Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2510-2522.doi: 10.3864/j.issn.0578-1752.2021.12.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Precise Evaluation of 48 Maize Inbred Lines to Major Diseases

ZHAO ZiQi1(),ZHAO YaQi1(),LIN ChangPeng1,ZHAO YongZe1,YU YuXiao1,MENG QingLi2,ZENG GuangYing3,XUE JiQuan1,YANG Qin1()   

  1. 1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas/Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Ministry of Agriculture, Yangling 712100, Shaanxi
    2Baoji Institute of Agricultural Science, Qishan 722499, Shaanxi
    3Zhenping Institute of Agricultural Science, Zhenping 725600, Shaanxi
  • Received:2020-11-02 Accepted:2020-12-29 Online:2021-06-16 Published:2021-06-24
  • Contact: Qin YANG E-mail:zhaoziqi@nwafu.edu.cn;zhaoyaqi@nwafu.edu.cn;qyang@nwafu.edu.cn

Abstract:

【Objective】 In order to provide valuable resources to the maize community for enhancing disease resistance, we selected 30 core maize inbred lines from Shaan A and Shaan B heterotic groups, and 18 major maize germplasms worldwide for disease resistance evaluation and resistance gene identification.【Method】Gibberella stalk rot, Gibberella ear rot, northern leaf blight (NLB) and southern leaf blight (SLB) were artificially inoculated, while gray leaf spot (GLS) was naturally infected in replicated field trials at different locations in 2019 and 2020. A randomized complete block design was adopted with two to three replicates being evaluated at each location. Sorghum grain inoculum was artificially inoculated to the whorl of each plant at the seedling stage for NLB and SLB. Gibberella stalk rot was artificially inoculated using corn grain inoculum buried next to the root of each plant at heading time, while Gibberella ear rot was artificially inoculated by injecting conidial suspension through the silk channel and the husk separately. The best linear unbiased predictions (BLUPs) were estimated and correlation coefficients were calculated between each pair of the disease resistance. Disease resistance genes were genotyped using functional markers. 【Result】Nine highly resistant (HR) lines for NLB, two HR lines for SLB, ten resistant (R) lines for GLS, five HR lines for stalk rot, and five R lines for ear rot resistance were identified out of the 48 maize germplasms. Eight inbred lines showed multiple disease resistance to the three foliar diseases, such as 1145, CML170, and so on. We identified seven elite inbred lines showing good performance for all the five diseases, including 1145, CML170, KA105, KB020, X178, Shen137, and Zheng58. NLB, SLB, GLS, and Gibberella stalk rot resistance were significantly positively correlated, while Gibberella ear rot was not correlated with the other four diseases. 1145, KA081, and Shen137 contain the resistant qRfg1 allele. KB109 harbors the resistant Rcg1 allele. Many inbred lines carry the resistant Htn1 and ZmCCoAOMT2 alleles.【Conclusion】1145, CML170, KA105, KB020, X178, Shen137, and Zheng58 could be selected for multiple disease resistance improvement in breeding program. Shen137 is the best line for marker-assisted selection for qRfg1, Htn1, and ZmCCoAOMT2 loci.

Key words: maize, disease resistance, northern leaf blight, southern leaf blight, gray leaf spot, stalk rot, ear rot

Table 1

Disease rating scale and evaluation of northern leaf blight, southern leaf blight, gray leaf spot, ear rot and stalk rot in maize"

大斑病
Northern leaf blight
小斑病
Southern leaf blight
灰斑病
Gray leaf spot
禾谷镰孢穗腐病
Gibberella ear rot
禾谷镰孢茎腐病
Gibberella stalk rot
感病面积
Diseased area (%)
抗性评价
Disease level
病情分级
Disease scale
抗性评价
Disease level
病情分级
Disease scale
抗性评价
Disease level
感病面积
Diseased area (%)
抗性评价
Disease level
病情分级
Disease scale
抗性评价
Disease level
0—10 HR 1—2 HR 1—2 HR 0—1 HR 1—2 HR
10—25 R 2—3 R 2—3 R 1—10 R 2—3 R
25—40 MR 3—4 MR 3—4 MR 10—25 MR 3—5 MR
40—65 S 4—5 S 4—5 S 25—50 S 5—7 S
65—100 HS 5—9 HS 5—9 HS 50—100 HS 7—9 HS

Fig. 1

Rating scale of maize resistance to stalk rot"

Table 2

Primers used to identify the cloned disease resistance genes"

基因名称 Gene ID 病害 Disease 引物名称 Primer name 引物序列 Primer sequence (5′-3′)
qRfg1 禾谷镰孢茎腐病
Gibberella stalk rot
TED-F GCACAAGAGAGATGGAGCATT
TED-R ATTCTCAATCCAAGGTGCAG
TERB-F CCTAAGAACCGTCGGAAACA
TERB-R CGAGCGTTTTCGACATAACA
TELB-F AAACGCTGACACTTCCGACT
TELB-R GTCGACACGTGTAGGAAGCA
Rcg1 炭疽茎腐病
Anthracnose stalk rot
FLP-111-F TTCCTGTTCGTCTGTATCTGATCCG
FLP-111-R TTTGATTCCGGTCGAGTATAACCTG
FLP-112-F GAAACTGCCTTCCCAGAAAACAATG
FLP-112-R CAAGATCGGTGAAGTTGGTGCTTC
FLP-113-F ATCACAGATGGGTCTCAAGGATTGC
FLP-A1-R TTCCAAGCAATTCACAGCTC
Htn1 大斑病
Northern leaf blight
Htn1-F TCTTCTCCCCGCCATGGC
Htn1-R CGGTGTAGCCGCAGGAGT
ZmCCoAOMT2 小斑病、灰斑病
Southern leaf blight, Gray leaf spot
CAMT-F CCGTCCTGGACGACCTCGTG
CAMT-R TGCTGCGCGTCGTCTACGAT

Fig. 2

Histogram of disease resistance BLUP a: Northern leaf blight; b: Southern leaf blight; c: Gray leaf spot; d: Gibberella stalk rot; e: Gibberella ear rot"

Table 3

Variance component analysis for resistance to different diseases on 48 maize inbred lines"

病害
Disease
随机因子
Random factor
方差估计值(标准误)
Estimate (standard error)
P
P value
固定因子
Fixed factor
F测验
F test
大斑病
Northern leaf blight
重复Rep. (Env.) 0.00 NS 基因型Genotype 4.98***
环境Env. 26.17(39.43) NS
基因型与环境互作 Genotype×Env. 51.55(17.12) 0.0038
散粉期DTA 0.00 NS
残差Residual 55.86(8.24)
小斑病
Southern leaf blight
重复Rep. (Env.) 0.01(0.01) NS 基因型Genotype 11.89***
环境Env. 0.00 NS
基因型与环境互作 Genotype×Env. 0.11(0.04) 0.0047
散粉期DTA 0.00 NS
残差Residual 0.20(0.02)
灰斑病
Gray leaf spot
重复Rep. (Env.) 0.00 NS 基因型Genotype 3.42***
环境Env. 0.00 NS
基因型与环境互作 Genotype×Env. 0.18(0.08) 0.0093
残差Residual 0.33(0.05)
禾谷镰孢菌茎腐病Gibberella stalk rot 重复Rep. (Env.) 0.33(0.25) NS 基因型Genotype 4.44***
环境Env. 0.93(1.14) NS
基因型与环境互作 Genotype×Env. 1.31(0.27) <0.0001
残差Residual 0.89(0.10)
禾谷镰孢穗腐病Gibberella ear rot 重复Rep. (Env.) 25.06(22.14) NS 基因型Genotype 1.01
环境Env. 20.41(41.66) NS
基因型与环境互作 Genotype×Env. 302.13(74.24) <0.0001
残差Residual 239.63(30.51)

Table 4

Resistance evaluation of maize inbred lines to 5 diseases"

自交系
Inbred line
类群划分
Sub-group
大斑病
Northern leaf blight
小斑病
Southern leaf blight
灰斑病
Gray leaf spot
禾谷镰孢茎腐病
Gibberella stalk rot
禾谷镰孢穗腐病
Gibberella ear rot
1145 P78599 HR R R HR MR
2082 NSSS R R MR R MR
AMD43 NSSS S HS HS HS S
B110 BSSS S HS S MR MR
B73 BSSS S HS HS S R
CML170 TST HR R R HR MR
KA064 陕A群ShaanA MR HR S MR MR
KA081 陕A群ShaanA HR R MR R S
KA103 陕A群ShaanA R R R S MR
KA105 陕A群ShaanA R R MR R R
KA106 陕A群ShaanA MR MR S MR MR
KA109 陕A群ShaanA R MR MR MR S
KA115 陕A群ShaanA HR MR MR MR MR
KA147 陕A群ShaanA R R MR R S
KA203 陕A群ShaanA R R MR HR HS
KA225 陕A群ShaanA MR S MR S HS
KA327 陕A群ShaanA R R R MR MR
KB019 陕B群ShaanB MR MR MR S MR
KB020 陕B群ShaanB HR HR MR R MR
KB024 陕B群ShaanB R HS S MR MR
KB025 陕B群ShaanB MR HS S MR MR
KB043 陕B群ShaanB MR MR S R S
KB052 陕B群ShaanB MR S S S MR
KB062 陕B群ShaanB S S HS R S
KB081 陕B群ShaanB S MR MR MR MR
KB089 陕B群ShaanB MR HS S HS MR
KB102 陕B群ShaanB R R R R S
KB106 陕B群ShaanB MR S S MR S
KB107 陕B群ShaanB MR S MR S R
KB109 陕B群ShaanB R S MR R MR
KB128 陕B群ShaanB MR MR MR MR MR
KB204 陕B群ShaanB R MR MR S R
KB207 陕B群ShaanB R R S R S
KB227 陕B群ShaanB R MR MR R S
KB243 陕B群ShaanB R S S MR MR
KB588 陕B群ShaanB HR MR MR MR S
Mo17 Lan R MR MR MR MR
NW-H537 Reid MR R MR R MR
PH4CV Lan S MR MR MR HS
PH6WC BSSS R MR R HR HS
PHK42 NSSS MR R MR MR MR
PHN11 NSSS S S HS MR MR
PHT60 NSSS R S MR MR S
X178 P78599 HR R R HR MR
昌7-2 Chang7-2 SPT HR MR R S HS
黄早四HZS SPT MR MR MR HS R
沈137 Shen137 P78599 HR R R R MR
郑58 Zheng58 Reid R R R R MR

Fig. 3

Phenotypic correlations for all pairs of traits based on BLUPs Positive correlations with P<0.01 are highlighted in blue"

Table 5

Test results of the cloned resistance genes in maize inbred lines"

自交系
Inbred line
抗病基因Disease resistance gene
qRfg1 Rcg1 Htn1 ZmCCoAOMT2
1145 RR rr rr RR
2082 rr rr rr rr
AMD43 rr rr 未知Unknown RR
B110 rr rr 未知Unknown RR
B73 rr rr rr rr
CML170 rr rr rr rr
KA064 rr rr rr RR
KA081 RR rr RR rr
KA103 rr rr 未知Unknown rr
KA105 rr rr rr rr
KA106 rr rr 未知Unknown RR
KA109 rr rr rr RR
KA115 rr rr RR rr
KA147 rr rr RR RR
KA203 rr rr 未知Unknown RR
KA225 rr rr 未知Unknown RR
KA327 rr rr RR RR
KB019 rr rr 未知Unknown RR
KB020 rr rr RR rr
KB024 rr rr 未知Unknown RR
KB025 rr rr rr RR
KB043 rr rr RR rr
KB052 rr rr RR RR
KB062 rr rr 未知Unknown RR
KB081 rr rr rr rr
KB089 rr rr 未知Unknown RR
KB102 rr rr rr 未知Unknown
KB106 rr rr RR RR
KB107 rr rr 未知Unknown RR
KB109 rr RR 未知Unknown RR
KB128 rr rr RR rr
KB204 rr rr 未知Unknown 未知Unknown
KB207 rr rr RR rr
KB227 rr rr rr rr
KB243 rr rr RR RR
KB588 rr rr 未知Unknown rr
Mo17 rr rr 未知Unknown RR
NW-H537 rr rr 未知Unknown rr
PH4CV rr rr 未知Unknown rr
PH6WC rr rr RR rr
PHK42 rr rr 未知Unknown rr
PHN11 rr rr 未知Unknown rr
PHT60 rr rr 未知Unknown RR
X178 rr rr 未知Unknown RR
昌7-2 Chang7-2 rr rr 未知Unknown rr
黄早四 HZS rr rr 未知Unknown 未知Unknown
沈137 Shen137 RR rr RR RR
郑58 Zheng58 rr rr 未知Unknown RR
[1] 渠清, 李丽娜, 刘俊, 王绍新, 曹志艳, 董金皋. 我国部分常用玉米种质资源对镰孢菌病害的抗性评价. 中国农业科学, 2019,52(17):2962-2971.
QU Q, LI L N, LIU J, WANG S X, CAO Z Y, DONG J G. Resistance evaluation of some commonly used maize germplasm resources to fusarium diseases in China. Scientia Agricultura Sinica, 2019,52(17):2962-2971. (in Chinese)
[2] 郭成, 王宝宝, 杨洋, 王春明, 周天旺, 李敏权, 段灿星. 玉米茎腐病研究进展. 植物遗传资源学报, 2019,20(5):1118-1128.
GUO C, WANG B B, YANG Y, WANG C M, ZHOU T W, LI M Q, DUAN C X. Advances in studies of maize stalk rot. Journal of Plant Genetic Resources, 2019,20(5):1118-1128. (in Chinese)
[3] 段灿星, 董怀玉, 李晓, 李红, 李春辉, 孙素丽, 朱振东, 王晓鸣. 玉米种质资源大规模多年多点多病害的自然发病抗性鉴定. 作物学报, 2020,46(8):1135-1145.
DUAN C X, DONG H Y, LI X, LI H, LI C H, SUN S L, ZHU Z D, WANG X M. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition. Acta Agronomica Sinica, 2020,46(8):1135-1145. (in Chinese)
[4] 张艳, 张叶, 王梓钰, 闻竞, 韩四平, 郭嘉, 邢跃先. 44份玉米自交系对镰孢穗腐病的抗性鉴定. 植物遗传资源学报, 2019,20(2):276-283.
ZHANG Y, ZHANG Y, WANG Z Y, WEN J, HAN S P, GUO J, XING Y X. Evaluation of resistance to Fusarium ear rot in 44 maize inbred lines. Journal of Plant Genetic Resources, 2019,20(2):276-283. (in Chinese)
[5] 张小利. 玉米对大斑病和南方锈病抗病性研究[D]. 北京: 中国农业科学院, 2013.
ZHANG X L. Study on the resistance of maize to northern corn leaf blight and southern corn rust[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[6] 赵立萍, 王晓鸣, 段灿星, 龙书生, 李晓, 李洪连, 何月秋, 晋齐鸣, 武小菲, 宋凤景. 中国玉米灰斑病发生现状与未来扩散趋势分析. 中国农业科学, 2015,48(18):3612-3626.
ZHAO L P, WANG X M, DUAN C X, LONG S S, LI X, LI H L, HE Y Q, JIN Q M, WU X F, SONG F J. Occurrence status and future spreading areas of maize gray leaf spot in China. Scientia Agricultura Sinica, 2015,48(18):3612-3626. (in Chinese)
[7] 金柳艳, 李明顺, 王志伟, 石洁, 郭宁, 刘树森, 张海剑. 美国玉米自交系对4种病原茎腐病的抗性鉴定及遗传多样性分析. 植物遗传资源学报, 2019,20(6):1428-1437.
JIN L Y, LI M S, WANG Z W, SHI J, GUO N, LIU S S, ZHANG H J. Resistance identification and genetic diversity analysis of American maize inbred lines to four pathogenic stalk rot diseases. Journal of Plant Genetic Resources, 2019,20(6):1428-1437. (in Chinese)
[8] 宋燕春, 裴二芹, 石云素, 王天宇, 黎裕. 玉米重要自交系的肿囊腐霉茎腐病抗性鉴定与评价. 植物遗传资源学报, 2012,13(5):798-802.
SONG Y C, PEI E Q, SHI Y S, WANG T Y, LI Y. Identification and evaluation of resistance to stalk rot (Pythium inflatum Matthews) in important inbred lines of maize. Journal of Plant Genetic Resources, 2012,13(5):798-802. (in Chinese)
[9] 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定. 作物学报, 2018,44(4):614-619.
XIAO M G, SONG J, SUN B, ZUO X, ZHAO G S, XIN A H, LI Z G. Exploration of foreign maize inbred lines with broad spectrum resistance to northern corn leaf blight and preliminary identification of resistance genes. Acta Agronomica Sinica, 2018,44(4):614-619. (in Chinese)
[10] 董怀玉, 薛玉梅, 王丽娟, 刘可杰, 徐秀德. 外引玉米种质对3种玉米叶斑病的抗性鉴定与评价. 植物保护, 2015,41(2):167-170.
DONG H Y, XUE Y M, WANG L J, LIU K J, XU X D. Resistance identification and evaluation of introduced maize germplasms to 3 kinds of maize leaf spot. Plant Protection, 2015,41(2):167-170. (in Chinese)
[11] 蒙成, 梁庆平, 蒋益敏, 吴地, 吴烈. 70份外引改良玉米种质对广西主要病害抗性鉴定. 西南农业学报, 2019,32(4):720-727.
MENG C, LIANG Q P, JIANG Y M, WU D, WU L. Identification on disease resistance of 70 introduced and improved maize to main diseases in Guangxi. Southwest China Journal of Agricultural Sciences, 2019,32(4):720-727. (in Chinese)
[12] WANG X M, ZHANG Y H, XU X, LI H J, WU X F, ZHANG S H, LI X H. Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases. The Crop Journal, 2014,2(4):213-222.
doi: 10.1016/j.cj.2014.04.004
[13] AFOLABI G, OJIAMBO S, EKPO A, MENKIR A, BANDYOPADHYAY R. Novel sources of resistance to Fusarium stalk rot of maize in tropical Africa. Plant Disease, 2008,92(5):772-780.
doi: 10.1094/PDIS-92-5-0772
[14] NYANAPAH J, AYIECHO P, NYABUNDI J, OTIENO W, OJIAMBO P. Field characterization of partial resistance to gray leaf spot in elite maize germplasm. Phytopathology, 2020,110(10):1668-1679.
doi: 10.1094/PHYTO-12-19-0446-R
[15] MENKIR A, ADEPOJU A. Registration of 20 Tropical midaltitude maize line sources with resistance to gray leaf spot. Crop Science, 2005,45:803-804.
doi: 10.2135/cropsci2005.0803
[16] ELBIETA C, AGNIESZKA W, URSZULA P, MARTA P, JERZY C, UKASZ S. Differences in ear rot resistance and Fusarium verticillioides-produced fumonisin contamination between polish currently and historically used maize inbred lines. Frontiers in Microbiology, 2019,10:449.
doi: 10.3389/fmicb.2019.00449
[17] DERERA J, SHIMELIS H, ABERA W, LAING M, WORKU. Northern leaf blight response of elite maize inbred lines adapted to the mid-altitude sub-humid tropics. Cereal Research Communications, 2016,44(1):141-152.
doi: 10.1556/0806.43.2015.037
[18] 贾娇, 张伟, 孟玲敏, 苏前富, 晋齐鸣. 71份新选育自交系对主要玉米病害的抗性分析. 东北农业科学, 2020: 1-6.
JIA J, ZHANG W, MENG L M, SU Q F, JIN Q M. Resistance analysis of 71 new inbred lines to main maize diseases. Journal of Northeast Agricultural Sciences, 2020: 1-6. (in Chinese)
[19] 余辉, 宋伟, 赵久然, 王凤格, 吴金凤. 分子标记辅助选择玉米自交系京24两种抗病主效基因的聚合. 分子植物育种, 2014,12(2):240-245.
YU H, SONG W, ZHAO J R, WANG F G, WU J F. Two major resistance genes pyramiding on maize inbred line Jing24 with marker assisted selection. Molecular Plant Breeding, 2014,12(2):240-245. (in Chinese)
[20] SEVERINE H, DANIELA S, SIMON K, BETTINA K, THOMAS W, GERHARD H, MIRJAM F, JAMES B, THOMAS P, MILENA O, BEAT K. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(28):8780-8785.
[21] YANG Q, HE Y J, MERCY K, TIMOTHY C, AMY K, ELI B, BIAN Y, FARID K, YANG L, PAULO T, JUDITH K, REBECCA N, MICHAEL K, JEFFERY D, RANDALL W, JEFFREY C, LI X, NICK L, PETER B. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017,49(9):1364-1372.
doi: 10.1038/ng.3919
[22] WANG C, YANG Q, WANG W X, LI Y P, GUO Y L, ZHANG D F, MA X N, SONG W, ZHAO J R, XU M L. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytologist, 2017,215(4):1503-1515.
doi: 10.1111/nph.2017.215.issue-4
[23] YE J R, ZHONG T, ZHANG D F, MA C Y, WANG L N, YAO L S, ZHANG Q Q, ZHU M, XU M L. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Molecular Plant, 2019,12(3):360-373.
doi: 10.1016/j.molp.2018.10.005
[24] FREY J. Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) G.W. Wils. using near-isogenic maize hybrids. Crop Science, 2011,51(4):1551-1563.
doi: 10.2135/cropsci2010.10.0613
[25] 王金萍, 刘永伟, 孙果忠, 王海波. 抗茎腐病分子标记在159份玉米自交系中的验证及实用性评价. 植物遗传资源学报, 2017,18(4):754-762.
WANG J P, LIU Y W, SUN G Z, WANG H B. Evaluation and validation of molecular markers associated with stalk rot resistance in 159 maize inbred lines. Journal of Plant Genetic Resources, 2017,18(4):754-762. (in Chinese)
[26] 杨洋, 郭成, 孙素丽, 陈国康, 朱振东, 王晓鸣, 段灿星. 玉米抗腐霉茎腐病种质标记基因型鉴定与遗传多样性分析. 植物遗传资源学报, 2019,20(6):1418-1427.
YANG Y, GUO C, SUN S L, CHEN G K, ZHU Z D, WANG X M, DUAN C X. Marker-assisted identification and genetic diversity analysis of maize germplasm resources with resistance to Pythium stalk rot. Journal of Plant Genetic Resources, 2019,20(6):1418-1427. (in Chinese)
[27] 程品冰, 王晓鸣, 高卫东. 玉米抗大斑病基因Ht2、Ht3分子标记的应用检测. 植物遗传资源学报, 2007(3):285-288.
CHENG P B, WANG X M, GAO W D. Practical detection of molecular markers for resistance gene Ht2, Ht3 to northern corn leaf blight. Journal of Plant Genetic Resources, 2007(3):285-288. (in Chinese)
[28] SERMONS S, BALINT-KURTI P. Large scale field inoculation and scoring of maize southern leaf blight and other maize foliar fungal diseases. Bio-protocol, 2018,8(5):e2745.
[29] YANG Q, YIN G M, GUO Y L, ZHANG D F, CHEN S J, XU M L. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2010,121(4):673-687.
doi: 10.1007/s00122-010-1339-0
[30] ZILA C T, SAMAYOA L F, SANTIAGO R, BUTRON A, HOLLAND J B. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes Genomes Genetics, 2013,3(11):2095-2104.
[31] DONG C P, WU Y B, GAO J Y, ZHOU Z J, MU C, MA P P, CHEN J F, WU J Y. Field inoculation and classification of maize ear rot caused by Fusarium verticillioides. Bio-protocol, 2018,8(23):e3099.
[32] JILL R. L, MATTHEW K, MAJOR G, SHERRY F, PETER J. B, Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Science, 2016,56(1):209-218.
doi: 10.2135/cropsci2014.07.0468
[33] BALINT-KURTI P J, YANG J Y, VAN G, JUNG J, SMITH M. Use of a maize advanced intercross line for mapping of QTL for northern leaf blight resistance and multiple disease resistance. Crop Science, 2010,50(2):458-466.
doi: 10.2135/cropsci2009.02.0066
[34] HOLLAND J B, NYQUIST W E, CUAUHTEMOC T. Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Reviews, 2002: 9-112.
[35] MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4325.
doi: 10.1093/nar/8.19.4321
[36] MUELLER D S, WISE K A, SISSON A J, ALLEN T W, BERGSTROM G C, BOSLEY D B, BRADLEY C A, BRODERS K D, BYAMUKAMA E, CHILVERS M I, COLLINS A, FASKE T R, FRISKOP A J, HEINIGER R W, HOLLIER C A, HOOKER DAVID C, ISAKEIT T, JACKSON-ZIEMS T A, JARDINE D J, KELLY H M, KINZER K, KOENNING S R, MALVICK D K. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2012 to 2015. Plant Health Progress, 2016,17(3):211-222.
doi: 10.1094/PHP-RS-16-0030
[37] 徐凌, 左为亮, 刘永杰, 刘青青, 陶永富, 徐明良, 叶建荣. 玉米主要病害抗性遗传研究进展. 中国农业科技导报, 2013,15(3):18-29.
XU L, ZUO W L, LIU Y J, LIU Q Q, TAO Y F, XU M L, YE J R. Progress on major gene /QTL for disease resistance in maize. Journal of Agricultural Science and Technology, 2013,15(3):18-29. (in Chinese)
[38] 余辉, 宋伟, 赵久然, 王凤格, 吴金凤. 分子标记辅助选择育成的玉米自交系京24单抗丝黑穗病和茎腐病改良材料性状分析. 分子植物育种, 2014,12(1):56-61.
YU H, SONG W, ZHAO J R, WANG F G, WU J F. Characters analysis on resistance improved materials of Jing24 single-resistance to head smut and stalk rot bred with molecular marker-assisted selection. Molecular Plant Breeding, 2014,12(1):56-61. (in Chinese)
[39] ZHAO X R, TAN G Q, XING Y X, WEI L, CHAO Q, ZUO W L, THOMAS L, XU M L, Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Molecular Breeding, 2012,30(2):1077-1088.
doi: 10.1007/s11032-011-9694-3
[40] 孙华, 张海剑, 郭宁, 石洁, 陈丹, 马红霞. 黄淮海夏玉米主产区穗腐病病原菌的分离鉴定. 植物保护学报, 2017,44(5):796-802.
SUN H, ZHANG H J, GUO N, SHI J, CHEN D, MA H X. Isolation and identification of pathogens causing maize ear rot in Huang-Huai- Hai summer corn region. Journal of Plant Protection, 2017,44(5):796-802. (in Chinese)
[41] 谭世麒. 陕西玉米灰斑病病原菌鉴定及防控药剂和抗病品种的筛选[D]. 杨凌: 西北农林科技大学, 2019.
TAN S Q. Pathogen identification of corn gray leaf spot in Shaanxi and screening effective fungicides and resistant variety for disease control[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[11] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!