Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (7): 1218-1227.doi: 10.3864/j.issn.0578-1752.2023.07.002

• SPECIAL FOCUS: PANICLE DEVELOPMENT AND YIELD BREEDING IN RICE • Previous Articles     Next Articles

Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice

WEN YiBo1(), CHEN ShuTing2, XU ZhengJin2, SUN Jian2(), XU Quan2()   

  1. 1 College of Forestry, Shenyang Agricultural University, Shenyang 110866
    2 Rice Research Institute of Shenyang Agricultural University, Shenyang 110866
  • Received:2022-10-21 Accepted:2022-11-14 Online:2023-04-01 Published:2023-04-03

Abstract:

【Objective】 Rice is an important food crop, providing staple food for more than half of the world’s population. Panicle traits are the main factors affecting rice yield. Discover the elite haplotype of the panicle regulation gene, and provide important germplasm and gene resources for pyramiding breeding. 【Method】 In this study, recombinant inbred lines (RILs) derived from a cross between SN265 and R99 were re-sequenced through high-throughput sequencing. QTL analysis and candidate gene identification were conducted on the grain number on the primary branch, the grain number on the secondary branch, and the grain shape. The sequences of candidate genes were compared using the long-read sequence assemblies of SN265 and R99. The combination of candidate genes that can maximize grain yield was selected among RILs. Finally, the super rice variety SN265 was improved using CRISPR/Cas9 gene editing technology. 【Result】 The R99 had significantly more grain number per panicle and grain number on the secondary branch, whereas SN265 had significantly more grain number on the primary branch. The grain of R99 is slender, and the grain of SN265 is short and round. The RILs were sequenced with approximately 6.25-fold depth. For parent lines, 30.0-fold depth and 32.0-fold depth data were generated for R99 and SN265, respectively. Subsequently, a bin map was constructed by 1456445 high-quality SNPs. The genetic map containing 3 569 recombinant blocks, with an average length of 58.17 kb. The QTL analysis detected a QTL on Chr.9 for grain number per panicle and grain number on both primary and secondary branch, a QTL on Chr.1 for grain number per panicle and grain number on the secondary branch, a QTL on Chr.5 for grain shape. The candidate gene prediction and sequence comparison showed that DEP1 regulated the grain number on both primary and secondary branches of rice, Gn1a mainly regulated the grain number on secondary branches of rice, and qSW5 mainly regulated the grain shape. The yield of the combination of Gn1aR99/DEP1SN265/qSW5SN265 alleles showed an advantage in yield performance among the RILs. We further conducted a molecular design breeding to SN265 by knocking out the Gn1a locus using CRISPR/Ca9 gene editing technology, and the grain number per panicle of the transgenic plants increased significantly compared to that of SN265. 【Conclusion】 This study used RILs derived from a XI/GJ cross and high-throughput sequencing technology to conduct QTL analysis of rice panicle traits, revealed the effects of DEP1, Gn1a, and qSW5 on grain number per panicle and grain shape, and clarified that Gn1aSN265/ DEP1R99/qSW5R99 was the best gene combination in RILs. The yield per plant was further improved by knocking out the Gn1a locus of SN265. This study provided important germplasm and gene resources for pyramiding breeding with elite alleles.

Key words: rice, high density genetic map, grain number, grain shape, gene editing

Fig. 1

The difference of phenotype between SN265 and R99 A: Plant architecture; B: Panicle architecture; C: Grain shape; D: Grain number per panicle; E: Grain number on primary branch; F: Grain number on secondary branch; G: Grain shape. *: P<0.05"

Fig. 2

The QTL analysis of grain number per panicle, grain number on primary branch, grain number on secondary branch, and grain shape"

Fig. 3

The sequence comparison of candidate gene between SN265 and R99"

Fig. 4

The yield performance of different combinations among Gn1a, DEP1, and qSW5 +: The R99 type allele; -: The SN265 type allele. Different letters indicate significant differences (P<0.05). The same as below"

Fig. 5

The phenotype of Gn1a gene editing plant under SN265 genetic background A: The position of PAM and the sequence difference between SN265 and gene editing plants; B: The panicle architecture of SN265 and gene editing plants; C: The panicle length of SN265 and gene editing plants; D: The grain number per panicle of SN265 and gene editing plants; E: The setting rate of SN265 and gene editing plants; F: The panicle number of SN265 and gene editing plants; G: The 1000 grain weight of SN265 and gene editing plants; H: The grain yield per plant of SN265 and gene editing plants"

[1]
LI G L, ZHANG H L, LI J J, ZHANG Z Y, LI Z C. Genetic control of panicle architecture in rice. The Crop Journal, 2021, 9(3): 590-597.

doi: 10.1016/j.cj.2021.02.004
[2]
WANG Y H, LI J Y. Molecular basis of plant architecture. Annual Review of Plant Biology, 2008, 59: 253-279.

doi: 10.1146/annurev.arplant.59.032607.092902 pmid: 18444901
[3]
WANG B, SMITH S M, LI J Y. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018, 69: 437-468.

doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[4]
OIKAWA T, KYOZUKA J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. The Plant Cell, 2009, 21(4): 1095-1108.

doi: 10.1105/tpc.108.065425
[5]
TABUCHI H, ZHANG Y, HATTORI S, OMAE M, SHIMIZU-SATO S, OIKAWA T, QIAN Q, NISHIMURA M, KITANO H, XIE H, FANG X H, YOSHIDA H, KYOZUKA J, CHEN F, SATO Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. The Plant Cell, 2011, 23(9): 3276-3287.

doi: 10.1105/tpc.111.088765 pmid: 21963665
[6]
ASHIKARI M, SAKAKIBARA H, LIN S Y, YAMAMOTO T, TAKASHI T, NISHIMURA A, ANGELES E R, QIAN Q, KITANO H, MATSUOKA M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.

doi: 10.1126/science.1113373 pmid: 15976269
[7]
HUANG X Z, QIAN Q, LIU Z B, SUN H Y, HE S Y, LUO D, XIA G M, CHU C C, LI J Y, FU X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41(4): 494-497.

doi: 10.1038/ng.352 pmid: 19305410
[8]
OOKAWA T, HOBO T, YANO M, MURATA K, ANDO T, MIURA H, ASANO K, OCHIAI Y, IKEDA M, NISHITANI R, EBITANI T, OZAKI H, ANGELES E R, HIRASAWA T, MATSUOKA M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature Communications, 2010, 1: 132.

pmid: 21119645
[9]
KOMATSU M, CHUJO A, NAGATO Y, SHIMAMOTO K, KYOZUKA J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130(16): 3841-3850.

doi: 10.1242/dev.00564 pmid: 12835399
[10]
ZHU Q H, HOQUE M S, DENNIS E S, UPADHYAYA N M. Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biology, 2003, 3: 6.

doi: 10.1186/1471-2229-3-6
[11]
YOSHIDA A, SASAO M, YASUNO N, TAKAGI K, DAIMON Y, CHEN R, YAMAZAKI R H, TOKUNAGA H, KITAGUCHI Y, SATO Y, NAGAMURA Y, USHIJIMA T, KUMAMARU T, IIDA S, MAEKAWA M, KYOZUKA J. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 767-772.
[12]
LEE D Y, LEE J, MOON S, PARK S Y, AN G. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. The Plant Journal, 2007, 49(1): 64-78.

doi: 10.1111/tpj.2007.49.issue-1
[13]
LEE D Y, AN G. Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. The Plant Journal, 2012, 69(3): 445-461.

doi: 10.1111/tpj.2012.69.issue-3
[14]
JEON J S, JANG S, LEE S, NAM J, KIM C, LEE S H, CHUNG Y Y, KIM S R, LEE Y H, CHO Y G, AN G. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell, 2000, 12(6): 871-884.
[15]
AGRAWAL G K, ABE K, YAMAZAKI M, MIYAO A, HIROCHIKA H. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Molecular Biology, 2005, 59(1): 125-135.

pmid: 16217607
[16]
LIU Q, HAN R X, WU K, ZHANG J Q, YE Y F, WANG S S, CHEN J F, PAN Y J, LI Q, XU X P, ZHOU J W, TAO D Y, WU Y J, FU X D. G-protein βγ subunits determine grain size through interaction with MADS- domain transcription factors in rice. Nature Communications, 2018, 9(1): 852.

doi: 10.1038/s41467-018-03047-9
[17]
TAN Y F, XING Y Z, LI J X, YU S B, XU C G, ZHANG Q F. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theoretical & Applied Genetics, 2000, 101(5/6): 823-829.
[18]
HUANG R Y, JIANG L R, ZHENG J S, WANG T S, WANG H C, HUANG Y M, HONG Z L. Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Science, 2013, 18(4): 218-226.

doi: 10.1016/j.tplants.2012.11.001 pmid: 23218902
[19]
ZUO J R, LI J Y. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics, 2014, 48: 99-118.

doi: 10.1146/annurev-genet-120213-092138 pmid: 25149369
[20]
丁膺宾, 张莉珍, 许睿, 王艳艳, 郑晓明, 张丽芳, 程云连, 吴凡, 杨庆文, 乔卫华, 兰进好. 基于染色体片段置换系的野生稻粒长QTL-qGL12的精细定位. 中国农业科学, 2018, 51(18): 3435-3444.

doi: 10.3864/j.issn.0578-1752.2018.18.001
DING Y B, ZHANG L Z, XU R, WANG Y Y, ZHENG X, ZHANG L F, CHENG Y L, WU F, YANG Q W, QIAO W H, LAN J H. Fine mapping of grain length associated QTL, qGL12 in wild rice (Oryza sativa L.) using a chromosome segment substitution line. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444. (in Chinese)
[21]
张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位. 中国农业科学, 2021, 54(24): 5163-5176.

doi: 10.3864/j.issn.0578-1752.2021.24.001
ZHANG Y D, LIANG W H, HE L, ZHAO C F, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, YAO S, ZHOU L H, LU K, WANG C L. Construction of high-density genetic map and QTL analysis of grain shape in rice RIL population. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.24.001
[22]
WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954.

doi: 10.1038/ng.2327 pmid: 22729225
[23]
WANG S K, LI S, LIU Q, WU K, ZHANG J Q, WANG S S, WANG Y, CHEN X B, ZHANG Y, GAO C X, WANG F, HUANG H X, FU X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015, 47(8): 949-954.

doi: 10.1038/ng.3352 pmid: 26147620
[24]
WANG C S, TANG S C, ZHAN Q L, HOU Q Q, ZHAO Y, ZHAO Q, FENG Q, ZHOU C C, LYU D F, CUI L L, LI Y, MIAO J S, ZHU C R, LU Y Q, WANG Y C, WANG Z Q, ZHU J J, SHANGGUAN Y Y, GONG J Y, YANG S H, WANG W Q, ZHANG J F, XIE H A, HUANG X H, HAN B. Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nature Communications, 2019, 10(1): 2982.

doi: 10.1038/s41467-019-11017-y pmid: 31278256
[25]
XIONG H Y, YU J P, MIAO J L, LI J J, ZHANG H L, WANG X, LIU P L, ZHAO Y, JIANG C H, YIN Z G, LI Y, GUO Y, FU B Y, WANG W S, LI Z K, ALI J, LI Z C. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiology, 2018, 178(1): 451-467.

doi: 10.1104/pp.17.01492
[26]
YU J P, XIONG H Y, ZHU X Y, ZHANG H L, LI H H, MIAO J L, WANG W S, TANG Z S, ZHANG Z Y, YAO G X, ZHANG Q, PAN Y H, WANG X, RASHID M A R, LI J J, GAO Y M, LI Z K, YANG W C, FU X D, LI Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biology, 2017, 15(1): 28.

doi: 10.1186/s12915-017-0365-7 pmid: 28385155
[27]
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.

doi: 10.1038/ng2014
[28]
SHI C L, REN Y L, LIU L L, WANG F, ZHANG H, TIAN P, PAN T, WANG Y F, JING R N, LIU T Z, WU F Q, LIN Q B, LEI C L, ZHANG X, ZHU S S, GUO X P, WANG J L, ZHAO Z C, WANG J, ZHAI H Q, CHENG Z J, WAN J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology, 2019, 180(1): 381-391.

doi: 10.1104/pp.19.00065 pmid: 30796160
[29]
WANG S K, WU K, YUAN Q B, LIU X Y, LIU Z B, LIN X Y, ZENG R Z, ZHU H T, DONG G J, QIAN Q, ZHANG G Q, FU X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44(8): 950-954.

doi: 10.1038/ng.2327 pmid: 22729225
[30]
MIURA K, IKEDA M, MATSUBARA A, SONG X J, ITO M, ASANO K, MATSUOKA M, KITANO H, ASHIKARI M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 2010, 42(6): 545-549.

doi: 10.1038/ng.592 pmid: 20495564
[31]
JIAO Y Q, WANG Y H, XUE D W, WANG J, YAN M X, LIU G F, DONG G J, ZENG D L, LU Z F, ZHU X D, QIAN Q, LI J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42(6): 541-544.

doi: 10.1038/ng.591 pmid: 20495565
[32]
WENG J F, GU S H, WAN X Y, GAO H, GUO T, SU N, LEI C L, ZHANG X, CHENG Z J, GUO X P, WANG J L, JIANG L, ZHAI H Q, WAN J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18(12): 1199-1209.

doi: 10.1038/cr.2008.307 pmid: 19015668
[33]
LIU J F, CHEN J, ZHENG X M, WU F Q, LIN Q B, HENG Y Q, TIAN P, CHENG Z J, YU X W, ZHOU K N, ZHANG X, GUO X P, WANG J L, WANG H Y, WAN J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 2017, 3: 17043.

doi: 10.1038/nplants.2017.43 pmid: 28394310
[34]
TAKANO-KAI N, JIANG H, KUBO T, SWEENEY M, MATSUMOTO T, KANAMORI H, PADHUKASAHASRAM B, BUSTAMANTE C, YOSHIMURA A, DOI K, MCCOUCH S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182(4): 1323-1334.

doi: 10.1534/genetics.109.103002
[35]
MIAO J, YANG Z F, ZHANG D P, WANG Y Z, XU M B, ZHOU L H, WANG J, WU S J, YAO Y L, DU X, GU F F, GONG Z Y, GU M H, LIANG G H, ZHOU Y. Mutation of RGG2, which encodes a type B heterotrimeric G protein gamma subunit, increases grain size and yield production in rice. Plant Biotechnology Journal, 2019, 17(3): 650-664.

doi: 10.1111/pbi.2019.17.issue-3
[36]
SUN S Y, WANG L, MAO H L, SHAO L, LI X H, XIAO J H, OUYANG Y D, ZHANG Q F. A G-protein pathway determines grain size in rice. Nature Communications, 2018, 9(1): 851.

doi: 10.1038/s41467-018-03141-y pmid: 29487318
[37]
LI X K, WU L, WANG J H, SUN J, XIA X H, GENG X, WANG X H, XU Z J, XU Q. Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biology, 2018, 16(1): 102.

doi: 10.1186/s12915-018-0572-x pmid: 30227868
[38]
JIANG S K, YANG C, XU Q, WANG L Z, YANG X L, SONG X W, WANG J Y, ZHANG X J, LI B, LI H Y, LI Z G, LI W H. Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice. International Journal of Molecular Sciences, 2020, 21(4): 1284.

doi: 10.3390/ijms21041284
[39]
SHOMURA A, IZAWA T, EBANA K, EBITANI T, KANEGAE H, KONISHI S, YANO M. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40(8): 1023-1028.

doi: 10.1038/ng.169 pmid: 18604208
[40]
DUAN P G, XU J S, ZENG D L, ZHANG B L, GENG M F, ZHANG G Z, HUANG K, HUANG L J, XU R, GE S, QIAN Q, LI Y H. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant, 2017, 10(5): 685-694.

doi: S1674-2052(17)30098-9 pmid: 28366824
[41]
WANG Y, LI F C, ZHANG F, WU L, XU N, SUN Q, CHEN H, YU Z W, LU J H, JIANG K, WANG X C, WEN S Y, ZHOU Y, ZHAO H, JIANG Q, WANG J H, JIA R Z, SUN J, TANG L, XU H, HU W, XU Z J, CHEN W F, GUO A P, XU Q. Time-ordering japonica/geng genomes analysis indicates the importance of large structural variants in rice breeding. Plant Biotechnology Journal, 2023, 21(1): 202-218.

doi: 10.1111/pbi.v21.1
[42]
LI M R, LI X X, ZHOU Z J, WU P Z, FANG M C, PAN X P, LIN Q P, LUO W B, WU G J, LI H Q. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 2016, 7: 377.

doi: 10.3389/fpls.2016.00377 pmid: 27066031
[43]
LI M R, PAN X P, LI H Q. Pyramiding of gn1a, gs3, and ipa1 exhibits complementary and additive effects on rice yield. International Journal of Molecular Sciences, 2022, 23(20): 12478.

doi: 10.3390/ijms232012478
[44]
ASHIKARI M, MATSUOKA M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science, 2006, 11(7): 344-350.

doi: 10.1016/j.tplants.2006.05.008 pmid: 16769240
[45]
KIM S R, RAMOS J M, HIZON R J M, ASHIKARI M, VIRK P S, TORRES E A, NISSILA E, JENA K K. Introgression of a functional epigenetic OsSPL14WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Scientific Reports, 2018, 8(1): 3833.

doi: 10.1038/s41598-018-21355-4
[46]
WANG Y, ZHAI L Y, CHEN K, SHEN C C, LIANG Y T, WANG C C, ZHAO X Q, WANG S, XU J L. Natural sequence variations and combinations of GNP1 and NAL1 determine the grain number per panicle in rice. Rice, 2020, 13(1): 14.

doi: 10.1186/s12284-020-00374-8 pmid: 32112146
[47]
XUE W Y, XING Y Z, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40(6): 761-767.

doi: 10.1038/ng.143 pmid: 18454147
[48]
MIURA K, IKEDA M, MATSUBARA A, SONG X J, ITO M, ASANO K, MATSUOKA M, KITANO H, ASHIKARI M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 2010, 42(6): 545-549.

doi: 10.1038/ng.592 pmid: 20495564
[49]
WU L, WANG X D, YU Z W, CUI X, XU Q. Simultaneous improvement of grain yield and quality through manipulating two type C G protein gamma subunits in rice. International Journal of Molecular Sciences, 2022, 23(3): 1463.

doi: 10.3390/ijms23031463
[50]
LI X B, TAO Q D, MIAO J, YANG Z F, GU M H, LIANG G H, ZHOU Y. valuation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation. Rice, 2019, 12(1): 5.

doi: 10.1186/s12284-019-0263-4
[51]
ZENG D L, TIAN Z X, RAO Y C, DONG G J, YANG Y L, HUANG L C, LENG Y J, XU J, SUN C, ZHANG G H, HU J, ZHU L, GAO Z Y, HU X M, GUO L B, XIONG G S, WANG Y H, LI J Y, QIAN Q. Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3: 17031.

doi: 10.1038/nplants.2017.31 pmid: 28319055
[52]
QIAN Q, GUO L B, SMITH S M, LI J Y. Breeding high-yield superior- quality hybrid super-rice by rational design. National Science Review, 2016, 3(3): 283-294.

doi: 10.1093/nsr/nww006
[53]
SONG X G, MENG X B, GUO H Y, CHENG Q, JING Y H, CHEN M J, LIU G F, WANG B, WANG Y H, LI J Y, YU H. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology, 2022, 40: 1403-1411.

doi: 10.1038/s41587-022-01281-7 pmid: 35449414
[54]
HUANG L C, LI Q F, ZHANG C Q, CHU R, GU Z W, TAN H Y, ZHAO D S, FAN X L, LIU Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal, 2020, 18(11): 2164-2166.

doi: 10.1111/pbi.v18.11
[55]
FEI C, YU J H, XU Z J, XU Q. Erect panicle architecture contributes to increased rice production through the improvement of canopy structure. Molecular Breeding, 2019, 39: 128.

doi: 10.1007/s11032-019-1037-9
[1] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[2] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[3] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[4] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[5] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[6] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[7] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[8] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[9] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[10] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[11] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[12] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[13] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[14] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[15] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!