Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1227-1240.doi: 10.3864/j.issn.0578-1752.2022.06.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle

WANG Kai1(),ZHANG HaiLiang1,DONG YiXin1,CHEN ShaoKan2,GUO Gang2,LIU Lin3,WANG YaChun1()   

  1. 1College of Animal Science and Technology, China Agricultural University/Key Laboratory of Animal Genetics, Breeding and Reproduction (MARA)/National Engineering Laboratory for Animal Breeding, Beijing 100193
    2Beijing Sunlon Livestock Development Company Limited, Beijing 100029
    3Beijing Dairy Cattle Center, Beijing 100192
  • Received:2021-02-07 Accepted:2021-11-17 Online:2022-03-16 Published:2022-03-25
  • Contact: YaChun WANG E-mail:k_wang7@163.com;wangyachun@cau.edu.cn

Abstract:

【Objective】This study was conducted to define health traits and to estimate their genetic parameters by using on-farm management data in dairy cattle.【Method】In this study, the health event records were collected by extracting from farm management software from 46 large-scale dairy farms in Northern China. Totally, 1 326 kinds of health events were grouped into five categories by standardizing the acronyms of on-farm records, 18 kinds of most frequent health events were selected from five categories. According to whether a health event occurred at least once within a lactation, 18 binary individual health traits corresponding to the 18 selected health events were defined (observations being 0 or 1). Furthermore, in order to define cow’s general resistance to certain type of health problem, five binary general health traits were defined according to whether health problems within a health category occurs at least once in a lactation (observations being 0 or 1). The single trait and two traits linear animal models were used to estimate the genetic parameters for 23 newly defined health traits. 【Result】The estimated heritabilities for 23 health traits ranged from 0 (rumen acidosis) to 0.03 (milk fever). Udder health, reproductive disorders and metabolic disorders had the highest heritability (approximately 0.02) among five general health traits, whereas digestive disorders and hoof health had relatively low heritability (less than 0.01). Clustering health events into categories resulted in higher heritability for reproductive disorders and digestive disorders, while heritabilities of udder health, metabolic disorders and hoof health were lower than that of single health traits with the highest heritability in their respective category. The low genetic correlations between different health category traits were found; however, the moderate genetic correlations among some health traits from same category were observed. The health traits within the hoof health had the high genetic correlations with each other, ranged from 0.63 (Laminitis and Footrot) to 0.99 (Laminitis and Sole ulcer). For reproductive disorders, retained placenta had medium genetic correlations with metritis (0.47) and endometritis (0.46), respectively. For digestive disorders, relatively high genetic correlations were found between diarrhea and enteritis (0.94) as well as dyspepsia and antony of forestomachs (0.80). The ketosis and abomasum displacement had a genetic correlation of 0.42.【Conclusion】Based on the current data quality of health records in Chinese dairy farm and the results from the current study, it was suggested that five individual health traits (clinical mastitis, metritis, ketosis, abomasum displacement and milk fever) and two general health traits (digestive disorders and hoof health) could be considered as target traits, and they should be intensively considered in research and breeding practice for improving health traits genetically in Chinese Holstein population. This study proved the feasibility of defining health traits using on-farm management data in Chinese dairy cattle. The results from the current study provided a reference for research and genetic selection of disease resistance in dairy cattle, and could help to promote balanced breeding in Chinese dairy cattle population.

Key words: Holstein, health trait, disease resistance breeding, genetic parameter, genetic analysis

Table 1

The classification of health events in Holstein cows"

分类Category 健康事件Health event
乳房健康 UDDE 临床乳房炎、隐性乳房炎、其他 MAST1, MAST2, Others
繁殖障碍 REPR 子宫炎、胎衣不下、子宫内膜炎、流产、其他 METR, RETP, ENDM, ABOR, Others
消化障碍 DIGS 腹泻、肠炎、消化不良、前胃迟缓、其他 DIAR, ENTR, DYSP, ANTF, Others
代谢障碍 METB 产乳热、酮病、真胃变胃、瘤胃酸中毒 MFEV, KETO, DSAB, RUAD
肢蹄健康 HOOF 蹄病、腐蹄病、蹄底溃疡、蹄叶炎、其他 HFDS, FTRT, SLUL, LMNT, Others
其他类
Other categories, OTHC
记录不明或不能归类为以上分类的事件
Unknown records or records that cannot be classified into certain categories listed above

Fig. 1

The proportion of the various health event in Holstein cows UDDE: Udder health; MAST1: Clinical mastitis; MAST2: Subclinical mastitis; REPR: Reproductive disorders; METR: Metritis; RETP: Retained placenta; ENDM: Endometritis; ABOR: Abortion; DIGS: Digestive disorders; DIAR: Diarrhea; ENTR: Enteritis; DYSP: Dyspepsia; ANTF: Antony of forestomachs; METB: Metabolic disorders; MFEV: Milk fever; KETO: Ketosis; DSAB: Displacement of abomasum; RUAD: Rumen acidosis; HOOF: Hoof health; HFDS: Hoof disease; FTRT: Footrot; SLUL: Sole ulcer; LMNT: Laminitis; OTHC: Other categories. The same as below"

Fig. 2

The probability density of various health events with the days in milk in Holstein cows a: All health events; b: Udder health; c: Reproductive disorders; d: Digestive disorders; e: Metabolic disorders; f: Hoof health. The same as below"

Fig. 3

The impacts of parity effect on health traits in Holstein cows"

Fig. 4

The effects of calving season on health traits in Holstein cows"

Table 2

The data size and genetic parameters for various health traits in Holstein cows"

性状
Traits
表型数据量Data size 遗传力
Heritability
重复力
Repeatability
健康事件
Cows with health events
产犊事件
Cows with calving records
场年数
No. of herd-years
乳房健康UDDE 54 390 163 484 406 0.0222 ± 0.0018 0.0727
临床乳房炎MSAT1 52 261 160 002 400 0.0241 ± 0.0019 0.0750
隐性乳房炎MAST2 2 443 55 644 82 0.0124 ± 0.0024 0.0207
繁殖障碍REPR 51 617 162 634 414 0.0214 ± 0.0016 0.0383
子宫炎METR 17 135 140 080 300 0.0177 ± 0.0016 0.0284
子宫内膜炎ENDM 4 743 39 068 78 0.0062 ± 0.0020 0.0248
胎衣不下RETP 7 603 119 369 217 0.0086 ± 0.0012 0.0202
流产ABOR 25 066 150 700 379 0.0068 ± 0.0011 0.0178
消化障碍DIGS 22 770 157 385 382 0.0090 ± 0.0010 0.0360
腹泻DIAR 13 483 156 716 362 0.0073 ± 0.0010 0.0342
消化不良DYSP 2 862 95 401 156 0.0000 ± 0.0000 0.0056
肠炎ENTR 2 449 60 188 129 0.0045 ± 0.0013 0.0270
前胃迟缓ANTF 3 080 83 213 173 0.0051 ± 0.0013 0.0051
代谢障碍METB 19 789 155 636 374 0.0193 ± 0.0016 0.0193
酮病KETO 9 464 134 455 280 0.0201 ± 0.0018 0.0201
真胃变位DSAB 9 142 149 798 342 0.0137 ± 0.0013 0.0137
产乳热MFEV 3 169 134 241 258 0.0310 ± 0.0024 0.0310
瘤胃酸中毒RUAC 435 44 004 62 0.0000 ± 0.0015 0.0159
肢蹄健康HOOF 8 285 139 848 309 0.0066 ± 0.0011 0.0298
蹄病HFDS 3 697 82 788 165 0.0041 ± 0.0011 0.0207
腐蹄病FTRT 1 030 56 519 78 0.0083 ± 0.0021 0.0333
蹄叶炎LMNT 982 66 187 104 0.0103 ± 0.0018 0.0103
蹄底溃疡SLUL 1 111 72 778 112 0.0000 ± 0.0011 0.0106

Fig. 5

Genetic (above diagonal) and phenotypic (below diagonal) correlations among the various health traits in Holstein cows"

[1] 李胜利, 刘长全, 夏建民, 韩磊, 姚琨, 杨敦启, 周鑫宇. 2018年我国奶业形势回顾与展望. 中国畜牧杂志, 2019,55(3):129-132. doi: 10.19556/j.0258-7033.2019-03-129.
doi: 10.19556/j.0258-7033.2019-03-129
LI S L, LIU C Q, XIA J M, HAN L, YAO K, YANG D Q, ZHOU X Y. Review and outlook of China's dairy industry in 2018. Chinese Journal of Animal Science, 2019,55(3):129-132. doi: 10.19556/j.0258-7033.2019-03-129. (in Chinese)
doi: 10.19556/j.0258-7033.2019-03-129
[2] 王梦琦, 倪炜, 张慧敏, 杨章平, 王西朴, 蒋彦森, 毛永江. 中国荷斯坦牛CXCR1基因编码区SNP多态与临床乳房炎和生产寿命的关联分析. 中国农业科学, 2017,50(12):2359-2370.
WANG M Q, NI W, ZHANG H M, YANG Z P, WANG X P, JIANG Y S, MAO Y J. Association between SNPs in the CDS regions of CXCR1 gene and the clinical mastitis and lifetime for Chinese Holstein. Scientia Agricultura Sinica, 2017,50(12):2359-2370. (in Chinese)
[3] 黄金明, 王长法, 王洪梅, 李建斌, 仲跻峰. 奶牛繁殖的遗传学和基因组学研究进展. 家畜生态学报, 2009,30(1):7-11.
HUANG J M, WANG C F, WANG H M, LI J B, ZHONG J F. Advances on genetics and genomics for reproduction in dairy cattle. Acta Ecologiae Animalis Domastici, 2009,30(1):7-11. (in Chinese)
[4] ETTEMA J F, ØSTERGAARD S. Economic decision making on prevention and control of clinical lameness in Danish dairy herds. Livestock Science, 2006,102(1/2):92-106. doi: 10.1016/j.livprodsci.2005.11.021.
doi: 10.1016/j.livprodsci.2005.11.021
[5] MIGLIOR F, MUIR B L, VAN DOORMAAL B J. Selection indices in Holstein cattle of various countries. Journal of Dairy Science, 2005,88(3):1255-1263. doi: 10.3168/jds.S0022-0302(05)72792-2.
doi: 10.3168/jds.S0022-0302(05)72792-2
[6] EGGER-DANNER C, COLE J B, PRYCE J E, GENGLER N, HERINGSTAD B, BRADLEY A, STOCK K F. Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal, 2015,9(2):191-207. doi: 10.1017/S1751731114002614.
doi: 10.1017/S1751731114002614
[7] ABDELSAYED M, HAILE-MARIAM M, PRYCE J E. Genetic parameters for health traits using data collected from genomic information nucleus herds. Journal of Dairy Science, 2017,100(12):9643-9655. doi: 10.3168/jds.2017-12960.
doi: 10.3168/jds.2017-12960
[8] KOECK A, MIGLIOR F, KELTON D F, SCHENKEL F S. Short communication: genetic parameters for mastitis and its predictors in Canadian holsteins. Journal of Dairy Science, 2012,95(12):7363-7366. doi: 10.3168/jds.2012-5648.
doi: 10.3168/jds.2012-5648
[9] HERINGSTAD B, ØSTERÅS O, OTHERS. More than 30 years of health recording in Norway. ICAR Technical Series, 2013, (17):39-46.
[10] EMANUELSON U. Validation of the Nordic disease databases. Proceedings of the ICAR Conference. 2013,17:101-108.
[11] PARKER GADDIS K L, VANRADEN P M, COLE J B, NORMAN H D, NICOLAZZI E, DÜRR J W. Symposium review: Development, implementation, and perspectives of health evaluations in the United States. Journal of Dairy Science, 2020,103(6):5354-5365. doi: 10.3168/jds.2019-17687.
doi: 10.3168/jds.2019-17687
[12] VUKASINOVIC N, BACCIU N, PRZYBYLA C A, BODDHIREDDY P, DENISE S K. Development of genetic and genomic evaluation for wellness traits in US Holstein cows. Journal of Dairy Science, 2017,100(1):428-438. doi: 10.3168/jds.2016-11520.
doi: 10.3168/jds.2016-11520
[13] KOECK A, MIGLIOR F, KELTON D F, SCHENKEL F S. Health recording in Canadian Holsteins: data and genetic parameters. Journal of Dairy Science, 2012,95(7):4099-4108. doi: 10.3168/jds.2011-5127.
doi: 10.3168/jds.2011-5127
[14] PARKER GADDIS K L, COLE J B, CLAY J S, MALTECCA C. Incidence validation and relationship analysis of producer-recorded health event data from on-farm computer systems in the United States. Journal of Dairy Science, 2012,95(9):5422-5435. doi: 10.3168/jds.2012-5572.
doi: 10.3168/jds.2012-5572
[15] GOVIGNON-GION A, DASSONNEVILLE R, BALOCHE G, DUCROCQ V. Genetic evaluation of mastitis in dairy cattle in France. Interbull Bulletin, 2012,46(46):121-126.
[16] GERNAND E, REHBEIN P, VON BORSTEL U U, KÖNIG S. Incidences of and genetic parameters for mastitis, claw disorders, and common health traits recorded in dairy cattle contract herds. Journal of Dairy Science, 2012,95(4):2144-2156. doi: 10.3168/jds.2011-4812.
doi: 10.3168/jds.2011-4812
[17] HERINGSTAD B, REKAYA R, GIANOLA D, KLEMETSDAL G, WEIGEL K A. Genetic change for clinical mastitis in Norwegian cattle: a threshold model analysis. Journal of Dairy Science, 2003,86(1):369-375. doi: 10.3168/jds.S0022-0302(03)73615-7.
doi: 10.3168/jds.S0022-0302(03)73615-7
[18] HERINGSTAD B, KLEMETSDAL G, STEINE T. Selection responses for disease resistance in two selection experiments with Norwegian red cows. Journal of Dairy Science, 2007,90(5):2419-2426. doi: 10.3168/jds.2006-805.
doi: 10.3168/jds.2006-805
[19] 安涛, 张海亮, 王雅春. 免疫大师公牛女儿的疾病抗性分析. 中国畜牧兽医, 2020,47(6):1791-1799. doi: 10.16431/j.cnki.1671-7236.2020.06.018.
doi: 10.16431/j.cnki.1671-7236.2020.06.018
AN T, ZHANG H L, WANG Y C. Analysis on disease resistance of immunity+ bulls' daughters. China Animal Husbandry & Veterinary Medicine, 2020,47(6):1791-1799. doi: 10.16431/j.cnki.1671-7236.2020.06.018. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2020.06.018
[20] 董祎鑫, 李想, 亓建刚, 罗汉鹏, 窦金焕, 刘林, 李锡智, 王雅春. 中国荷斯坦牛产后0~35d繁殖疾病遗传参数估计. 畜牧兽医学报, 2019,50(2):280-286.
DONG Y X, LI X, QI J G, LUO H P, DOU J H, LIU L, LI X Z, WANG Y C. Estimation of genetic parameters of reproductive diseases within 0-35 days after calving in Chinese holsteins. Chinese Journal of Animal and Veterinary Sciences, 2019,50(2):280-286. (in Chinese)
[21] 肖定汉. 奶牛病学. 北京: 中国农业大学出版社, 2002.
XIAO D H. Diseases of Dairy Cattle. Beijing: China Agricultural university Press, 2002. (in Chinese)
[22] 张沅. 家畜育种学. 2版. 北京: 中国农业出版社, 2018.
ZHANG Y. Animal breeding. Beijing: Chinese Agriculture Press, 2018. (in Chinese)
[23] MALCHIODI F, KOECK A, MASON S, CHRISTEN A M, KELTON D F, SCHENKEL F S, MIGLIOR F. Genetic parameters for hoof health traits estimated with linear and threshold models using alternative cohorts. Journal of Dairy Science, 2017,100(4):2828-2836. doi: 10.3168/jds.2016-11558.
doi: 10.3168/jds.2016-11558
[24] 崔文昊, 孙德孝, 曹杰. 奶牛场变形蹄及蹄病数据分析. 中国奶牛, 2020(11):34-37. doi: 10.19305/j.cnki.11-3009/s.2020.11.008.
doi: 10.19305/j.cnki.11-3009/s.2020.11.008
CUI W H, SUN D X, CAO J. Data analysis of deformed hoof and hoof diseases in dairy farms. China Dairy Cattle, 2020(11):34-37. doi: 10.19305/j.cnki.11-3009/s.2020.11.008. (in Chinese)
doi: 10.19305/j.cnki.11-3009/s.2020.11.008
[25] 曹杰. 奶牛围产期疾病数据分析及管理. 中国奶牛, 2015(6):59-60.
CAO J. Analysis and management of dairy cow perinatal disease data. China Dairy Cattle, 2015(6):59-60. (in Chinese)
[26] ZWALD N R, WEIGEL K A, CHANG Y M, WELPER R D, CLAY J S. Genetic selection for health traits using producer-recorded data. I. incidence rates, heritability estimates, and sire breeding values. Journal of Dairy Science, 2004,87(12):4287-4294. doi: 10.3168/jds.S0022-0302(04)73573-0.
doi: 10.3168/jds.S0022-0302(04)73573-0
[27] 田月珍, 冯文, 王雅春, 黄锡霞, 俞英. 新疆褐牛乳中体细胞数与产奶性状的影响因素分析. 中国农业科学, 2016,49(12):2437-2448.
TIAN Y Z, FENG W, WANG Y C, HUANG X X, YU Y. Analysis of effect factors on SCC and milk production traits of Xinjiang brown cattle. Scientia Agricultura Sinica, 2016,49(12):2437-2448. (in Chinese)
[28] HARDER B, BENNEWITZ J, HINRICHS D, KALM E. Genetic parameters for health traits and their relationship to different persistency traits in German Holstein dairy cattle. Journal of Dairy Science, 2006,89(8):3202-3212. doi: 10.3168/jds.S0022-0302(06)72595-4.
doi: 10.3168/jds.S0022-0302(06)72595-4
[29] JAMROZIK J, KOECK A, KISTEMAKER G J, MIGLIOR F. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins. Journal of Dairy Science, 2016,99(3):1990-1998. doi: 10.3168/jds.2015-10505.
doi: 10.3168/jds.2015-10505
[30] PRYCE J E, ESSLEMONT R J, THOMPSON R, VEERKAMP R F, KOSSAIBATI M A, SIMM G. Estimation of genetic parameters using health, fertility and production data from a management recording system for dairy cattle. Animal Science, 1998,66(3):577-584. doi: 10.1017/s1357729800009152.
doi: 10.1017/s1357729800009152
[31] KOECK A, JAMROZIK J, KISTEMAKER G, SCHENKEL F, MOORE R K, LEFEBVRE D, KELTON D, MIGLIOR F. Development of genetic evaluations for metabolic disease traits for Canadian dairy cattle. Interbull Bulletin, 2015, (49):76-79.
[32] VAN DER LINDE C, DE JONG G, KOENEN E P C, EDING H. Claw health index for Dutch dairy cattle based on claw trimming and conformation data. Journal of Dairy Science, 2010,93(10):4883-4891. doi: 10.3168/jds.2010-3183.
doi: 10.3168/jds.2010-3183
[33] HERINGSTAD B, EGGER-DANNER C, CHARFEDDINE N, PRYCE J E, STOCK K F, KOFLER J, SOGSTAD A M, HOLZHAUER M, FIEDLER A, MÜLLER K, NIELSEN P, THOMAS G, GENGLER N, DE JONG G, ØDEGÅRD C, MALCHIODI F, MIGLIOR F, ALSAAOD M, COLE J B. Invited review: genetics and claw health: opportunities to enhance claw health by genetic selection. Journal of Dairy Science, 2018,101(6):4801-4821. doi: 10.3168/jds.2017-13531.
doi: 10.3168/jds.2017-13531
[34] NEUENSCHWANDER T F O, MIGLIOR F, JAMROZIK J, BERKE O, KELTON D F, SCHAEFFER L R. Genetic parameters for producer-recorded health data in Canadian Holstein cattle. Animal, 2012,6(4):571-578. doi: 10.1017/S1751731111002059.
doi: 10.1017/S1751731111002059
[1] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[2] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[3] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[4] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
[5] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[6] DUAN YouHou,LU Feng. Genetic Analysis on Growth Period and Plant Height Traits of Early-maturing Dwarf Sorghum Male-Sterile Line P03A [J]. Scientia Agricultura Sinica, 2020, 53(14): 2828-2839.
[7] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[8] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[9] SONG Xi, PU DingFu, TIAN LuShen, YU QingQing, YANG YuHeng, Dai BingBing, ZHAO ChangBin, HUANG ChengYun, DENG WuMing. Genetic Analysis and Characterization of Hormone Response of Semi-Dwarf Mutant dw-1 in Brasscia napus L. [J]. Scientia Agricultura Sinica, 2019, 52(10): 1667-1677.
[10] ZHANG JianBo, YUAN Chao, YUE YaoJing, GUO Jian, NIU ChunE, WANG XiJun, WANG LiJuan, Lü HuiQin, YANG BoHui. Comparison and Analysis of Genetic Parameters Estimation of Early Growth Traits of Alpine Merino Sheep by Different Animal Models [J]. Scientia Agricultura Sinica, 2018, 51(6): 1202-1212.
[11] ZHAO QianRu, ZHONG XingHua, ZHANG Fei, FANG WeiMin, CHEN FaDi, TENG NianJun. Heterosis and Mixed Genetic Analysis of Green-Center Trait of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(5): 964-976.
[12] HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799.
[13] LI XueWu, LIU Yan, WANG RuiJun, WANG ZhiYing, NA Qing, LI HongWei, WANG ZhenYu, XU BingBing,SU Rui, ZHANG YanJun, LIU ZhiHong, LI JinQuan . Genetic Parameter Estimation of Cashmere Yield and Body Weight at Different Staple Types of Inner Mongolian Cashmere Goats [J]. Scientia Agricultura Sinica, 2018, 51(12): 2410-2417.
[14] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[15] ZHANG XiaoBo, XIE Jia, ZHANG XiaoQiong, TIAN WeiJiang, HE PeiLong, LIU SiCen, HE GuangHua, ZHONG BingQiang, SANG XianChun. Identification and Gene Mapping of a Dwarf and Curled Flag Leaf Mutant dcfl1 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1551-1558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!