Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2830-2842.doi: 10.3864/j.issn.0578-1752.2021.13.012

• HORTICULTURE • Previous Articles     Next Articles

Identification of Grape Cultivars Based on KASP Markers

WANG FuQiang1(),ZHANG Jian2,WEN ChangLong2,FAN XiuCai1,ZHANG Ying1,SUN Lei1,LIU ChongHuai1,JIANG JianFu1()   

  1. 1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
    2Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097
  • Received:2020-08-26 Revised:2021-01-23 Online:2021-07-01 Published:2021-07-12
  • Contact: JianFu JIANG E-mail:82101185031@caas.cn;jiangjianfu@caas.cn

Abstract:

【Objective】This study was aimed to develop a set of kompetitive allele specific PCR (KASP) markers that can be used to distinguish the main cultivated grape cultivars in China, so as to provide the technical support for domestic grape cultivar protection, cultivar registration and market right protection. 【Method】60 highly polymorphic SNP loci from previous studies in grapes were selected to design KASP markers. 23 representative grape cultivars and 76 main cultivated grape cultivars in China were used for preliminary screening, re-screening, and verification of the successfully transformed KASP markers. A set of high-quality KASP markers was further selected to establish the DNA fingerprint database for the 76 grape cultivars. 【Result】Among the 60 SNP loci, 3 were not genome-specific, 6 could not be used to design KASP-PCR markers, and 51 could be successfully transformed to KASP markers with a conversion rate of 89.47%. Next, 23 representative grape cultivars were successfully genotyped by using the 51 KASP markers on LGC-SNP line platform. Then, 27 KASP markers of high quality were selected successfully based on the minor allele frequency (MAF) greater than 0.25, polymorphism information content (PIC) greater than 0.35, deletion rate less than 0.2, and heterozygosity rate less than 0.6. Finally, 22 KASP markers were successfully re-screened in the 76 main cultivated grape cultivars. The missing rate of the 22 markers was less than 0.12, the PIC value of them was greater than 0.30, the heterozygosity rate of 0.40-0.60 was 77.27%, and the MAF of greater than 0.30 was 95.45%. In addition, the consistent genotype data were acquired with different trees from each of the 23 representative cultivars by using the 22KASP markers, indicating that these 22 KASP markers had good reproducibility and stability for grape cultivar identification. The SNP genotyping results of 76 grape cultivars based on 22 markers were converted to binary coding data, and the fingerprints of 76 grape cultivars were obtained. Based on neighbor-joining cluster analysis, the 76 grape cultivars could be divided into 3 populations. Diploid and polyploidy cultivars were also correctly identified. The 10 markers (VIT_15_18567587, VIT_6_4258638, VIT_8_3320936, VIT_12_22228357, VIT_11_19390306, VIT_16_17950801, VIT_18_11138668, VIT_12_739916, VIT_16_ 13454358, VIT_16_21202286) were enough to be able to distinguish 70 of the 76 cultivars, of which 54 cultivars met the criteria for variety identification (the number of different loci ≥2). 【Conclusion】From 60 grape SNPs, 51 KASP markers were successfully transformed, and 22 high-quality KASP markers were selected successfully for developing the fingerprints of the 76 main grape cultivars in China. It was the first time to verify the feasibility of KASP genotyping in the identification of grape cultivars in China.

Key words: grape, KASP marker, cultivar identification, fingerprint, genetic diversity analysis

Table 1

Information of the 23 representative grape cultivars for preliminary screening of KASP"

编号
Code
品种
Cultivar
倍性
Ploidy
种性
Species
用途
Purpose
来源
Origin
1 赤霞珠 Cabernet Sauvignon 2x 欧亚种V. vinifera 酿酒Wine grape 法国France
2 霞多丽Chardonnary 2x 欧亚种V. vinifera 酿酒Wine grape 法国France
3 黑比诺Pinot Noir 2x 欧亚种V. vinifera 酿酒Wine grape 法国France
4 梅鹿辄Merlot 2x 欧亚种V. vinifera 酿酒Wine grape 法国France
5 紫秋Ziqiu 2x 刺葡萄V. davidii 酿酒Wine grape 中国China
6 北冰红 Beibinghong 2x 山欧杂种 V. amurensis-V. vinifera 酿酒Wine grape 中国China
7 无核白鸡心 Centennial Seedless 2x 欧亚种V. vinifera 制干Raisin grape 美国America
8 康可Concord 2x 美洲种V. labrusca 制汁Juice grape 美国America
9 贝达Beta 2x 美河杂种 V. labrusca-V. riparia 砧木Rootstock 美国America
10 抗砧3号 Kangzhen No.3 2x 冬河杂种 V. berlandieri-V. riparia 砧木Rootstock 中国China
11 SO4 2x 冬河杂种 V. berlandieri-V. riparia 砧木Rootstock 德国Germany
12 香妃Xiangfei 2x 欧亚种V. vinifera 鲜食Table grape 中国China
13 玫瑰香 Muscat Hamburg 2x 欧亚种V. vinifera 鲜食Table grape 英国England
14 红地球Red Globe 2x 欧亚种V. vinifera 鲜食Table grape 美国America
15 美人指 Manicure Finger 2x 欧亚种V. vinifera 鲜食Table grape 日本Japan
16 金手指Gold Finger 2x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 日本Japan
17 阳光玫瑰 Shine Muscat 2x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 日本Japan
18 夏黑Summer Black 3x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 日本Japan
19 月光无核 Yueguangwuhe 3x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 中国China
20 峰光Fengguang 4x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 中国China
21 京亚Jingya 4x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 中国China
22 巨玫瑰Jumeigui 4x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 中国China
23 巨峰Kyoho 4x 欧美杂种 V. vinifera-V. labrusca 鲜食Table grape 日本Japan

Table 2

Information of 76 grape cultivars for KASP marking re-screening"

编号
Code
品种
Cultivar
倍性
Ploidy
种性
Species
用途
Purpose
编号
Code
品种
Cultivar
倍性
Ploidy
种性
Species
用途
Purpose
G1 惠良刺葡萄
Huiliangciputao
2x 刺葡萄
V. davidii
制汁
Juice grape
G26 短枝玉玫瑰
Duanzhiyumeigui
2x 欧亚种
V. vinifera
鲜食
Table grape
G2 野酿2号
Yeniang No.2
2x 毛葡萄
V. heyneana
酿酒
Wine grape
G27 玉波黄地球
Yubohuangdiqiu
2x 欧亚种
V. vinifera
鲜食
Table grape
G3 媚丽
Meili
2x 欧亚种
V. vinifera
酿酒
Wine grape
G28 瑞都红玫
Ruiduhongmei
2x 欧亚种
V. vinifera
鲜食
Table grape
G4 泰美
Taimei
2x 欧亚种
V. vinifera
酿酒
Wine grape
G29 瑞都脆霞
Ruiducuixia
2x 欧亚种
V. vinifera
鲜食
Table grape
G5 MCS2 2x 欧亚种
V. vinifera
酿酒
Wine grape
G30 瑞都无核怡
Ruiduwuheyi
2x 欧亚种
V. vinifera
鲜食
Table grape
G6 玉玲珑
Yulinglong
2x 欧亚种
V. vinifera
酿酒
Wine grape
G31 瑞都香玉
Ruiduxiangyu
2x 欧亚种
V. vinifera
鲜食
Table grape
G7 碧香无核
Bixiangwuhe
2x 欧亚种
V. vinifera
鲜食
Table grape
G32 红特沙
Hongtesha
2x 欧亚种
V. vinifera
鲜食
Table grape
G8 早霞玫瑰
Zaoxiameigui
2x 欧亚种
V. vinifera
鲜食
Table grape
G33 晨香
Chenxiang
2x 欧亚种
V. vinifera
鲜食
Table grape
G9 里扎马特
Rizamat
2x 欧亚种
V. vinifera
鲜食
Table grape
G34 红艳香
Hongyanxiang
2x 欧亚种
V. vinifera
鲜食
Table grape
G10 脆红宝
Cuihongbao
2x 欧亚种
V. vinifera
鲜食
Table grape
G35 红艳无核
Hongyanwuhe
2x 欧亚种
V. vinifera
鲜食
Table grape
G11 翠香宝
Cuixiangbao
2x 欧亚种
V. vinifera
鲜食
Table grape
G36 科玉无籽
Keyuwuzi
2x 欧亚种
V. vinifera
鲜食
Table grape
G12 早康宝
Zaokangbao
2x 欧亚种
V. vinifera
鲜食
Table grape
G37 郑美
Zhengmei
2x 欧亚种
V. vinifera
鲜食
Table grape
G13 丽红宝
Lihongbao
2x 欧亚种
V. vinifera
鲜食
Table grape
G38 华葡早玉
Huapuzaoyu
2x 欧亚种
V. vinifera
鲜食
Table grape
G14 秋黑宝
Qiuheibao
2x 欧亚种
V. vinifera
鲜食
Table grape
G39 瑞都早红
Ruiduzaohong
2x 欧亚种
V. vinifera
鲜食
Table grape
G15 无核翠宝
Wuhecuibao
2x 欧亚种
V. vinifera
鲜食
Table grape
G40 瑞都科美
Ruidukemei
2x 欧亚种
V. vinifera
鲜食
Table grape
G16 云楚无核
Yuchuwuhe
2x 欧亚种
V. vinifera
鲜食
Table grape
G41 赤霞珠
Cabernet Sauvignon
2x 欧亚种
V. vinifera
鲜食
Table grape
G17 卓越黑香蜜
Zhuoyueheixiangmi
2x 欧亚种
V. vinifera
鲜食
Table grape
G42 霞多丽
Chardonnary
2x 欧亚种
V. vinifera
鲜食
Table grape
G18 卓越玫瑰
Zhuoyuemeigui
2x 欧亚种
V. vinifera
鲜食
Table grape
G43 红地球
Red Globe
2x 欧亚种
V. vinifera
鲜食
Table grape
G19 岳秀无核
Yuexiuwuhe
2x 欧亚种
V. vinifera
鲜食
Table grape
G44 玫瑰香
Muscat Hamburg
2x 欧亚种
V. vinifera
鲜食
Table grape
G20 华葡翠玉
Huapucuiyu
2x 欧亚种
V. vinifera
鲜食
Table grape
G45 美人指
Manicure Finger
2x 欧亚种
V. vinifera
鲜食
Table grape
G21 华葡紫峰
Huapuzifeng
2x 欧亚种
V. vinifera
鲜食
Table grape
G46 香妃
Xiangfei
2x 欧亚种
V. vinifera
鲜食
Table grape
G22 爱格丽
Ecolly
2x 欧亚种
V. vinifera
鲜食
Table grape
G47 红宝石无核
Ruby Seedless
2x 欧亚种
V. vinifera
鲜食
Table grape
G23 玉波一号
Yubo 1 hao
2x 欧亚种
V. vinifera
鲜食
Table grape
G48 无核白鸡心
Centennial Seedless
2x 欧亚种
V. vinifera
制干
Raisin grape
G24 玉波二号
Yubo 2 hao
2x 欧亚种
V. vinifera
鲜食
Table grape
G49 北冰红
Beibinghong
2x 山欧杂种
V. amurensis-V. vinifera
酿酒
Wine grape
G25 玉珍香
Yuzhenxiang
2x 欧亚种
V. vinifera
鲜食
Table grape
G50 凌丰红
Lingfenghong
2x 山欧杂种
V. amurensis-V. vinifera
酿酒
Wine grape
编号
Code
品种
Cultivar
倍性
Ploidy
种性
Species
用途
Purpose
编号
Code
品种
Cultivar
倍性
Ploidy
种性
Species
用途
Purpose
G51 凌砧1号
Lingzhen No.1
2x 山欧杂种
V. amurensis-V. vinifera
砧木
Rootstock
G64 申烁
Shenshuo
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G52 庆丰
Qingfeng
2x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G65 申奕
Shenli
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G53 着色香
Zhuosexiang
2x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G66 华葡玫瑰
Huapumeigui
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G54 碧玉香
Biyuxiang
2x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G67 华葡黑峰
Huapuheifeng
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G55 郑艳无核
Zhengyanwuhe
2x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G68 瑞峰
Ruifeng
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G56 金手指
Gold Finger
2x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G69 瑞紫香
Ruizixiang
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G57 阳光玫瑰
Shine Muscat
2x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G70 红蜜香
Hongmixiang
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G58 春香无核
Chunxiangwuhe
3x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G71 华葡黄玉
Huapuhuangyu
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G59 烟葡一号
Yanpu 1 hao
3x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G72 华葡瑰香
Huapuguixiang
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G60 润堡早夏
Ruibaozaoxia
3x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G73 巨峰
Kyoho
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G61 天工墨玉
Tiangongmoyu
3x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G74 巨玫瑰
Jumeigui
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G62 夏黑
Summer Black
3x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G75 天工玉液
Tiangongyuye
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G63 申丽
Shenli
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape
G76 天工翠玉
Tiangongcuiyu
4x 欧美杂种
V. vinifera-V. labrusca
鲜食
Table grape

Schedule 1

Sequences of 51 KASP markers successfully designed"

名称
Name
变异类型Alleles type 引物序列
Sequence of primer (5′-3′)
VIT_1_729514 A/G F: GAAGGTGACCAAGTTCATGCTGCTGAAGGTTTCTTGAAAAAGTACTGAT
F: GAAGGTCGGAGTCAACGGATTCTGAAGGTTTCTTGAAAAAGTACTGAC
R: CACAGGTTGGACAAGCAAAGGGAATT
VIT_1_5948674 A/G F: GAAGGTGACCAAGTTCATGCTATGGTTGAGGAAAGAATATTGGAAGCT
F: GAAGGTCGGAGTCAACGGATTGGTTGAGGAAAGAATATTGGAAGCC
R: CCGCTAGTCTTTCTAACCATGAGCTA
VIT_1_22828604 A/T F: GAAGGTGACCAAGTTCATGCTCTACTATTATCTCTCTCGCTTATTGCTA
F: GAAGGTCGGAGTCAACGGATTCTACTATTATCTCTCTCGCTTATTGCTT
R: GGCAAATCCCAAAGAACTATGAATGGAA
VIT_2_5141894 A/G F: GAAGGTGACCAAGTTCATGCTTGCGGCAAGAAGGTCCCAACT
F: GAAGGTCGGAGTCAACGGATTGCGGCAAGAAGGTCCCAACC
R: GTAGTGAGAACTAGAGCGGAGAACTAT
VIT_2_6474327 T/A F: GAAGGTGACCAAGTTCATGCTCTCACCATTAATTGGGGTGAAGATTAA
F: GAAGGTCGGAGTCAACGGATTCTCACCATTAATTGGGGTGAAGATTAT
R: AAAGTAATCTCCATTTTGGTGTGATAACCTT
VIT_2_17198115 G/C F: GAAGGTGACCAAGTTCATGCTTCCTCCGCTTCTCCGCCC
F: GAAGGTCGGAGTCAACGGATTTCCTCCGCTTCTCCGCCG
R: AAAATCTTGCGGGCGTAGTCGAGAT
VIT_3_1348328 C/T F: GAAGGTGACCAAGTTCATGCTGATAAGACGGAGTGGCTGGAC
F: GAAGGTCGGAGTCAACGGATTGGATAAGACGGAGTGGCTGGAT
R: CCTGGCCGAACACCACGTGCTT
VIT_3_3676120 A/C F: GAAGGTGACCAAGTTCATGCTAATTTAGCCAATTTCTATCTTTTGCCGTTT
F: GAAGGTCGGAGTCAACGGATTTTTAGCCAATTTCTATCTTTTGCCGTTG
R: ATCTACAAGGCAGGAAGGAAAGAGTTAT
VIT_3_5724485 T/C F: GAAGGTGACCAAGTTCATGCTCCCTTTTTGGTGTAACATCCTTCCA
F: GAAGGTCGGAGTCAACGGATTCCTTTTTGGTGTAACATCCTTCCG
R: GATAGGAATAGCCTCGTAGAATTTTATGTAAAA
VIT_4_680574 C/T F: GAAGGTGACCAAGTTCATGCTGGAGCTTTGATCCTGAAACCGAG
F: GAAGGTCGGAGTCAACGGATTTAGGAGCTTTGATCCTGAAACCGAA
R: GCGTGCAGCTATCTCTTGAAGCAAAAA
VIT_4_6409234 C/T F: GAAGGTGACCAAGTTCATGCTATTATCCCAAAGGGAAAATAAAAACTTTCC
F: GAAGGTCGGAGTCAACGGATTGATTATCCCAAAGGGAAAATAAAAACTTTCT
R: GTTCTCACAGGACAAAGCATCTTGGTT
VIT_4_21849155 A/G F: GAAGGTGACCAAGTTCATGCTCACTGGTAATAGATAGAATTAAACACATCT
F: GAAGGTCGGAGTCAACGGATTACTGGTAATAGATAGAATTAAACACATCC
R: CTTCCTAGGTGGAAGCAGCTGTATTAA
VIT_5_1785979 C/T F: GAAGGTGACCAAGTTCATGCTGGTCCCTCACCTATTACTCCAG
F: GAAGGTCGGAGTCAACGGATTCGGTCCCTCACCTATTACTCCAA
R: TTTCGGACATGGAAAGCTTGAGTTTCTT
VIT_5_5773320 C/T F: GAAGGTGACCAAGTTCATGCTGGCTGTATCCTGTCTTGAAGCTC
F: GAAGGTCGGAGTCAACGGATTTGGCTGTATCCTGTCTTGAAGCTT
R: GATCCAAGGTCACGAGCTGTTTATGAT
VIT_5_6744629 A/G F: GAAGGTGACCAAGTTCATGCTTGAGTCAATCTCGCCGAATATGAGT
F: GAAGGTCGGAGTCAACGGATTAGTCAATCTCGCCGAATATGAGC
R: AAACTCAAGATTGGACAGCAATATCCATATT
VIT_6_327200 A/G F: GAAGGTGACCAAGTTCATGCTAAAAGCCTTTGGAGCATCTCCAGAA
F: GAAGGTCGGAGTCAACGGATTAGCCTTTGGAGCATCTCCAGAG
R: GAAGGTTTTTGAAAATGGATCAGTTGCCAA
VIT_6_4258638 C/T F: GAAGGTGACCAAGTTCATGCTTGTCCAGAGATCCTGTTTTCTCG
F: GAAGGTCGGAGTCAACGGATTACTGTCCAGAGATCCTGTTTTCTCA
R: CTTTCAGCAGGCAGCAATGGAAAGTT
VIT_6_17593092 A/T F: GAAGGTGACCAAGTTCATGCTCTGCATTCGTTCACCTGTCAACTTA
F: GAAGGTCGGAGTCAACGGATTCTGCATTCGTTCACCTGTCAACTTT
R: ATCTGCATCTTCGAGCTTGTCCTTAATT
VIT_7_1388822 A/G F: GAAGGTGACCAAGTTCATGCTCGTCCGGATGCATTGCGCCT
F: GAAGGTCGGAGTCAACGGATTGTCCGGATGCATTGCGCCC
R: GGCAAACGCTGATTGGCTGGAGTA
VIT_7_18046355 A/G F: GAAGGTGACCAAGTTCATGCTAAATGTGGCTGCAGTTGAGAAGACT
F: GAAGGTCGGAGTCAACGGATTTGTGGCTGCAGTTGAGAAGACC
R: CATACCACAGGATTAACTGATACATCCATA
VIT_8_3320936 C/T F: GAAGGTGACCAAGTTCATGCTTGGAGGGTAAAAATGAACTCAATTTGAC
F: GAAGGTCGGAGTCAACGGATTATTGGAGGGTAAAAATGAACTCAATTTGAT
R: CCTTTCTGATGATAGAAGCAGTGGGAA
VIT_8_13401437 A/C F: GAAGGTGACCAAGTTCATGCTCTGGTTCCAATCCCTCATCCGTA
F: GAAGGTCGGAGTCAACGGATTTGGTTCCAATCCCTCATCCGTC
R: AAGGAGACTAAGATAAAGGTGTAGTATACAT
VIT_9_3123999 A/T F: GAAGGTGACCAAGTTCATGCTTGTCTTGACTCATCATATTTGACAGCA
F: GAAGGTCGGAGTCAACGGATTTGTCTTGACTCATCATATTTGACAGCT
R: GGTGTGAAGACGATAATGGGTCCAAT
VIT_9_21409416 C/T F: GAAGGTGACCAAGTTCATGCTTCCAGAAACCAGCTAGTGTGGC
F: GAAGGTCGGAGTCAACGGATTATTCCAGAAACCAGCTAGTGTGGT
R: CGGAAAACTTCCATACCGCGTGAAA
VIT_10_5489212 C/T F: GAAGGTGACCAAGTTCATGCTTGCTTCTCCACGAAGGCTGTC
F: GAAGGTCGGAGTCAACGGATTCTGCTTCTCCACGAAGGCTGTT
R: GCAACGTCTCCTACGACACGGAA
VIT_11_311765 A/C F: GAAGGTGACCAAGTTCATGCTTGGGGGAAGTAGTTGGTTGCCA
F: GAAGGTCGGAGTCAACGGATTGGGGGAAGTAGTTGGTTGCCC
R: GAATTAGAGACCCAGAGAGAAGGGAAA
VIT_11_5406647 A/C F: GAAGGTGACCAAGTTCATGCTTATCAGAATGTTGGATTTTGAAATTGAATGTTA
F: GAAGGTCGGAGTCAACGGATTTCAGAATGTTGGATTTTGAAATTGAATGTTC
R: TGTTACGGTTTTGCTAACTCAAAATCCTTAT
VIT_11_19390306 G/A F: GAAGGTGACCAAGTTCATGCTGTTCAAGCTGGGGGAGAATATATAC
F: GAAGGTCGGAGTCAACGGATTGGTTCAAGCTGGGGGAGAATATATAT
R: GTCGGAGTCCATGTATCGCCGTTA
VIT_12_739916 C/T F: GAAGGTGACCAAGTTCATGCTGCTGAACACACTTTTTCCAAGTTCG
F: GAAGGTCGGAGTCAACGGATTAAGCTGAACACACTTTTTCCAAGTTCA
R: GGTTTGGGAGGGGACAAAGATCTAATT
VIT_12_22228357 A/C F: GAAGGTGACCAAGTTCATGCTCAACTTCACGGTGACCGAATTCATA
F: GAAGGTCGGAGTCAACGGATTAACTTCACGGTGACCGAATTCATC
R: GGTCGACGGCAGCCACAGGTTT
VIT_13_21618145 A/T F: GAAGGTGACCAAGTTCATGCTTCGAGTTGCTTAGATAAACACATTAATCT
F: GAAGGTCGGAGTCAACGGATTTCGAGTTGCTTAGATAAACACATTAATCA
R: CATCATGTGATTCTATGCAAAAATTATTAGAATTAA
VIT_14_4947068 T/G F: GAAGGTGACCAAGTTCATGCTTATTCCTACCTGCGTTTCGTCGA
F: GAAGGTCGGAGTCAACGGATTATTCCTACCTGCGTTTCGTCGC
R: CTGTGGCCCGGTGGGGCTT
VIT_14_5687725 A/T F: GAAGGTGACCAAGTTCATGCTATGATGCTTTGAATAGAATAAATGAGAACAAT
F: GAAGGTCGGAGTCAACGGATTATGATGCTTTGAATAGAATAAATGAGAACAAA
R: AACTTGCAACATGACAACCACAAACCAA
VIT_14_23135445 A/T F: GAAGGTGACCAAGTTCATGCTAATTAGCAGGGAGGGGTGGCAA
F: GAAGGTCGGAGTCAACGGATTAATTAGCAGGGAGGGGTGGCAT
R: GAACTTTAGCAGTAGTTCAGCTTCATGAT
VIT_14_29590769 C/T F: GAAGGTGACCAAGTTCATGCTTTCCTCCAAGTCTCCATGTGCG
F: GAAGGTCGGAGTCAACGGATTGTTCCTCCAAGTCTCCATGTGCA
R: CAAAGCCCTTTGACAGACAACCTTCAA
VIT_15_15145042 A/C F: GAAGGTGACCAAGTTCATGCTGTATATTTGTTCATCAGACATACTAACACT
F: GAAGGTCGGAGTCAACGGATTTATATTTGTTCATCAGACATACTAACACG
R: GCAGAGAGAAGCTCAGACATCTCATTA
VIT_15_18031506 A/C F: GAAGGTGACCAAGTTCATGCTTAACTGATACATAAAACTGAAAAATCGGGT
F: GAAGGTCGGAGTCAACGGATTACTGATACATAAAACTGAAAAATCGGGG
R: GGGAGTAGAACCTGAAAGCAAGCATA
VIT_15_18127737 T/G F: GAAGGTGACCAAGTTCATGCTGGATGTGATGTAGGGGTCCTTGT
F: GAAGGTCGGAGTCAACGGATTGATGTGATGTAGGGGTCCTTGG
R: CATATCACCTTTTCTAGGACTAAAACCCAA
VIT_15_18567587 T/G F: GAAGGTGACCAAGTTCATGCTCTGTATTAAAGCTCTTGGGTGAAAAACT
F: GAAGGTCGGAGTCAACGGATTTGTATTAAAGCTCTTGGGTGAAAAACG
R: ATTGTTGGGCACAAATACGCTCAAGATT
VIT_16_13454358 A/G F: GAAGGTGACCAAGTTCATGCTGCTTTTGACGTGAGAGAGCAAGAATT
F: GAAGGTCGGAGTCAACGGATTCTTTTGACGTGAGAGAGCAAGAATC
R: CTGGTGCATATAAGGTTGCAGTTGTTAA
VIT_16_16198599 A/G F: GAAGGTGACCAAGTTCATGCTGCACAACAATTTCTCCAGCTTCGTT
F: GAAGGTCGGAGTCAACGGATTCACAACAATTTCTCCAGCTTCGTC
R: AGAAATGGACTCACGTAGGTGTTAAGTT
VIT_16_17950801 A/G F: GAAGGTGACCAAGTTCATGCTTCTGCTTGAGGGGGAGTGACAA
F: GAAGGTCGGAGTCAACGGATTCTGCTTGAGGGGGAGTGACAG
R: TAGTGGAAACATCTCCCACTTGATTCATA
VIT_16_21202286 A/G F: GAAGGTGACCAAGTTCATGCTACCCAATGGAATCGATCCAATGTCA
F: GAAGGTCGGAGTCAACGGATTCCAATGGAATCGATCCAATGTCG
R: CTGGTTAATTTCAGACGAAGCCAAGTATA
VIT_17_126505 A/G F: GAAGGTGACCAAGTTCATGCTTCAGTATTATGAGGAATGCTATTTATGAGT
F: GAAGGTCGGAGTCAACGGATTCAGTATTATGAGGAATGCTATTTATGAGC
R: GGTCCTGCAAGATATCCCAGAACATAT
VIT_17_6000914 C/T F: GAAGGTGACCAAGTTCATGCTAACTGTTCCCAGCCGGATTGAG
F: GAAGGTCGGAGTCAACGGATTGAACTGTTCCCAGCCGGATTGAA
R: GCCGACCCCATCCTGTCACTAT
VIT_17_12206201 A/G F: GAAGGTGACCAAGTTCATGCTCGCCATCTTATGACAATTGATGAACTA
F: GAAGGTCGGAGTCAACGGATTGCCATCTTATGACAATTGATGAACTG
R: CCTTTTAGTGACAGGTGGAATAAGAGAAAT
VIT_18_3829207 A/C F: GAAGGTGACCAAGTTCATGCTTGCAAACTGGGAAGCAAATGTCTCT
F: GAAGGTCGGAGTCAACGGATTCAAACTGGGAAGCAAATGTCTCG
R: CAAGGATATTGTTGAGCTCCGAAATCAA
VIT_18_6487636 A/C F: GAAGGTGACCAAGTTCATGCTAGATTGAATATCTCCATACCTTCGTCA
F: GAAGGTCGGAGTCAACGGATTGATTGAATATCTCCATACCTTCGTCC
R: GGGATAAAACATTCAAAGCCCATAAATTAAATTT
VIT_18_11138668 A/G F: GAAGGTGACCAAGTTCATGCTGACATGTTTCCATACTGATCCTCCTA
F: GAAGGTCGGAGTCAACGGATTACATGTTTCCATACTGATCCTCCTG
R: CTGGACATTTTCAACCATGATGATGATGAT
VIT_19_7217380 A/T F: GAAGGTGACCAAGTTCATGCTGGTCTTCATCCAAGATATGTATCTCATT
F: GAAGGTCGGAGTCAACGGATTGGTCTTCATCCAAGATATGTATCTCATA
R: CATACGATTAAATGGATGCGGGCAGTT
VIT_19_17751334 G/T F: GAAGGTGACCAAGTTCATGCTCATGAGGCGTTTTTCATCACCAAC
F: GAAGGTCGGAGTCAACGGATTGCATGAGGCGTTTTTCATCACCAAA
R: GTTTGGCTCCAGACTTGCCTGAATTT

Fig. 1

The genetic information of 51 KASP markers detected on 23 representative grape cultivars A: 51 KASP markers names (The 27 high-quality KASP markers marked in red); B: Grape chromosome number; C: missing rate; D: Heterozygosity rate; E: polymorphism information content (PIC); F: minor allele frequency (MAF)"

Fig. 2

VIT_16_21202286 (A) and VIT_16_21202286 (B) KASP labeled fluorescence detection results based on 76 grape cultivars"

Fig. 3

The percentage of missing rate, heterozygosity, PIC and MAF values for the 22 KASP markers based on the data of 76 grape cultivars"

Fig. 4

KASP finger-printing database of 76 main cultivated grape cultivars in China The first column: KASP marker name; the second column: KASP marker corresponding mutation base type; the remaining columns: in turn are the genotypes of 76 main cultivated grape cultivars"

Fig. 5

Cluster and population structure diagram of 76 main cultivated grape cultivars in China A: Neighbor-joining (N-J) tree cluster analysis; B: The distribution of K-values with ∆K; C: Population structure analysis when K=3"

Fig. 6

Cumulative KASP molecular marker efficiency for distinguishing 70 grape cultivars"

[1] 孔庆山. 中国葡萄志. 北京:中国农业科学技术出版社, 2004: 16.
KONG Q S. Chinese Ampelography. Beijing:Chinese Agricultural Science and Technology Press, 2004: 16. (in Chinese)
[2] LI B B, JIANG J F, FAN X C, ZHANG Y, SUN H S, ZHANG G H, LIU C H. Molecular characterization of chinese grape landraces (Vitis L.) using microsatellite DNA markers. Hortscience, 2017, 52(4):533-540.
doi: 10.21273/HORTSCI11802-17
[3] BUTTON P. The international union for the protection of new varieties of plants (UPOV) recommendations on variety denominations. Proceedings of the Fifth International Symposium on the Taxonomy of Cultivated Plants, 2008, 799:191-200.
[4] 植物品种鉴定-DNA指纹方法-总则. 中华人民共和国农业行业标准. NY/T2594—2016.
General guideline for identification of plant varieties using DNA markers. Agricultural Industry Standard of the People’s Republic of China, NY/T2594—2016. (in Chinese)
[5] 王富强, 李贝贝, 樊秀彩, 张颖, 刘崇怀, 姜建福. 葡萄品种SSR分子鉴定体系的建立及应用. 果树学报, 2020, 37(9):1281-1293.
WANG F Q, LI B B, FAN X C, ZHANG Y, LIU C H, JIANG J F. Establishment and application of SSR molecular identification system in grapevine. Journal of Fruit Science, 2020, 37(9):1281-1293. (in Chinese)
[6] 李贝贝, 姜建福, 张颖, 樊秀彩, 孙海生, 张国海, 刘崇怀. 葡萄品种DNA指纹数据库的构建及遗传多样性分析. 植物遗传资源学报, 2018, 19(2):338-350.
LI B B, LIU C H, JIANG J F, ZHANG Y, FAN X C, SUN H S, ZHANG G H, LIU C H. DNA fingerprinting and genetic diversity analysis of grape (Vitis vinifera L.) cultivars based on SSR markers . Journal of Plant Genetic Resources, 2018, 19(2):338-350. (in Chinese)
[7] RASHEED A, HAO Y F, XIA X C, KHAN A, XU Y B, VARSHNEY R K, HE Z H. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant, 2017, 10(8):1047-1064.
doi: 10.1016/j.molp.2017.06.008
[8] 李志远, 于海龙, 方智远, 杨丽梅, 刘玉梅, 庄木, 吕红豪, 张扬勇. 甘蓝SNP标记开发及主要品种的DNA指纹图谱构建. 中国农业科学, 2018, 51(14):2771-2787.
LI Z Y, YU H L, FANG Z Y, YANG L M, LIU Y M, ZHUANG M, LV H H, ZHANG Y Y. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties. Scientia Agricultura Sinica, 2018, 51(14):2771-2787. (in Chinese)
[9] 刘丽华, 庞斌双, 刘阳娜, 李宏博, 王娜, 王拯, 赵昌平. 基于SNP标记的小麦高通量身份鉴定模式. 麦类作物学报, 2018, 38(5):529-534.
LIU L H, PANG B S, LIU Y N, LI H B, WANG N, WANG Z, ZHAO C P. High-throughput identification mode for wheat varieties based on SNP markers. Journal of Triticeae Crops, 2018, 38(5):529-534. (in Chinese)
[10] YANG G L, CHEN S P, CHEN L K, SUN K, HUANG C H, ZHOU D H, HUANG Y T, WANG J F, LIU Y Z, WANG H, CHEN Z Q, GUO T. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice, 2019, 12(1):21.
doi: 10.1186/s12284-019-0272-3
[11] SUN C W, DONG Z D, ZHAO L, REN Y, ZHANG N, CHEN F. The wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6):1354-1360.
doi: 10.1111/pbi.v18.6
[12] CHEN H D, XIE W B, HE H, YU H H, CHEN W, LI J, YU R B, YAO Y, ZHANG W H, HE Y Q, TANG X Y, ZHOU F S, DENG X W, ZHANG Q F. A high-density SNP genotyping array for rice biology and molecular breeding. Molecular Plant, 2014, 7(3):541-553.
doi: 10.1093/mp/sst135
[13] XU C, REN Y H, JIAN Y Q, GUO Z F, ZHANG Y, XIE C X, FU J J, WANG H W, WANG G Y, XU Y B, LI P, ZOU C. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017, 37(3):1-12.
doi: 10.1007/s11032-016-0586-4
[14] SEMAGN K, BABU R, HEARNE S, OLSEN M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014, 33(1):1-14.
doi: 10.1007/s11032-013-9917-x
[15] RASHEED A, WEN W E, GAO F M, ZHAI S N, JIN H, LIU J D, GUO Q, ZHANG Y J, DREISIGACKER S, XIA X C, HE Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10):1843-1860.
doi: 10.1007/s00122-016-2743-x
[16] GREWAL S, HUBBART-EDWARDS S, YANG C Y, DEVI U, BAKER L, HEATH J, ASHLING S, SCHOLEFIELD D, HOWELLS C, YARDE J, ISAAC P, KING I P, KING J. Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-specific KASP genotyping assays. Plant Biotechnology Journal, 2020, 18(3):743-755.
doi: 10.1111/pbi.v18.3
[17] 马丽, 钟敬, 应继锋, 沈志成, 刘法新, 张立阳, 郑秀婷, 张先文, 阮祥经, 林海艳, 傅军, 刘欢. 基于KASP技术开发的玉米核心SNP标记及其应用. ZL201910623802.0. 2019-09-20.
MA L, ZHONG J, YING J F, SHEN Z C, LIU F X, ZHANG L Y, ZHENG X T, ZHANG X W, YUAN X J, LIN H Y, FU J, LIU H. Corn core SNP markers based on KASP technology and their application. ZL201910623802.0 2019-09-20. (in Chinese)
[18] 匡猛, 王延琴, 周大云, 马磊, 方丹, 徐双娇, 杨伟华, 魏守军, 马峙英. 基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术. 棉花学报, 2016, 28(3):227-233.
KUANG M, WANG Y Q, ZHOU D Y, MA L, FANG D, XU S J, YANG W H, WEI S J, MA Z Y. High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers. Cotton Science, 2016, 28(3):227-233. (in Chinese)
[19] LI Z Y, YU H L, LI X, ZHANG B, REN W J, LIU X P, FANG Z Y, YANG L M, ZHUANG M, LV H H, ZHANG Y Y. Kompetitive allele-specific PCR (KASP) genotyping and heterotic group classification of 244 inbred lines in cabbage (Brassica oleraceaL. var. capitata). Euphytica: International Journal of Plant Breeding, 2020, 216:1086-1099.
[20] ZHANG J, YANG J J, ZHANG L K, LUO J, ZHAO H, ZHANG J N, WEN C L. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Scientific Reports, 2020, 10(1):275-305.
doi: 10.1038/s41598-019-57145-9
[21] CABEZAS J A, IBÁÑEZ J, LIJAVETZKY D, VÉLEZ D, BRAVO G, RODRÍGUEZ V, CARREÑO I, JERMAKOW A M, CARREÑO J, RUIZ-GARCÍA L, THOMAS M R, MARTINEZ-ZAPATER J M, A 48 SNP set for grapevine cultivar identification. BMC Plant Biology, 2011, 11(1):153.
doi: 10.1186/1471-2229-11-153
[22] LAUCOU V, LAUNAY A, BACILIERI R, LACOMBE T, ADAM- BLONDON AF, BERARD A, CHAUVEAU A, DE-ANDRES M T, HAUSMANN L, IBANEZ J, LE PASLIER M C, MAGHRADZE D, MARTINEZ-ZAPATER J M, MAUL E, PONNAIAH M, TOPFER R, PEROS J P, BOURSIQUOT J M. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PloS ONE, 2018, 13(2):e0192540.
[23] 李贝贝, 张恒, 姜建福, 张颖, 樊秀彩, 房经贵, 刘崇怀. 基于SLAF-seq技术的葡萄种质遗传多样性分析. 园艺学报, 2019, 46(11):2109-2118.
LI B B, ZHANG H, JIANG J F, ZHANG Y, FAN X C, FANG J G, LIU C H. Analysis of genetic diversity of grape germplasms using SLAF-seq technology. Acta Horticulturae Sinica, 2019, 46(11):2109-2118. (in Chinese)
[24] LIANG Z C, DUAN S C, SHENG J, ZHU S S, NI X M, SHAO J H, LIU C H, NICK P, DU F, FAN P G, MAO R Z, ZHU Y F, DENG W P, YANG M, HUANG H C, LIU Y X, DING Y Q, LIU X J, JIANG J F, ZHU Y Y, LI S H, HE X H, CHEN W, DONG Y. Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nature Communications, 2019, 10(1):511-519
doi: 10.1038/s41467-018-07983-4
[25] BOTSTEIN D, WHITE R L, SKOLNICK M, DAVIS R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3):314-331.
[26] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51(4):626-634.
ZHAO JR, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R. Genetic diversity and population structure of important chinese maize breeding germplasm revealed by SNP-chips. Scientia Agricultura Sinica, 2018, 51(4):626-634. (in Chinese)
[27] FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164(4):1567-1587.
doi: 10.1093/genetics/164.4.1567
[28] EVANNO G, REGNUAT S, GOUSET J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8):2611-2620.
doi: 10.1111/mec.2005.14.issue-8
[29] 水稻品种鉴定-DNA指纹方法. 中华人民共和国农业行业标准. NY/T1433—2007.
Identification of rice(Oryza sativa L.) varieties using microsatellite markers . Agricultural Industry Standard of the People’s Republic of China, NY/T1433—2007. (in Chinese)
[30] 段长青, 刘崇怀, 刘凤之, 王忠跃, 刘延琳, 徐丽明. 新中国果树科学研究70年—葡萄. 果树学报, 2019, 36(10):1292-1301.
DUAN C Q, LIU C H, LIU F Z, WANG Z Y, LIU Y L, XU L M. Fruit scientific research in new China in the past 70 years: grape. Journal of Fruit Science, 2019, 36(10):1292-1301. (in Chinese)
[31] 孟聚星, 姜建福, 张国海, 孙海生, 樊秀彩, 张颖, 吴久赟, 刘崇怀. 我国育成的葡萄新品种系谱分析. 果树学报, 2017, 34(4):393-409.
MENG J X, JIANG J F, ZHANG G H, SUN H S, FAN X C, ZHANG Y, WU J Y, LIU C H. Pedigree analysis of grape cultivars released in China. Journal of Fruit Science, 2017, 34(4):393-409. (in Chinese)
[32] 李贝贝, 张颖, 樊秀彩, 李民, 刘崇怀, 姜建福. ‘巴柯’和‘尼加拉’葡萄疑似同物异名品种的SSR及形态学分析. 果树学报, 2019, 36(4):393-400.
LI B B, ZHANG Y, FAN X C, LI M, LIU C H, JIANG J F. Analysis of suspected synonyms of ‘Baco Noir’ and ‘Niagara’ by SSR markers and morphology. Journal of Fruit Science, 2019, 36(4):393-400. (in Chinese)
[33] 匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析. 中国农业科学, 2011, 44(1):20-27.
KUANG M, YANG W H, XU H X, WANG Y Q, ZHOU D Y, FENG X A. Construction of DNA Fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China. Scientia Agricultura Sinica, 2011, 44(1):20-27. (in Chinese)
[34] 结球甘蓝品种鉴定技术规程-SSR分子标记法. 中华人民共和国农业行业标准.NY/T 2473—2013.
Protocol for identification of cabbage varieties SSR marker method. Agricultural Industry Standard of the People’s Republic of China, NY/T2473—2013. (in Chinese)
[35] 王富强, 樊秀彩, 张颖, 刘崇怀, 姜建福. SNP分子标记在作物品种鉴定中的应用和展望. 植物遗传资源学报, 2020, 21(5):1308-1320.
WANG F Q, FAN X C, ZHANG Y, LIU C H, JIANG J F. Application and prospect of SNP molecular markers in crop variety identification. Journal of Plant Genetic Resources, 2020, 21(5):1308-1320. (in Chinese)
[36] 赵勇, 刘晓东, 赵洪锟, 袁翠平, 齐广勋, 王玉民, 董英山. 大豆SNP分型方法的比较. 分子植物育种, 2017, 15(9):3540-3546.
ZHAO Y, LIU X D, ZHAO H K, YUAN C P, QI G X, WANG Y M, DONG Y S. Comparison of methods for SNP genotyping in soybean. Molecular Plant Breeding, 2017, 15(9):3540-3546. (in Chinese)
[37] 刘宝平, 王均帅, 焦珍珍, 邢海星, 张东峰, 马睿, 赵小翠, 尹增奇, 吴坤生. 一套适用于番茄DNA指纹库构建的KASP引物组合及其应用. ZL201910916095.4. 2019-12-24.
LIU B P, WANG J S, JIAO Z Z, XING H X, ZHANG D F, MA R, ZHAO X C, YIN Z Q, WU K S. A set of KASP markers combinations suitable for the construction of tomato DNA fingerprint library and their application. ZL201910916095.4 2019-12-24. (in Chinese)
[38] LI P R, SU T B, WANG H P, ZHAO X Y, WANG W H, YU Y J, ZHANG D S, WEN C L, YU S C, ZHANG F L. Development of a core set of KASP markers for assaying genetic diversity in Brassica rapa subsp. chinensis Makino. Plant Breeding, 2019, 138:309-324.
doi: 10.1111/pbr.2019.138.issue-3
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[7] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[8] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[9] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[10] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[11] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[12] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[13] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[14] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[15] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!