Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (11): 2319-2332.doi: 10.3864/j.issn.0578-1752.2021.11.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Density and Row Spacing on Seedling Traits of Rapeseed and Seed Yield

KUAI Jie1(),LI Zhen1,2,WANG Bo1,LIU Fang3,YE Jun4,ZHOU GuangSheng1()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070
    2College of Agriculture, Jinhua Polytechnic, Jinhua 321007, Zhejiang
    3National Agricultural Technology Extension Service Center, Beijing 100125
    4Hubei Provincial Cultivated Land Quality and Fertilizer Station, Wuhan 430070
  • Received:2020-07-28 Accepted:2020-09-07 Online:2021-06-01 Published:2021-06-09
  • Contact: GuangSheng ZHOU E-mail:kuaijie@mail.hzau.edu.cn;zhougs@mail.hzau.edu.cn

Abstract:

【Objective】The relationship between seedling growth and yield formation of Brassica napus L. under different densities and row spacings was studied, which laid a theoretical foundation for further increasing yield and reducing yield gap, and it also helped to understand the mechanism of yield regulation in rapeseed with high-density planting. 【Method】The genotype HZ 62 was selected as the test material in 2016-2017, and HZ 62 and variety 1301, with different plant architecture, were grown in 2017-2018. The planting density was set as main plots at 15×104plants/hm2 (D1), 30×104 plants/hm2 (D2) and 45×104 plants/hm2 (D3), with the row spacing as subplots of 15 cm (R15), 25 cm (R25) and 35 cm (R35). The changes of dry matter accumulation and distribution in different organs, carbon and nitrogen metabolism in stem and leaf, root activity and yield at maturity were studied. 【Result】 The results showed that: the root diameter, root dry weight, shoot dry weight and plant height decreased at maturity, and the effective branch number decreased with increased plant density, and the decrease rate became smaller with narrowing row spacing at the same density. Under the density of D1, D2 and D3, the above indices had the best performance at R25, R15 and R15. Compared with D1R25, the yield of HZ62 and 1301 decreased by 57.14% and 55.73% respectively, but the population yield increased by 21.55% and 30.92% in 2017-2018 under D3R15. The correlation analysis showed that there was a highly significant positive correlation between leaf dry matter allocation rate and individual plant yield, also, between stem and root dry matter allocation rate and population yield. Further analysis of the growth indexes showed that with the increase of plant density, leaf SPAD value, root biomass per plant, root bleeding sap and root activity decreased significantly, while the root biomass increased significantly. Under the same density, the leaf SPAD value, leaf and stem C/N ratio, leaf LAI and root biomass of the population increased by adjusting row spacing and decreasing the difference between plant spacing and row spacing, which laid a foundation for the yield at maturity. In 2017-2018, compared with D1R25, the C/N ratio of the stem decreased by 22.95%, the root biomass, bleeding snap and root activity of individual plant decreased by 35.60%, 16.07% and 15.51% respectively, while leaf C/N ratio and root biomass in population increased by 16.11% and 83.44% respectively for HZ62; the stem C/N ratio decreased by 19.71%, the root biomass per plant, bleeding snap and root activity decreased by 30.87%, 22.63% and 22.85% respectively, while leaf C/N ratio and root biomass in population increased by 14.84% and 108.21% respectively for 1301 under D3R15. 【Conclusion】Under the condition of this experiment, compared with the traditional arrangement of plant density and row spacing, the increasing plant density and narrowed row spacing could promote the nitrogen metabolism of individual leaf and increase the leaf SPAD value, the photosynthetic leaf area and the biomass as well as activity of root at the seedling stage to achieve higher yield.

Key words: rapeseed, density, row spacing, seedling traits, yield

Table 1

The main characteristics of plant architecture for tested materials"

品种
Variety
株高
Plant height (cm)
有效分枝部位
Branch height (cm)
主花序长度
Main inflorescence length (cm)
分枝角度
Branch angle (°)
分枝数
Branch number
华杂62 HZ62 184.5a 86.5a 53.4a 50.4a 8.7a
1301 163.8b 59.6b 45.2b 31.9b 7.8a

Fig. 1

Seed yield at maturity of rapeseed under different densities and row spacing Different letters indicated a difference of 0.05. V: Variety; D: Density; R: Row spacing; V×D, V×R, D×R, V×D×R represent interactions among treatments. * and ** means significant at the 0.05 and 0.01 probability level, respectively. NS: Difference is not significant according to ANOVA. The same as below"

Table 2

Effect of density and row spacing on agronomic characters of rapeseed at maturity stage"

年份
Year
品种
Variety
密度
Density
行距
Row Spacing
根颈粗
Root crown diameter (mm)
根干重
Root biomass (g/plant)
株高
Plant height (cm)
有效分枝起点
Branch height (cm)
有效分枝数
Branch
number
地上部干重
Shoot biomass (g/plant)
2016—2017 华杂62
HZ62
D1 R15 16.19b 14.37b 188.6ab 71.1f 7.5a 68.70c
R25 16.84a 16.11a 193.8a 77.0e 7.2a 79.00a
R35 15.51c 13.30c 187.4ab 79.3e 6.5b 74.69b
D2 R15 13.98d 8.73d 182.8bc 85.3d 6.1c 50.12d
R25 13.66d 7.62e 181.8bc 86.7d 6.0c 48.30e
R35 13.05e 5.26f 176.4c 95.0b 5.4d 46.80f
D3 R15 12.07f 4.92g 175.6c 86.7d 6.1c 40.20g
R25 10.69g 4.32h 174.4c 91.4c 5.4d 36.98h
R35 10.65g 4.52h 173.5c 101.1a 5.0e 36.90h
方差分析 Variance analyses
FD ** ** ** ** ** **
FR ** ** NS ** ** **
FD×FR ** ** NS ** ** **
2017—2018 华杂62
HZ62
D1 R15 18.57c 13.05b 171.2b 68.7d 6.8c 66.22c
R25 21.74a 13.91a 179.6a 67.7d 8.3a 87.72a
R35 20.08b 13.26b 175.1ab 69.2d 7.4b 77.29b
D2 R15 15.59d 7.39c 171.7b 79.3c 5.9d 51.43d
R25 14.67e 6.65d 159.5c 78.5c 5.5e 43.58e
R35 14.07f 6.19d 150.9d 77.8c 4.1g 33.60fg
D3 R15 12.67g 4.90e 145.2de 84.1b 4.9f 34.96f
R25 12.09h 4.65e 143.4e 85.1b 4.0g 32.93fg
R35 12.48gh 4.86e 142.5e 90.9a 4.2g 30.60h
1301 D1 R15 16.83b 5.99a 161.6a 61.0e 8.0b 66.38b
R25 18.08a 6.04a 163.9a 59.3e 8.3a 75.20a
R35 16.83b 5.65b 157.8b 59.4e 7.2c 58.43c
D2 R15 14.82c 5.08c 157.6b 74.1d 6.8d 46.01d
R25 13.20d 4.21d 154.5bc 86.6b 5.5f 43.70e
R35 12.41e 3.27e 153.9bc 81.8c 6.0e 37.19f
D3 R15 11.56f 3.09e 151.8cd 88.4ab 4.6g 34.61g
R25 10.87g 2.73f 148.5de 90.6a 4.3i 32.30h
R35 9.96h 2.72f 146.8e 90.3a 4.4h 28.62i
方差分析 Variance analyses
品种Variety (V) ** ** ** ** ** **
密度Density (D) ** ** ** ** ** **
行距Row spacing (R) ** ** NS ** ** **
品种×密度V×D ** ** ** ** ** **
品种×行距V×R ** ** NS ** ** **
密度×行距D×R ** ** ** ** ** **
品种×密度×行距V×D×R ** ** ** ** ** **

Fig. 2

Effect of density and row spacing on biomass allocation rate of different organs at different stages"

Table 3

Correlation analysis of biomass allocation rate with yield"

指标
Indicators
苗期 Seedling stage 薹期Bolting stage 花期Flowering stage
叶片Leaf 茎秆Stem 根系Root 叶片Leaf 茎秆Stem 根系Root 叶片Leaf 茎秆Stem 根系Root
单株产量
Yield per plant
0.815** -0.910** -0.602** 0.243 0.091 -0.283 0.725** -0.308 -0.246
群体产量
Yield of population
-0.561** 0.456* 0.530** -0.330 -0.035 0.318 -0.416* -0.100 0.370

Fig. 3

Effect of density and row spacing on biomass accumulation at seedling stage of rapeseed"

Fig. 4

Effect of density and row spacing on SPAD and LAI at seedling stage of rapeseed"

Fig. 5

Effect of density and row spacing on C/N ratio of leaf and stem at seedling stage of rapeseed"

Table 4

Effect of density and row spacing on root biomass, root blooding sap and root activity of rapeseed at seedling stage"

年份
Year
品种
Variety
密度
Density
行距
Row spacing
单株根系生物量
Root biomass per plant (g)
群体根系生物量
Root biomass of population (kg·hm-2)
根系伤流量
Root bleeding sap
(g/plant)
根系活力
Root activity
(μgTTF·g-1 FW·h-1)
2016—2017 华杂62
HZ62
D1 R15 2.45b 334.5f 2.99bc 302.2bc
R25 2.84a 391.5e 3.33a 341.8a
R35 2.16c 291.9g 3.11b 313.6b
D2 R15 2.45b 645.6b 2.94cd 294.4cd
R25 2.39b 609.2c 2.42e 251.0e
R35 2.08cd 537.9d 2.28f 235.6f
D3 R15 2.12c 731.3a 2.81d 286.8d
R25 1.99d 657.8b 2.38ef 241.9ef
R35 1.84e 618.5c 2.10g 217.5g
方差分析 Variance analyses
FD 292.40** 1534.35** 983.11** 960.72**
FR 121.86** 91.53** 52.86** 46.53**
FD×FR 25.32** 16.41** 29.59** 29.12**
2017—2018 华杂62
HZ62
D1 R15 2.47b 352.4ghi 3.40de 343.0cd
R25 2.81a 417.8f 4.01a 402.9a
R35 2.15de 309.9ij 3.75b 377.0b
D2 R15 2.30c 649.5cd 3.24ef 333.0d
R25 2.29cd 617.3de 2.93hi 302.4fg
R35 2.12e 595.7e 2.64kl 267.5ij
D3 R15 1.81f 766.8a 3.36de 340.4cd
R25 1.72fg 716.9b 2.77ijk 280.9hi
R35 1.68fg 689.1bc 2.19m 222.9k
1301
D1 R15 1.51hi 183.3k 3.30e 330.3de
R25 1.58gh 199.5k 3.67bc 376.5b
R35 1.39ij 170.7k 3.51cd 352.5c
D2 R15 1.48hi 365.1g 3.11fg 314.6ef
R25 1.43ij 340.1ghij 2.95gh 297.0gh
R35 1.33j 304.4j 2.52l 261.9j
D3 R15 1.09k 415.2f 2.84hij 290.5gh
R25 0.96kl 362.1gh 2.75jk 281.0hi
R35 0.90l 318.0hij 2.17m 221.3k
方差分析 Variance analyses
品种Variety (V) ** ** * *
密度Density (D) ** ** ** **
行距Row spacing (R) ** ** ** **
品种×密度V×D ** ** NS NS
品种×行距V×R ** NS NS *
密度×行距D×R ** ** ** **
品种×密度×行距V×D×R ** ** ** **
[1] FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations. 2020. http://www.fao.org.
[2] 赵永国, 赵仕英, 程勇, 罗莉霞, 付桂萍, 郭瑞星, 黄振余, 马海清, 刘清云, 张学昆, 蔡俊松. 中国主产区油菜与加拿大油菜的品种产量比较. 中国油料作物学报, 2017,39(3):420-426.
ZHAO Y G, ZHAO S Y, CHENG Y, LUO L X, FU G P, GUO R X, HUANG Z Y, MA H Q, LIU Q Y, ZHANG X K, CAI J S. Rapeseed yield comparison between China and Canada in national trials of main producing areas. Chinese Journal of Oil Crop Sciences, 2017,39(3):420-426. (in Chinese)
[3] WANG R, CHENG T, HU L Y. Effect of wide-narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Research, 2015,172:42-52.
doi: 10.1016/j.fcr.2014.12.005
[4] KUAI J, SUN Y, ZUO Q, HUANG H, LIAO Q, WU C, LU J, WU J, ZHOU G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Scientific Reports, 2016,5(1):18835
doi: 10.1038/srep18835
[5] KUAI J, SUN Y, ZHOU M, ZHANG P, ZUO Q, WU J, ZHOU G. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Research, 2016,199:89-98.
doi: 10.1016/j.fcr.2016.09.025
[6] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018,44(2):278-287.
doi: 10.3724/SP.J.1006.2018.00278
LI X Y, ZHOU M, WANG T, ZHANG L, ZHOU G S, KUAI J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agronomica Sinica, 2018,44(2):278-287. (in Chinese)
doi: 10.3724/SP.J.1006.2018.00278
[7] STAMP P, KIEL C. Root morphology of maize and its relationship to root lodging. Journal of Agronomy & Crop Science, 2008,168(2):113-118.
[8] SNIDER J L, RAPER R L, SCHWAB E B. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Industrial Crops and Products, 2012,37(1):527-535.
doi: 10.1016/j.indcrop.2011.07.032
[9] XUE J, GOU L, ZHAO Y, YAO M, YAO H, TIAN J, ZHANG W. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016,188:133-141.
doi: 10.1016/j.fcr.2016.01.003
[10] HEITHOLT J J, SASSENRATH-COLE G F. Inter-plant competition: growth responses to plant density and row spacing//STEWART J M, OOSTERHUIS D M, HEITHOLT J J, MAUNEY J R. eds. Physiology of Cotton. New York: Springer Dordrecht Heidelberg London, 2010.
[11] HU Q, JIANG W Q, QIU S, XING Z Q, HU Y J, GUO B W, LIU G D, GAO H, ZHANG H C, WEI H Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. Journal of Integrative Agriculture, 2020,19(5):1197-1214.
doi: 10.1016/S2095-3119(19)62800-5
[12] FISCHER R A, MORENO RAMOS O H, ORTIZ MONASTERIO I, SAYRE K D. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Research, 2019,232:95-105.
doi: 10.1016/j.fcr.2018.12.011
[13] WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the northern Corn Belt. Agronomy Journal, 2002,94:1020-1023.
doi: 10.2134/agronj2002.1020
[14] GOBEZE Y L, CERONIO G M, VAN RENSBURG L D. Effect of row spacing and plant density on yield and yield component of maize (Zea mays L.) under irrigation. Journal of Agricultural Science & Technology B, 2012,2:263-271.
[15] TURGUT I, DUMAN A, BILGILI U, ACIKGOZ E. Alternate row spacing and plant density effects on forage and dry matter yield of corn hybrids (Zea mays L.). Journal of Agronomy and Crop Science, 2005,191(2):146-151.
doi: 10.1111/jac.2005.191.issue-2
[16] SEITER S, ALTEMOSE C E, DAVIS M H. Forage soybean yield and quality responses to plant density and row distance. Agronomy Journal, 2004,96(4):966-970.
doi: 10.2134/agronj2004.0966
[17] BOQUET D J. Cotton in ultra-narrow row spacing: Plant density and nitrogen fertilizer rates. Agronomy Journal, 2005,97(1):279-287.
doi: 10.2134/agronj2005.0279
[18] GARSIDE A L, BELL M J, ROBOTHAM B G. Row spacing and planting density effects on the growth and yield of sugarcane: 2. Strategies for the adoption of controlled traffic. Crop & Pasture Science, 2009,60(6):544-554.
[19] 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 套作遮荫条件下烯效唑对大豆壮苗机理的研究. 中国油料作物学报, 2011,33(3):259-264.
YAN Y H, YANG W J, ZHANG X Q, CHEN X L, CHEN Z Q. Improve soybean seeding growth by uniconazole under shading by corn in relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2011,33(3):259-264. (in Chinese)
[20] 郑伟, 叶川, 肖国滨, 陈明, 李亚贞, 黄天宝, 肖小军, 刘小三, 朱昌. 油-稻共生期对谷林套播油菜苗期性状及产量形成的影响. 中国农业科学, 2015,48(21):4254-4263.
ZHENG W, YE C, XIAO G B, CHEN M, LI Y Z, HUANG T B, XIAO X J, LIU X S, ZHU C. Effects of symbiotic period on seedling traits and yield components of interplanting rapeseed in rice. Scientia Agricultura Sinica, 2015,48(21):4254-4263. (in Chinese)
[21] COSTA C, DWYER L M, HAMILTON R I, HAMEL C, NANTAIS L, SMITH D L. A sampling method for measurement of large root systems with scanner-based image analysis. Agronomy Journal, 2000,92(4):621-627.
doi: 10.2134/agronj2000.924621x
[22] BRAR G, THIES W. Contribution of leaves, stem, siliques and seeds to dry matter accumulation in ripening seeds of rapeseed, Brassica napus L. Zeitschrift Fü Pflanzenphysiologie, 1977,82(1):1-13.
[23] SEEBAUER J R, SINGLETARY G W, KRUMPELMAN P M, RUFFO M L, BELOW F E. Relationship of source and sink in determining kernel composition of maize. Journal of Experimental Botany, 2010,61(2):511-519.
doi: 10.1093/jxb/erp324
[24] GIRONDE A, ETIENNE P, TROUVERIE J, BOUCHEREAU A, LE CAHEREC F, LEPORT L, ORSEL M, NIOGRET M F, NESI N, CAROLE D, SOULAY F, MASCLAUX-DAUBRESSE C, AVICE J C. The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biology, 2015,15(1):1-21.
doi: 10.1186/s12870-014-0410-4
[25] PAUL M J, FOYER C H. Sink regulation of photosynthesis. Journal of Experimental Botany, 2001,52(360):1383-1400.
doi: 10.1093/jexbot/52.360.1383
[26] HIZUKURI S, TAKEDA Y, MARUTA N. Molecular structural characteristics of rice starch. Carbohydrate Research, 1989,189:227-235.
doi: 10.1016/0008-6215(89)84099-6
[27] READ S M, NORTHCOTE D H. Minimization of variation in the response to different protein of the Coomassic Blue G dye - binding: assay to protein. Analytical Biochemistry, 1981,116(1):53-64.
doi: 10.1016/0003-2697(81)90321-3
[28] 谢寅峰, 王莹, 张志敏, 尚旭岚, 杨万霞, 方升佐. 烯效唑对青钱柳试管苗生长及生理特性的影响. 植物资源与环境学报, 2010,19(4):50-55.
XIE Y F, WANG Y, ZHANG Z M, SHANG X L, YANG W X, FANG S Z. Effects of uniconazole on growth and physiological characteristics of Cyclocarya paliurus plantlets. Journal of Plant Resources and Environment, 2010,19(4):50-55. (in Chinese)
[29] MARTINS N, GONÇALVES S, ROMANO A. Aluminum inhibits root growth and induces hydrogen peroxide accumulation in Plantago algarbiensis and P. almogravensis seedlings. Protoplasma, 2013. 250(6):1295-1302.
doi: 10.1007/s00709-013-0511-1
[30] LI X, ZUO Q, CHANG H, BAI G, ZHOU G. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Research, 2018,218:97-105.
doi: 10.1016/j.fcr.2018.01.013
[31] PARK S E, BENJAMIN L R, WATKINSON A R. The theory and application of plant competition models: an agronomic perspective. Annals of Botany, 2003,92(6):741-748.
doi: 10.1093/aob/mcg204
[32] ZHANG Z J, CHU G, LIU L J, WANG Z Q, WANG X M, ZHANG H, YANG J C, ZHANG J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Research, 2013,150:9-18.
doi: 10.1016/j.fcr.2013.06.002
[33] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008,34(1):119-125.
doi: 10.3724/SP.J.1006.2008.00119
WEI H Y, ZHANG H C, HANG J, DAI Q G, HUO Z Y, XU K, ZHANG S F, MA Q, ZHANG Q, ZHANG J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agronomica Sinica, 2008,34(1):119-125. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00119
[34] 郑成岩, 于振文, 王西芝, 武同华. 灌水量和时期对高产小麦氮素积累,分配和转运及土壤硝态氮含量的影响. 植物营养与肥料学报, 2009,15(6):1324-1332.
ZHENG C Y, YU Z W, WANG X Z, WU T H. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil-N content in high-yield wheat. Plant Nutrition and Fertilizer Science, 2009,15(6):1324-1332. (in Chinese)
[35] 左青松, 刘浩, 蒯婕, 冯倩南, 冯云艳, 张含笑, 刘靖怡, 杨光, 周广生, 冷锁虎. 氮肥和密度对毯状苗移栽油菜碳氮积累、运转和利用效率的影响. 中国农业科学, 2016,49(18):3522-3531.
ZUO Q S, LIU H, KUAI J, FENG Q N, FENG Y Y, ZHANG H X, LIU J Y, YANG G, ZHOU G S, LENG S H. Effects of nitrogen and planting density on accumulation, translocation and utilization efficiency of carbon and nitrogen transplanting rapeseed with blanket seedling. Scientia Agricultura Sinica, 2016,49(18):3522-3531. (in Chinese)
[36] 时向东, 时映, 王瑞宝, 戴吉林, 夏开宝, 张庆刚. 稳定氮同位素示踪技术在烟草研究中的应用. 中国烟草学报, 2008,14(1):51-57.
SHI X D, SHI Y, WANG R B, DAI J L, XIA K B, ZHANG Q G. Applications of stable nitrogen isotope on tobacco research. Acta Tabacaria Sinica, 2008,14(1):51-57. (in Chinese)
[37] 左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014,40(3):511-518.
doi: 10.3724/SP.J.1006.2014.00511
ZUO Q S, YANG H Y, LENG S H, CAO S, ZENG J X, WU J S, ZHOU G S. Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2014,40(3):511-518. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00511
[38] VAMERALI T, SACCOMANI M, BONA S, MOSCA G, GUARISE M, GANIS A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil, 2003,255(1):157-167.
doi: 10.1023/A:1026123129575
[39] ZHOU Y, YANG X W, ZHOU S M, WANG Y J, YANG R, XU F D, MEI J J, SHEN G Y, LI Q J, HE D X. Activities of key enzymes in root NADP-Dehydrogenase system and their relationships with root vigor and grain yield formation in wheat. Scientia Agricultura Sinica, 2018,51(11):2060-2071.
[40] 杨云马, 孙彦铭, 贾良良, 贾树龙, 孟春香. 磷肥施用深度对夏玉米产量及根系分布的影响. 中国农业科学, 2018,51(8):142-150.
YANG Y M, SUN Y M, JIA L L, JIA S L, MENG C X. Effects of phosphorus fertilization depth on yield and root distribution of summer maize. Scientia Agricultura Sinica, 2018,51(8):142-150. (in Chinese)
[41] 郭小红, 王兴才, 孟田, 张惠君, 敖雪, 王海英, 谢甫绨. 中美大豆Ⅲ熟期组代表品种根系形态和活力的比较研究. 中国农业科学, 2015,48(19):3821-3833.
GUO X H, WANG X C, MENG T, ZHANG H J, AO X, WANG H Y, XIE F D. Comparison of root morphological and activity of representative soybean cultivars(MG Ⅲ) developed in the USA and China. Scientia Agricultura Sinica, 2015,48(19):3821-3833. (in Chinese)
[42] 杨光, 张惠君, 宋书宏, 王文斌, 敖雪, 谢甫绨. 超高产大豆根系相关性状的比较研究. 大豆科学, 2013,32(2):176-181.
YANG G, ZHANG H J, SONG S H, WANG W B, AO X, XIE F D. Comparison on some root related traits of super-high-yielding soybean. Soybean Science, 2013,32(2):176-181. (in Chinese)
[43] 张含彬, 任万军, 杨文钰, 氮肥处理下套作大豆根系建成与产量关系的研究. 中国土壤与肥料, 2007,2:46-49.
ZHANG H B, REN W J, YANG W J. Relationship between root characteristics and yield formation in relay-planting soybean under the nitrogen application. Soil and Fertilizer Sciences China, 2007,2:46-49. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[3] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[7] LIN YuNong, WANG ZeZhao, CHEN Yan, ZHU Bo, GAO Xue, ZHANG LuPei, GAO HuiJiang, XU LingYang, CAI WenTao, LI YingHao, LI JunYa, GAO ShuXin. Comparison of Imputation Accuracy for Different Low-Density SNP Selection Strategies [J]. Scientia Agricultura Sinica, 2023, 56(8): 1585-1593.
[8] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[9] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[10] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[11] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[12] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[15] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!