W, SONG G, THATCHER W W. Roles of conceptus secretory proteins in establishment and maintenance of pregnancy in ruminants. Asian-Australasian Journal of Animal Sciences, 2012,25(1):1-16.
[4] SUZUKI T, SAKUMOTO R, HAYASHI K G, OGISO T, KUNII H, SHIROZU T, KIM S W, BAI H, KAWAHARA M, KIMURA K, TAKAHASHI M. Involvement of interferon-tau in the induction of apoptotic, pyroptotic, and autophagic cell death-related signaling pathways in the bovine uterine endometrium during early pregnancy. The Journal of Reproduction and Development, 2018,64(6):495-502.
[5] MA M, ZHOU Q J, XIONG Y, LI B, LI X T. Preeclampsia is associated with hypermethylation of IGF-1 promoter mediated by DNMT1. American Journal of Translational Research, 2018,10(1):16-39.
[6] YAMAGUCHI S, SHEN L, LIU Y, SENDLER D, ZHANG Y. Role of Tet1 in erasure of genomic imprinting. Nature, 2013,504(7480):460-464.
[7] ROCA F J, LOOMANS H A, WITTMAN A T, CREIGHTON C J, HAWKINS S M. Ten-Eleven translocation genes are downregulated in endometriosis. Current Molecular Medicine, 2016,16(3):288-298.
[8] 谭强, 罗南剑, 张艳丽, 安炳星, 陈秋羊, 赵永聚. 山羊早期胎儿组织TET1与Wnt通路基因的表达变化及其相关性. 中国农业科学, 2017,50(14):2816-2825.
TAN Q, LUO N J, ZHANG Y L, AN B X, CHEN Q Y, ZHAO Y J. Expression patterns and correlation of Wnts and TET1 genes in early fetal tissues of Dazu Black Goat. Scientia Agricultura Sinica, 2017,50(14):2816-2825. (in Chinese)
[9] LI C Y, DONG L, SU R, BI Y, QING Y, DENG X L, ZHOU Y L, HU C, YU M X, HUANG H, et al. Homoharringtonine exhibits potent anti-tumor effect and modulates DNA epigenome in acute myeloid leukemia by targeting SP1/TET1/5hmC. Haematologica, 2020,105(1): doi: 10.3324/haematol.2018.208835.
[10] LI C, WANG F, WANG H. Tetrachloro-1, 4-benzoquinone induces apoptosis of mouse embryonic stem cells. Journal of Environmental Sciences (China), 2017,51:5-12.
[11] ZHAO J, MA X L, MA J X, SUN L, LU B, WANG Y, XING G S, WANG Y, DONG B C, XU L Y, KUANG M J, FU L, BAI H H, MA Y, JIN W L. TET3 Mediates Alterations in the Epigenetic Marker 5hmC and Akt pathway in Steroid-Associated Osteonecrosis. The Official Journal of The American Society for Bone and Mineral Research, 2017,32(2):319-332.
[12] SANT D W, MUSTAFI S, GUSTAFSON C B, CHEN J, SLINGERLAND J M, WANG G. Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression. Scientific Reports, 2018,8(1):5306.
[13] 潘少容, 曾克武, 白云. 细胞焦亡研究进展. 生理科学进展, 2019,50(2):135-140.
PAN S R, ZENG K W, BAI Y. Recent research progress of pyroptosis. Progress in Physiological Sciences, 2019,50(2):135-140. (in Chinese)
[14] GROEBNER A E, SCHULKE K, UNTERSEER S, REICHENBACH H D, REICHENBACH M, BUTTNER M, WOLF E, MEYER H H, ULBRICH S E. Enhanced proapoptotic gene expression of XAF1, CASP8 and TNFSF10 in the bovine endometrium during early pregnancy is not correlated with augmented apoptosis. Placenta, 2010,31(3):168-177.
[15] WEI X, XIAOLING Z, KAI M, RUI W, JING X, MIN G, ZHONGHONG W, JIANHUI T, XINYU Z, LEI A. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep. The Journal of Reproduction and Development, 2016,62(3):279-287.
[16] TASSELL W, SLATER M, BARDEN J A, MURPHY C R. Endometrial cell death during early pregnancy in the rat. The Histochemical Journal, 2000,32(6):373-379.
[17] BOEDDEKER S J, HESS A P. The role of apoptosis in human embryo implantation. Journal of Reproductive Immunology, 2015,108:114-122.
[18] JAISWAL M K, AGRAWAL V, MALLERS T, GILMAN-SACHS A, HIRSCH E, BEAMAN K D. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. Journal of Immunology, 2013,191(11):5702-5713.
[19] 段利利, 刘子冬, 王林, 马斌芳, 范忆冰, 徐莹, 郭芬芬. C1q和肿瘤坏死因子相关蛋白4(CTRP4)降低子痫前期大鼠滋养层细胞的caspase-1和IL-1β水平. 细胞与分子免疫学杂志, 2016,32:1441-1445.
DUAN L L, LIU Z D, WANG L, MA B F, FAN Y B, XU Y, GUO F F. C1q and tumor necrosis factor related protein 4 (CTRP4) suppresses caspase-1/IL-1β inflammatory pathway in trophoblasts of rat models with preeclampsia. Chinese Journal of Cellular and Molecular Immunology, 2016,32:1441-1445. (in Chinese)
[20] GOMEZ-LOPEZ N, ROMERO R, TARCA A L, MILLER D, PANAITESCU B, SCHWENKEL G, GUDICHA D W, HASSAN S S, PACORA P, JUNG E, HSU C D. Gasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intra-amniotic inflammation or intra-amniotic infection. American Journal of Reproductive Immunology, 2019,82(6):e13184.
[21] 杨雪, 郑文亚, 郑路程, 王芹芹, 熊芳颖, 刘犇. BDNF和TRKB蛋白在妊娠期山羊子宫和胎盘的表达. 中国畜牧杂志, 2018,54:75-78.
YANG X, ZHENG W Y, ZHENG L C, WANG Q Q, XIONG F Y, LIU B. The expression of BDNF and TrkB in uterus and placenta of pregnant goats. Chinese Journal of Animal Science, 2018,54(06):75-78.
[22] WANG X B, QI Q R, WU K L, XIE Q Z. Role of osteopontin in decidualization and pregnancy success. Reproduction, 2018,155(5):423-432.
[23] JOYCE M M, GONZALEZ J F, LEWIS S, WOLDESENBET S, BURGHARDT R C, NEWTON G R, JOHNSON G A. Caprine uterine and placental osteopontin expression is distinct among epitheliochorial implanting species. Placenta, 2005,26(2-3):160-170.
[24] 唐毅平. 山羊胎盘滋养层细胞TET1基因对Wnt通路相关分子表达的影响[D]. 重庆: 西南大学, 2018.
TANG Y P. The Effect of TET1 gene on the expression of Wnt pathway related molecules in trophoblast cells of goat (Capra Hircus)[D]. Chongqing: Southwest University, 2018. (in Chinese)
[25] 高静. 山羊胎盘滋养层细胞TET1调控MMPs和TIMPs分子的研究[D]. 重庆: 西南大学, 2019.
GAO J. The research of TET1 regulated MMPs and TIMPs on goat trophoblast cells[D]. Chongqing: Southwest University, 2019. (in Chinese)
[26] O'DOHERTY A M, O'SHEA L C, SANDRA O, LONERGAN P, FAIR T, FORDE N. Imprinted and DNA methyltransferase gene expression in the endometrium during the pre- and peri-implantation period in cattle. Reproduction, Fertility,and Development, 2017,29(9):1729-1738.
[27] ZGLEJC-WASZAK K, WASZKIEWICZ E M, FRANCZAK A. Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos. Theriogenology, 2019,123:185-193.
[28] WU H, ZHANG Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell, 2014,156(1-2):45-68.
[29] BOMFIM M M, ANDRADE G M, DEL C M, SANGALLI J R, FONTES P K, NOGUEIRA M, MEIRELLES F V, DA S J, PERECIN F. Antioxidant responses and deregulation of epigenetic writers and erasers link oxidative stress and DNA methylation in bovine blastocysts. Molecular Reproduction and Development, 2017,84(12):1296-1305.
[30] 后晓南, 王智彪. 生命过程的相似性──从着床部位母体细胞的凋亡谈起. 生命科学, 2002,14:70-72.
HOU X N, WANG Z B. Similarities in life processes--apoptosis in uterine epithelial cells at the time of embryo implantation. Chinese Bulletin of Life Sciences, 2002,14:70-72. (in Chinese)
[31] FINK S L, COOKSON B T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and Immunity, 2005,73(4):1907-1916.
[32] ZHAI Y, ZHANG Z, YU H, SU L, YAO G, MA X, LI Q, AN X, ZHANG S, LI Z. Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs. Cellular Physiology and Biochemistry, 2018,50(4):1376-1397.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[6] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[7] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[8] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[9] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[10] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[11] DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196.
[12] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[13] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[14] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[15] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!