Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 3018-3028.doi: 10.3864/j.issn.0578-1752.2022.15.012

• HORTICULTURE • Previous Articles     Next Articles

Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing

SHEN ZhiJun1(),TIAN Yu2,CAI ZhiXiang(),XU ZiYuan1,YAN Juan1,SUN Meng1,MA RuiJuan1,YU MingLiang1   

  1. 1Fruit Tree Research Institute of Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Horticultural Crop Genetic Improvement, Nanjing 210014
    2Nanjing Liuhe Secondary Vocational School, Nanjing 211500
    3College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2021-11-13 Accepted:2022-01-21 Online:2022-08-01 Published:2022-08-02
  • Contact: ZhiXiang CAI E-mail:shenjaas@aliyun.com;mly1008@aliyun.com

Abstract:

【Objective】 The brown rot is one of the most serious diseases in peach throughout the world and usually causes huge economic losses during the peach harvest and storage stages. The systematic evaluation on brown rot resistance of peach germplasm resources and screening of resistant resources were performed for developing new peach cultivars with high resistance to brown rot, and finally solving the problem in peach cultivation.【Method】 The commercially matured peaches with 8.0-8.5 maturity degree from National Germplasm Repository of Peach in Nanjing were inoculated by Monilinia spore during 2018-2021. Altogether, 616 accessions were evaluated by uninjured inoculation, and 505 accessions by injured inoculation. The percentage growth of infected fruits per day (PGIF, %) and lesion diameter growth rate (LDGR, cm∙d-1) were used to evaluate brown rot resistance, and then a nine-grade evaluation method was established based on the average value of PGIF and LDGR with 0.5 standard deviation, respectively. The brown rot resistance was compared among different germplasm types, fruit types and origins, and the correlation between brown rot resistance and other characteristics were also investigated. 【Result】 PGIF was (11.22±5.96)% with the CV value of 35.48 for the samples with uninjured inoculation. Based on the nine-grade resistance evaluation method by PGIF, the accession with Grade 1 (PGIF<0.80%) was not available, ten accessions with Grade 2 (0.80%-3.78%), 134 accessions with Grade 3 (3.78%-6.76%), 157 accessions with Grade 4 (6.76%-9.73%), 122 accessions with Grade 5 (9.73%-12.71%), 73 accessions with Grade 6 (12.71%-15.68%), 60 accessions with Grade 7 (15.68%-18.66%), 21 accessions with Grade 8 (18.66%-21.64%), and 39 accessions with Grade 9 (>21.64%). LDGR was (1.71±0.21) cm∙d-1 with the CV value of 0.18, and there were 11 accessions with Grade1 (LDGR<0.98 cm∙d-1), 28 accessions with Grade 2 (0.98-1.19 cm∙d-1), 72 accessions with Grade 3 (1.19-1.40 cm∙d-1), 109 accessions with Grade 4 (1.40-1.61 cm∙d-1), 103 accessions with Grade 5 (1.61-1.83 cm∙d-1), 82 accessions with Grade 6 (1.83-2.04 cm∙d-1), 45 accessions with Grade 7 (2.04-2.25 cm∙d-1), 29 accessions with Grade 8 (2.25-2.46 cm∙d-1), and 26 accessions with Grade 9 (>2.46 cm∙d-1) according to the nine-grade resistance evaluation method by LDGR. The linear regression of PGIF (y) to LDGR (x) was y=6.2073x, with a low R2 value of 0.1839. The comparison of brown rot resistance among different groups showed that the wild peach resources originated from China had more resistance to brown rot relative to those from other areas, and the wild resources would be very valuable for peach brown rot resistance breeding in the near future. PGIF and LDGR were significantly negatively correlated with both fruit firmness with exocarp (-0.234) and without exocarp (-0.240), and significantly positively with fruit size (0.427) and degree of coloring (0.319), but the correlation coefficient was relatively low. 【Conclusion】 A nine-grade evaluation system for peach brown rot resistance was established based on percentage growth of infected fruits per day (%) and lesion diameter growth rate (cm∙d-1), respectively. In addition, 10 peach germplasm resources with high resistance to infestation by peach brown rot and 11 with high anti-expansion capacity against peach brown rot were screened in this study.

Key words: peach, germplasm resources, brown rot, evaluation system, resistant germplasm

Table 1

Accession numbers evaluated for resistance to brown rot from 2018 to 2021"

接种方式 Inoculation type 2018 2019 2020 2021 合计 Total
无损接种Inoculation without injury 119 288 333 282 616
有损接种Inoculation with injury 115 183 277 233 505

Fig. 1

Interval distribution of percentage growth of infected fruits per day (PGIF) based on 616 accessions"

Fig. 2

Interval distribution of lesion diameter growth rate (LDGR) based on 505 accessions"

Fig. 3

Scatter plot and linear regression of PGIF inoculated without injury (%) and LDGR inoculated with injury (cm∙d-1)"

Fig. 4

Comparison of brown rot resistance among different types of peach germplasm Subgraphs from A to C were classified by germplasm type, origination, fruit type, respectively. Subgraphs 1 and 2 were percentage growth of infected fruits per day (PGIF, %) and lesion diameter growth rate (LDGR, cm∙d-1), respectively. Different lowercase letters indicate significant difference (P<0.05)"

Table 2

Correlations of Lesion diameter growth rate and Infected fruits growth rate with other quantitative traits"

评价指标
Evaluation item
统计参数
Statistical parameters
带皮硬度
Firmness with exocarp
去皮硬度
Firmness without exocarp
单果重
Fruit weight
着色程度
Degree of
coloration
病斑扩展速率
Lesion diameter growth rate
病斑扩展速率 LDGR 相关系数r -0.234** -0.240** 0.427** 0.319** 1
样本数 n 505 505 505 505 505
病果率每天增加百分比PGIF 相关系数r -0.188** -0.140** 0.271** 0.244** 0.431**
样本数 n 616 616 616 616 505
[1] BADENES M L, BYRNE D. Fruit Breeding. New York: Springer Science+Business Media, 2011: 526-609.
[2] MARTINI C, MARI M. Monilinia fructicola, Monilinia laxa (Monilinia rot, brown rot)//Postharvest Decay, Control Strategies. London: Academic Press Elsevier, 2014: 233-265.
[3] EGÜEN B, MELGAREJO P, CAL A. Sensitivity of Monilinia fructicola from Spanish peach orchards to thiophanate-methyl, iprodione, and cyproconazole: Fitness analysis and competitiveness. European Journal of Plant Pathology, 2015, 141(4): 789-801. doi: 10.1007/s10658-014-0579-2.
doi: 10.1007/s10658-014-0579-2
[4] ZHU X Q, CHEN X Y, GUO L Y. Population structure of brown rot fungi on stone fruits in China. Plant Disease, 2011, 95(10): 1284-1291. doi: 10.1094/PDIS-02-11-0079.
doi: 10.1094/PDIS-02-11-0079
[5] YIN L F, CHEN S N, YUAN N N, ZHAI L X. First report of peach brown rot caused by Monilinia fructicola in central and Western China. Plant Disease, 2013, 97(9): 1255.
[6] LAYNE DR, BASSI D. The Peach: Botany, production and uses. Wallingford: CAB International, 2008.
[7] OBI V I, BARRIUSO J J, GOGORCENA Y. Peach brown rot: Still in search of an ideal management option. Agriculture, 2018, 8(8): 125.
doi: 10.3390/agriculture8080125
[8] OBI V I, BARRIUSO J J, USALL J, GOGORCENA Y. Breeding strategies for identifying superior peach genotypes resistant to brown rot. Scientia Horticulturae, 2019, 246: 1028-1036.
doi: 10.1016/j.scienta.2018.10.027
[9] 管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测. 中国农业科学, 2020, 53(18): 3629-3637. doi: 10.3864/j.issn.0578-1752.2020.18.001.
doi: 10.3864/j.issn.0578-1752.2020.18.001
GUAN F N, LONG L, YAO F J, WANG Y Q, JIANG Q T, KANG H Y, JIANG Y F, LI W, DENG M, LI H, CHEN G Y. Evaluation of resistance to stripe rust and molecular detection of important known yr gene(s) of 152 Chinese wheat landraces from the Huang-Huai-Hai. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637. doi: 10.3864/j.issn.0578-1752.2020.18.001. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.18.001
[10] ZHU X Q, CHEN X Y, LUO Y, GUO L Y. First report of Monilinia fructicola on peach and nectarine in China. Plant Pathology, 2005, 54(4): 575.
[11] HU M J, CHEN Y, CHEN S N, LIU X L, YIN LF, LUO C X. First report of brown rot of peach caused by Monilinia fructicola in southeastern China. Plant Disease, 2011, 95(2): 225.
[12] FAN J Y, GUO L Y, XU J P, LUO Y, MICHAILIDES T J. Genetic diversity of populations of Monilinia fructicola (Fungi, Ascomycota, Helotiales) from China. The Journal of Eukaryotic Microbiology, 2010, 57(2): 206-212.
doi: 10.1111/j.1550-7408.2009.00467.x
[13] DURAK M R, ARSLAN K, SILAN E, YILDIZ G, OZKILINC H. A novel approach for in vitro fungicide screening and the sensitivity of Monilinia populations from peach orchards in Turkey to respiratory inhibitor fungicides. Crop Protection, 2021, 147: 105688.
doi: 10.1016/j.cropro.2021.105688
[14] MALANDRAKIS A A, KAVROULAKIS N, CHRYSIKOPOULOS C V. Copper nanoparticles against benzimidazole-resistant Monilinia fructicola field isolates. Pesticide Biochemistry and Physiology, 2021, 173: 104796. doi: 10.1016/j.pestbp.2021.104796.
doi: 10.1016/j.pestbp.2021.104796
[15] HOU D Y, YAN C Q, LIU H X, GE X Z, XU W J, TIAN P F. Berberine as a natural compound inhibits the development of brown rot fungus Monilinia fructicola. Crop Protection, 2010, 29: 979-984.
doi: 10.1016/j.cropro.2010.05.015
[16] MA Z X, YANG L Y, YAN H X, KENNEDY J F, MENG X H. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydrate Polymers, 2013, 94(1): 272-277. doi: 10.1016/j.carbpol.2013.01.012.
doi: 10.1016/j.carbpol.2013.01.012
[17] KHUMALO K N, TINYANE P, SOUNDY PUFFY, ROMANAZZI G, GLOWACZ M, SIVAKUMAR D. Effect of thyme oil vapour exposure on the brown rot infection, phenylalanine ammonia-lyase (PAL) activity, phenolic content and antioxidant activity in red and yellow skin peach cultivars. Scientia Horticulturae, 2017, 214: 195-199.
doi: 10.1016/j.scienta.2016.11.044
[18] FU W H, TIAN G R, PEI Q H, GE X Z, TIAN P F. Evaluation of berberine as a natural compound to inhibit peach brown rot pathogen Monilinia fructicola. Crop Protection, 2017, 91: 20-26.
doi: 10.1016/j.cropro.2016.09.008
[19] DEL CUETO J, KOSINSKA-CAGNAZZO A, STEFANI P, HERITIER J, ROCH G, OBERHANSLI T, AUDERGON J M, CHRISTEN D. Phenolic compounds identified in apricot branch tissues and their role in the control of Monilinia laxa growth. Scientia Horticulturae. 2021, 275: 109707.
doi: 10.1016/j.scienta.2020.109707
[20] JIANG S, ZHAO T T, WEI Y Y, CAO Z D, XU Y Y, WEI J Y, FENG XU F, WANG H F, SHAO X F. Preparation and characterization of tea tree oil/hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit. Food Hydrocolloids, 2021, 121: 107037.
doi: 10.1016/j.foodhyd.2021.107037
[21] 贾祥子, 叶建, 王诚, 熊正文, 孔祥伟, 张清霞, 纪兆林. 桃褐腐病生防细菌JY-d1种类鉴定及其对桃褐腐病菌生防机制研究. 扬州大学学报(农业与生命科学版), 2021, 42(4): 128-134. doi: 10.16872/j.cnki.1671-4652.2021.04.022.
doi: 10.16872/j.cnki.1671-4652.2021.04.022
JIA X Z, YE J, WANG C, XIONG Z W, KONG X W, ZHANG Q X, JI Z L. Identification of biocontrol agent JY-d1 and biological control mechanism of this bacterium against peach fruit brown rot pathogen Monilinia fructicola. Journal of Yangzhou University (Agricultural and Life Science Edition), 2021, 42(4): 128-134. doi: 10.16872/j.cnki.1671-4652.2021.04.022. (in Chinese)
doi: 10.16872/j.cnki.1671-4652.2021.04.022
[22] 侯旭, 张国庆, 胡晓, 刘悦萍. 桃褐腐病菌拮抗性内生细菌的筛选及其抑病效果. 微生物学通报, 2017, 44(8): 1874-1881. doi: 10.13344/j.microbiol.china.160860.
doi: 10.13344/j.microbiol.china.160860
HOU X, ZHANG G Q, HU X, LIU Y P. Screening and inhibitory effect of antagonistic endophytic bacteria in peach against Monilinia fructicola. Microbiology China, 2017, 44(8): 1874-1881. doi: 10.13344/j.microbiol.china.160860. (in Chinese)
doi: 10.13344/j.microbiol.china.160860
[23] CASALS C, VINAS I, LANDL A, PICOUET P, TORRES R, USALL J. Application of radio frequency heating to control brown rot on peaches and nectarines. Postharvest Biology and Technology, 2010, 58: 218-224.
doi: 10.1016/j.postharvbio.2010.07.003
[24] SISQUELLA M, CASALS C, PICOUET P, VINAS I, TORRES R, USALL J. Immersion of fruit in water to improve radio frequency treatment to control brown rot in stone fruit. Postharvest Biology and Technology, 2013, 80: 31-36.
doi: 10.1016/j.postharvbio.2013.01.010
[25] MINAS I S, TANOU G, MOLASSIOTIS A. Environmental and orchard bases of peach fruit quality. Scientia Horticulturae. 2018, 235: 307-322.
doi: 10.1016/j.scienta.2018.01.028
[26] FELICIANO A, FELICIANO A J, OGAWA J M. Monilinia fructicola resistance in the peach cv Bolinha. Phytopathology, 1987, 77: 776-780.
[27] GRADZIEL T M, THORPE R M, BOSTOCK R M, WILCOX S. Breeding for brown rot (Monilinia fructicola) resistance in clingstone peach with emphasis on the role of fruit phenolics. Acta Horticulture, 1997, 465: 161-170.
[28] LEE M H, BOSTOCK R M. Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp., A role for cellular redox? Phytopath, 2007, 7: 269-277.
[29] RASEIRA M C B, NAKASU B H. Pepita: A peach cultivar for canning. Agropecuária Clima Temperado, Pelotas, 2000, 3: 283-285.
[30] WAGNER J A, RASEIRA M C B, PIEROBOM C R, FORTES J F, DA SILVA J B. Peach flower reaction to inoculation with Monilinia fructicola (Wint.) Honey. Journal of the American Pomological Society, 2005, 59(3): 141-147.
[31] MARTINEZ-GARCIA P J, PARFITT D E, BOSTOCK R M, FRESNEDO-RAMIREZ J, VAZQUEZ-LOBO A, OGUNDIWIN E A, GRADZIEL T M, CRISOSTO C H. Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS ONE, 2013, 8 (11): e78634.
doi: 10.1371/journal.pone.0078634
[32] BASSI D, RIZZO M, CANTONI L. Assaying brown rot [(Monilinia laxa Aderh. & Ruhl. (Honey)] susceptibility in peach cultivars and progeny. Acta Horticulture, 1998, 465: 715-721.
[33] PACHECO I, BASSI D, EDUARDO I, CIACCIULLI A, PIRONA R, ROSSINI L, VECCHIETTI A. QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genetics & Genomes, 2014, 10(5): 1223-1242. doi: 10.1007/s11295-014-0756-7.
doi: 10.1007/s11295-014-0756-7
[34] OBI V I, BARRIUSO J J, MORENO M A, GIMÉNEZ R, GOGORCENA Y. Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine fruits. Australasian Plant Pathology, 2017, 46(2): 183-189. doi: 10.1007/s13313-017-0475-2.
doi: 10.1007/s13313-017-0475-2
[35] 王力荣, 朱更瑞. 桃种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005: 56-61.
WANG L R, ZHU G R. Descriptors and Data Standard for Peach (Prunus persica L.). Beijing: Chinese Agriculture Press, 2005: 56-61. (in Chinese)
[36] PASCAL T, LEVIGNERON A, KERVELLA J, NGUYEN-THE C. Evaluation of two screening methods for resistance of apricot, plum and peach to Monilinia laxa. Euphytica, 1994, 77(1/2): 19-23. doi: 10.1007/BF02551455.
doi: 10.1007/BF02551455
[37] WALTER M, MCLAREN G F, FRASER J A, FRAMPTON C M, BOYD-WILSON K S H, PERRY J H. Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp. Australasian Plant Pathology, 2004, 33: 541-547.
doi: 10.1071/AP04062
[38] PAPAVASILEIOU A, TESTEMPASIS S, MICHAILIDES T J, KARAOGLANIDIS G S. Frequency of brown rot fungi on blossoms and fruit in stone fruit orchards in Greece. Plant Pathology, 2015, 64(2): 416-424.
doi: 10.1111/ppa.12264
[39] KESKE C, MAY-DE MIO L L, AMORIM L. Spatial pattern of brown rot within peach trees related to inoculum of Monilinia fructicola in organic orchard. Journal of Plant Pathology, 2013, 95(1): 67-73.
[40] HOLB I J, SZOKE S, ABONYI F. Temporal development and relationship amongst brown rot blossom blight, fruit blight and fruit rot in integrated and organic sour cherry orchards. Plant Pathology, 2013, 62(4): 799-808.
doi: 10.1111/j.1365-3059.2012.02696.x
[41] KESKE C, AMORIM L, MAY-MIO L L. Peach brown rot incidence related to pathogen infection at different stages of fruit development in an organic peach production system. Crop Protection, 2011, 30(7): 802-806.
doi: 10.1016/j.cropro.2011.03.005
[42] LEE M H, BOSTOCK R M. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology, 2006, 96(10): 1072-1080. doi: 10.1094/PHYTO-96-1072.
doi: 10.1094/PHYTO-96-1072
[43] GUIDARELLI M, ZUBINI P, NANNI V, BONGHI C, RASORI A, BERTOLINI P, BARALDI E. Gene expression analysis of peach fruit at different growth stages and with different susceptibility to Monilinia laxa. European Journal of Plant Pathology, 2014, 140(3): 503-513. doi: 10.1007/s10658-014-0484-8.
doi: 10.1007/s10658-014-0484-8
[44] GRADZIEL T M, WANG D C. Evaluation of brown rot resistance and its relation to enzymatic browning in clingstone peach germplasm. Journal of the American Society for Horticultural Science, 2019, 118(5): 675-679.
doi: 10.21273/JASHS.118.5.675
[45] OLIVEIRA LINO L, PACHECO I, MERCIER V, FAORO F, BASSI D, BORNARD I, QUILOT-TURION B. Brown rot strikes Prunus fruit: an ancient fight almost always lost. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4029-4047. doi: 10.1021/acs.jafc.6b00104.
doi: 10.1021/acs.jafc.6b00104
[46] SANTOS J, RASEIRA M C B, ZANANDREA I. Resistance to brown rot in peach plants. Bragantia, 2012, 71(2): 219-225.
doi: 10.1590/S0006-87052012005000022
[47] GRADZIEL T M. Almond species as sources of new genes for peach improvement. Acta Horticulture, 2002, 592: 81-88.
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[3] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[4] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[10] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[11] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[12] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[13] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[14] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[15] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!