Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (8): 1456-1470.doi: 10.3864/j.issn.0578-1752.2023.08.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance

SUN QiBin1(), WANG JianNan2, LI YiNian1, HE RuiYin1, DING QiShuo1()   

  1. 1 College of Engineering, Nanjing Agricultural University/Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, Nanjing 210031
    2 Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210031
  • Received:2022-08-08 Accepted:2023-01-08 Online:2023-04-16 Published:2023-04-23

Abstract:

【Objective】In order to quantify the influence of seed-to-seed distance on wheat root development in soil layers under single seed precision sowing, an integrated technique combining root architecture digitizer and MATLAB simulation was developed to quantify wheat root length density (RLD) and relative root length density (NRLD), as well as related models in each soil layer in the field.【Method】Ningmai 13 was used as experiment marital and the seed was sown with single seed precision sowing method in no-till paddy soil. The experiment was carried out in 2020 and 2021, respectively. Five treatments (JT1.5, JT3, JT4.5, JT6.7, and JT9) with row spacing of 1.5, 3.0, 4.5, 6.7 and 9.0 cm were introduced for field stand control. RLD was analyzed with combined technologies, i.e. root architecture digitizer and 3D root system architecture reconstruction with Pro-E, supplemented with MATLAB simulation, which facilitated fine segmentation and analysis of the rhizosphere dynamics under soil space voxel resolution of 3 mm3, and this further results quantified RLD distribution dynamics and the development of NRLD models along soil layers.【Result】The post-paddy wheat RLD decreased gradually along the soil layers under different treatments. As much as 95% of the root system was confined within the top soil layer in 0-9 cm, below which, root length decreased rapidly. The wheat root expansion area of a single plant first increased along the soil layers and then decreased. Root expansion started from the seed site as its central point, and revealed an obvious directional and constraining effects induced by the soil environment. With the increase of seed-to-seed distance, wheat RLD experienced first an increasing and then a decreasing trend, and the maximum value of which was found at JT4.5. The expansion area of wheat RLD increased with the increased seed-to-seed distance, and the maximum value of which was 22 972 mm2. Either the too high or the too low density stand was found adversely impacts the efficiency of root configuration. Only the most suitable sowing density led to the best 3D distribution of wheat root system, which has been considered as the primary mechanism for efficient utilization of soil spatial resources. The NRLD distribution within 0-20 cm soil layers satisfied both cubic polynomial and exponential models well (R2>0.99, RMSE<0.1), but when considered the field state root system architecture, it was found that the exponential model was more realistic and fit the field wheat RLD the best along the soil layers.【Conclusion】An integrated technique combining root architecture digitizer and MATLAB simulation was developed to quantify wheat RLD and NRLD in the field, which satisfactorily illustrated the influence of seed-to-seed distance on RLD and NRLD along the soil layers. The results showed that the proposed method could be applicable for studies of wheat precision cultivation, precise water and fertilizer management, root configuration regulation and so on in the future.

Key words: post-paddy rice, seed-to-seed distance, root segmentation, root length density, model development

Table 1

Physical and chemical properties of soil layer in the test area"

土层深度
Depth of soil layer (cm)
全钾
Total K content (g·kg-1)
有机质
Organic matter (g·kg-1)
碱解氮
Available N (g·kg-1)
全氮
Total N content (g·kg-1)
速效磷
Available P (g·kg-1)
速效钾
Available K (g·kg-1)
全磷
Total P content (g·kg-1)
0-10 11.561 26.203 0.112 1.378 0.610 0.165 14.011
10-20 11.567 19.274 0.872 1.119 0.563 0.120 3.595

Fig. 1

Schematic diagram of root space division"

Fig. 2

RLD distribution of single wheat in different soil layers"

Fig. 3

RLD and expansion area of single wheat in different soil layers"

Fig. 4

Root length density at different soil depths The year 2020 is indicated in capital letters and the year 2021 in small letters; Different letters in the same year indicate significant differences in root length density at the 5% level. a, b: Root length density under different spacing; c: Root length density under different soil layers"

Fig. 5

Plane distribution of RLD under different spacing Each picture shows the distribution of root length density of single plant of wheat, each treatment 1, 2 and 3 represents the first, second and third wheat under different species spacing"

Fig. 6

Root expansion area under different species spacing"

Fig. 7

Root length density of wheat after rice under different seed spacing"

Fig. 8

Model fitting of rice stubble and wheat under different seed spacing"

Fig. 9

Statistical results of normalized root mean square error (n-RMSE) between simulated and measured root length density"

[1]
梁晓艳, 郭峰, 张佳蕾, 孟静静, 李林, 万书波, 李新国. 单粒精播对花生冠层微环境、光合特性及产量的影响. 应用生态学报, 2015, 26(12): 3700-3706.
LIANG X Y, GUO F, ZHANG J L, MENG J J, LI L, WAN S B, LI X G. Effects of single-seed sowing on canopy microenvironment, photosynthetic characteristics and pod yield of peanut (Arachis hypogaca). Chinese Journal of Applied Ecology, 2015, 26(12): 3700-3706. (in Chinese)
[2]
李桂芬, 覃斯华, 陆宇明, 洪日新, 叶云峰, 梁盛凯. 不同栽培密度和整枝措施对大棚小型无籽西瓜综合效益的影响. 南方农业学报, 2018, 49(12): 2506-2510.
LI G F, QIN S H, LU Y M, HONG R X, YE Y F, LIANG S K. Effects of different planting densities and pruning measures on comprehensive benefits of small seedless watermelon in plastic shed. Journal of Southern Agriculture, 2018, 49(12): 2506-2510. (in Chinese)
[3]
李拴良, 任长宏, 格桑曲珍, 赵宗财, 张宗卷, 胡希远. 宽幅硬茬播种对冬小麦生长、产量及品质的效应. 麦类作物学报, 2015, 35(1): 80-85.
LI S L, REN C H, GESANG Q Z, ZHAO Z C, ZHANG Z J, HU X Y. Effect of no-tilled wide planting pattern on growth, yield and quality of winter wheat. Journal of Triticeae Crops, 2015, 35(1): 80-85. (in Chinese)
[4]
母养秀, 张久盘, 穆兰海, 杜燕萍, 常克勤. 不同播种密度对荞麦植株叶片衰老及产量的影响. 江苏农业科学, 2018, 46(1): 40-42.
MU Y X, ZHANG J P, MU L H, DU Y P, CHANG K Q. Effects of different sowing densities on leaf senescence and yield of buckwheat plants. Jiangsu Agricultural Sciences, 2018, 46(1): 40-42. (in Chinese)
[5]
李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31(5): 662-666.
LI J C, YIN J, WEI F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agronomica Sinica, 2005, 31(5): 662-666. (in Chinese)
[6]
史红志, 党伟, 王德民. 夏玉米机械化单粒精播技术. 农业科技通讯, 2014(1): 187-188.
SHI H Z, DANG W, WANG D M. Mechanized single seed precision sowing technology of summer maize. Bulletin of Agricultural Science and Technology, 2014(1): 187-188. (in Chinese)
[7]
李佩, 何瑞银, 汪小旵, 丁启朔. 单株小麦生理生态控制的等距单粒线播法研究. 中国农业科学, 2022, 55(2): 295-306.

doi: 10.3864/j.issn.0578-1752.2022.02.005
LI P, HE R Y, WANG X C, DING Q S. Uniform distance single seed linear seeding method for control of wheat physiology and ecology. Scientia Agricultura Sinica, 2022, 55(2): 295-306. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.02.005
[8]
MAWODZA T, BURCA G, CASSON S, MENON M. Wheat root system architecture and soil moisture distribution in an aggregated soil using neutron computed tomography. Geoderma, 2020, 359: 113988.

doi: 10.1016/j.geoderma.2019.113988
[9]
FANG Y, LIANG L Y, LIU S, XU B C, SIDDIQUE K H, PALTA J A, CHEN Y L. Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the loess plateau. European Journal of Agronomy, 2021, 124: 126243.

doi: 10.1016/j.eja.2021.126243
[10]
邱新强, 高阳, 黄玲, 李新强, 孙景生, 段爱旺. 冬小麦根系形态性状及分布. 中国农业科学, 2013, 46(11): 2211-2219.

doi: 10.3864/j.issn.0578-1752.2013.11.004
QIU X Q, GAO Y, HUANG L, LI X Q, SUN J S, DUAN A W. Temporal and spatial distribution of root morphology of winter wheat. Scientia Agricultura Sinica, 2013, 46(11): 2211-2219. (in Chinese)
[11]
陈智勇, 谢迎新, 张阳阳, 缑培欣, 马冬云, 康国章, 王晨阳, 郭天财. 小麦根长密度和根干重密度对氮肥的响应及其与产量的关系. 麦类作物学报, 2020, 40(10): 1223-1231.
CHEN Z Y, XIE Y X, ZHANG Y Y, GOU P X, MA D Y, KANG G Z, WANG C Y, GUO T C. Responses of root length density and root dry weight density to nitrogen fertilizer and their relationship with yield in wheat. Journal of Triticeae Crops, 2020, 40(10): 1223-1231. (in Chinese)
[12]
梅四卫, 朱涵珍, 王术, 杨习文. 小麦根系研究现状及展望. 基因组学与应用生物学, 2018, 37(12): 5448-5454.
MEI S W, ZHU H Z, WANG S, YANG X W. Research situation and prospects of wheat root system. Genomics and Applied Biology, 2018, 37(12): 5448-5454. (in Chinese)
[13]
方燕, 闵东红, 高欣, 王中华, 王军, 刘萍, 刘霞. 不同抗旱性冬小麦根系时空分布与产量的关系. 生态学报, 2019, 39(8): 2922-2934.
FANG Y, MIN D H, GAO X, WANG Z H, WANG J, LIU P, LIU X. Relationship between spatiotemporal distribution of roots and grain yield of winter wheat varieties with differing drought tolerance. Acta Ecologica Sinica, 2019, 39(8): 2922-2934. (in Chinese)
[14]
吕国红, 谢艳兵, 温日红, 王笑影, 贾庆宇. 东北玉米根系生物量模型的构建. 中国生态农业学报, 2019, 27(4): 572-580.
G H, XIE Y B, WEN R H, WANG X Y, JIA Q Y. Modeling root biomass of maize in northeast China. Chinese Journal of Eco- Agriculture, 2019, 27(4): 572-580. (in Chinese)
[15]
李熙婷, 田德龙, 郭克贞, 徐冰, 赵淑银. 膜下滴灌对小麦根系分布特征的影响. 排灌机械工程学报, 2016, 34(6): 545-552.
LI X T, TIAN D L, GUO K Z, XU B, ZHAO S Y. Influence of mulch drip irrigation on wheat root distribution characteristics. Journal of Drainage and Irrigation Mechanical Engineering, 2016, 34(6): 545- 552. (in Chinese)
[16]
邹海洋, 张富仓, 吴立峰, 向友珍, 范军亮, 李志军, 李思恩. 基于不同水肥组合的春玉米相对根长密度分布模型. 农业工程学报, 2018, 34(4): 133-142.
ZOU H Y, ZHANG F C, WU L F, XIANG Y Z, FAN J L, LI Z J, LI S E. Normalized root length density distribution model for spring maize under different water and fertilizer combination. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 133-142. (in Chinese)
[17]
GARRE S, PAGES L, LALOY E, JAVAUX M, VANDERBORGHT J, VEREECKEN H. Parameterizing a dynamic architectural model of the root system of spring barley from minirhizotron data. Vadose Zone Journal, 2012, 11(4): vzj2011.0179.
[18]
NING S, CHEN C, ZHOU B, WANG Q. Evaluation of normalized root length density distribution models. Field Crops Research, 2019, 242: 107604.

doi: 10.1016/j.fcr.2019.107604
[19]
AHMADI S H, SEPASKHAH A R, ANDERSEN M N, PLAUBORG F, JENSEN C R, HANSEN S. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks. Field Crops Research, 2014, 162: 99-107.

doi: 10.1016/j.fcr.2013.12.008
[20]
CHEN J, WANG P, MA Z M, LYU X D, LIU T, SIDDIQUE K. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Tritium aestivum L.) under permanent raised bed tillage in arid northwest China. Soil & Tillage Research, 2018, 181: 117-126.
[21]
STREIT J, MEINEN C, RAUBER R. Intercropping effects on root distribution of eight novel winter faba bean genotypes mixed with winter wheat. Field Crops Research, 2019, 235: 1-10.

doi: 10.1016/j.fcr.2019.02.014
[22]
ALI S, XU Y Y, MA X C, AHMAD I, MANZOOR, JIA Q M, AKMAL M, HUSSAIN Z, ARIF M, CAI T, ZHANG J H, JIA Z K. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agricultural Water Management, 2019, 219: 1-11.

doi: 10.1016/j.agwat.2019.03.038
[23]
刘东军, 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏. 施氮量和种植密度对强筋小麦龙麦35产量及品质的影响. 黑龙江农业科学, 2022(6): 18-21.
LIU D J, SONG W F, YANG X F, ZHAO L J, SONG Q J, ZHANG C L, XIN W L, XIAO Z M. Effects of nitrogen application rate and planting density on yield and quality of strong gluten wheat Longmai 35. Heilongjiang Agricultural Sciences, 2022(6): 18-21. (in Chinese)
[24]
梁翠丽, 田向东, 海江波, 乔佳秀, 罗洁, 米璐璐. 播种密度与播种方式对小麦不同穗位结实特性及产量的影响. 西北农业学报, 2021, 30(6): 796-806.
LIANG C L, TIAN X D, HAI J B, QIAO J X, LUO J, MI L L. Effects of seeding rate and sowing mode on fruiting characters and yield of different spikelet positions in wheat. Acta Agriculturae Boreali- Occidentalis Sinica, 2021, 30(6): 796-806. (in Chinese)
[25]
苗果园, 高志强, 张云亭, 尹钧, 张爱良. 水肥对小麦根系整体影响及其与地上部相关的研究. 作物学报, 2002, 28(4): 445-450.
MIAO G Y, GAO Z Q, ZHANG Y T, YIN J, ZHANG A L. Effect of water and fertilizer to root system and its correlation with tops in wheat. Acta Agronomica Sinica, 2002, 28(4): 445-450. (in Chinese)
[26]
李瑞, 李絮花, 杨守祥, 李莉. 钾对冬小麦根系生理性状及地上部生长的影响. 土壤肥料, 2003(4): 16-19.
LI R, LI X H, YANG S X, LI L. Effects of potassium on physiology of root system and shoot growth in winter wheat. Soil and Fertilizer Sciences in China, 2003(4): 16-19. (in Chinese)
[27]
王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27-32.
WANG S F, ZHANG X Y, PEI D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 27-32. (in Chinese)
[28]
赵秉强, 李凤超, 薛坚, 李增嘉. 不同耕法对冬小麦根系生长发育的影响. 作物学报, 1997, 23(5): 587-596.
ZHAO B Q, LI F C, XUE J, LI Z J. Effects of different tillage methods on root growth of Winter Wheat. Acta Agronomica Sinica, 1997, 23(5): 587-596. (in Chinese)
[29]
刘殿英, 石立岩, 董庆裕. 不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响. 作物学报, 1993, 19(2): 149-155.
LIU D Y, SHI L Y, DONG Q Y. The effects of top-dressing and irrigation time on root system, root activity and plant characters in Winter Wheat. Acta Agronomica Sinica, 1993, 19(2): 149-155. (in Chinese)
[30]
王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013, 21(3): 282-289.
WANG Y Z, LIU X W, SUN H Y, ZHANG X Y, ZHANG L R. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282-289. (in Chinese)
[31]
张明乾. 冬小麦根系和土壤环境对夜间增温的响应及其区域差异[D]. 南京: 南京农业大学, 2012.
ZHANG M Q. The responses and regional differences of winter wheat root system and soil environment to passive nighttime warming[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
[32]
白文明, 左强, 黄元仿, 李保国. 乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究. 植物生态学报, 2001, 25(1): 35-41.
BAI W M, ZUO Q, HUANG Y F, LI B G. Effect of water supply on root growth and water uptake of alfalfa in Wulanbuhe sandy region. Acta Phytoecologica Sinica, 2001, 25(1): 35-41. (in Chinese)
[33]
AMATO M, LUPO F, BITELLA G, BOCHICCHIO R, AZIZ M A, CELANO G. A high quality low-cost digital microscope minirhizotron system. Computers and Electronics in Agriculture, 2012, 80: 50-53.

doi: 10.1016/j.compag.2011.10.014
[34]
AHMADI S H, SEPASKHAH A R, ZAREI M. Modeling winter barley root distribution in flat and raised bed planting systems subject to full, deficit and rainfed irrigation. Rhizosphere, 2020, 16: 100257.

doi: 10.1016/j.rhisph.2020.100257
[35]
TAYLOR B N, BEIDLER K V, COOPER E R, STRAND A E, PRITCHARD S G. Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves. Ecology Letters, 2013, 16(7): 862-869.

doi: 10.1111/ele.12119 pmid: 23659190
[36]
WANG T, ROSTAMZA M, SONG Z H, WANG L J, MCNICKLE G, IYER-PASCUZZI A S, QIU Z J, JIN J. Segroot: A high throughput segmentation method for root image analysis. Computers and Electronics in Agriculture, 2019, 162: 845-854.

doi: 10.1016/j.compag.2019.05.017
[37]
KLEPPER B, KASPAR T C. Rhizotrons - their development and use in agricultural-research. Agronomy Journal, 1994, 86(5): 745-753.

doi: 10.2134/agronj1994.00021962008600050002x
[38]
ARNAUD M, BAIRD A J, MORRIS P J, HARRIS A, HUCK J J. Enroot: A narrow-diameter, inexpensive and partially 3D-printable minirhizotron for imaging fine root production. Plant Methods, 2019, 15(1): 1-9.

doi: 10.1186/s13007-018-0385-5
[39]
SEMCHENKO M, HUTCHINGS M J, JOHN E A. Challenging the tragedy of the commons in root competition: confounding effects of neighbour presence and substrate volume. Journal of Ecology, 2007, 95(2): 252-260.

doi: 10.1111/jec.2007.95.issue-2
[40]
BIZET F, BENGOUGH A G, HUMMEL I, BOGEAT-TRIBOULOT M B, DUPUY L X. 3d deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces. Journal of Experimental Botany, 2016, 67(19): 5605-5614.

pmid: 27664958
[41]
MCGRAIL R K, VAN SANFORD D A, MCNEAR D H. Trait-based root phenotyping as a necessary tool for crop selection and improvement. Agronomy-Basel, 2020, 10(9): 1328.
[42]
MAWODZA T, MENON M, BROOKS H, MAGDYSYUK O V, BURCA G, CASSON S. Preferential wheat (Triticum aestivum L. cv. Fielder) root growth in different sized aggregates. Soil and Tillage Research, 2021, 212: 105054.

doi: 10.1016/j.still.2021.105054
[43]
MCGRAIL R K, MCNEAR D H. Two centuries of breeding has altered root system architecture of winter wheat. Rhizosphere, 2021, 19: 100411.

doi: 10.1016/j.rhisph.2021.100411
[44]
HOU L, GAO W, van der BOM F, WENG Z, DOOLETTE C L, MAKSIMENKO A, HAUSERMANN D, ZHENG Y Y, TANG C X, LOMBI E, KOPITTKE P M. Use of x-ray tomography for examining root architecture in soils. Geoderma, 2022, 405: 115405.

doi: 10.1016/j.geoderma.2021.115405
[45]
WASSON A P, NAGEL K A, TRACY S, WATT M. Beyond digging: Noninvasive root and rhizosphere phenotyping. Trends in Plant Science, 2020, 25(1): 119-120.

doi: S1360-1385(19)30280-8 pmid: 31791653
[46]
贾彪, 李振洲, 王锐, 孙权, 王掌军, 刘根红. 不同施氮量下覆膜滴灌玉米相对根长密度模型研究. 农业机械学报, 2020, 51(9): 266-273.
JIA B, LI Z Z, WANG R, SUN Q, WANG Z J, LIU G H. Effects of nitrogen application rate on root length density of maize under drip irrigation with mulch. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 266-273. (in Chinese)
[47]
WU J Q, ZHANG R D, GUI S X. Modeling soil water movement with water uptake by roots. Plant and Soil, 1999, 215(1): 7-17.

doi: 10.1023/A:1004702807951
[48]
张吴平, 刘建宁, 李保国. 结构与功能反馈机制下根系生长向性模拟. 农业工程学报, 2009, 25(S2): 110-117.
ZHANG W P, LIU J N, LI B G. Simulation of tropisms of three tropisms of root system growth based on feedbacks between functions and structures. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S2): 110-117. (in Chinese)
[49]
张吴平, 李保国. 均质壤土下玉米根系三维空间分布的模拟与参数分析. 土壤学报, 2007, 44(5): 949-955.
ZHANG W P, LI B G. Simulation of spatial distribution and parameter analysis of maize root system in homogeneous loam soil. Acta Pedologica Sinica, 2007, 44(5): 949-955. (in Chinese)
[50]
JOURDAN C, REY H. Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq) root system. 1. The model. Plant and Soil, 1997, 190(2): 217-233.

doi: 10.1023/A:1004218030608
[51]
韩秋萍, 丁启朔, 潘根兴, 丁为民, 周裕辉. 基于Pro/E的土壤结构与小麦幼苗期根系关系模拟与分析. 中国农业科学, 2010, 43(22): 4598-4604.
HAN Q P, DING Q S, PAN G X, DING W M, ZHOU Y H. Modeling and analyzing the relationship between soil structure and wheat seedling root with Pro/E. Scientia Agricultura Sinica, 2010, 43(22): 4598-4604. (in Chinese)
[52]
厉翔, 丁启朔, 陈信信, 何瑞银, 汪小旵, 李佩. 大田群体小麦根系构型3D拓扑表型的参数化. 江苏农业学报, 2020, 36(4): 936-941.
LI X, DING Q S, CHEN X X, HE R Y, WANG X C, LI P. Parameterization of 3D topological phenotype of wheat root system architecture in field population. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 936-941. (in Chinese)
[53]
陈信信, 丁启朔, 丁为民, 田永超, 朱艳, 曹卫星. 基于虚拟植物技术的冬小麦根系3D构型测试与分析. 中国农业科学, 2014, 47(8): 1481-1488.

doi: 10.3864/j.issn.0578-1752.2014.08.004
CHEN X X, DING Q S, DING W M, TIAN Y C, ZHU Y, CAO W X. Measurement and analysis of 3d wheat root system architecture with a virtual plant tool kit. Scientia Agricultura Sinica, 2014, 47(8): 1481-1488. (in Chinese)
[54]
CASPER B B, JACKSON R B. Plant competition underground. Annual Review of Ecology and Systematics, 1997, 28: 545-570.

doi: 10.1146/ecolsys.1997.28.issue-1
[55]
TATSUMI J, YAMAUCHI A, KONO Y. Fractal analysis of plant- root systems. Annals of Botany, 1989, 64(5): 499-503.

doi: 10.1093/oxfordjournals.aob.a087871
[56]
KUMAR K, PRIHAR S S, GAJRI P R. Determination of root distribution of wheat by auger sampling. Plant and Soil, 1993, 149(2): 245-253.

doi: 10.1007/BF00016615
[57]
刘凤山, 周智彬, 胡顺军, 杜海燕, 陈秀龙. 根钻不同取样法对估算根系分布特征的影响. 草业学报, 2012, 21(2): 294-299.
LIU F S, ZHOU Z B, HU S J, DU H Y, CHEN X L. Influence of different soil coring methods on estimation of root distribution character. Acta Prataculturae Sinica, 2012, 21(2): 294-299. (in Chinese)
[58]
廖荣伟, 刘晶淼, 白月明, 安顺清, 梁宏, 卢建立, 乐章燕, 曹玉静. 华北平原冬小麦根系在土壤中的分布研究. 气象与环境学报, 2014, 30(5): 83-89.
LIAO R W, LIU J M, BAI Y M, AN S Q, LIANG H, LU J L, LE Z Y, CAO Y J. Spatial distribution of winter wheat root in soil under field condition in North China plain. Journal of Meteorology and Environment, 2014, 30(5): 83-89. (in Chinese)
[59]
孙家涛, 王传新. 农业栽培技术对小麦品质影响的相关分析. 农业与技术, 2019, 39(9): 105-106.
SUN J T, WANG C X. Correlation analysis of the effects of agricultural cultivation techniques on wheat quality. Agriculture and Technology, 2019, 39(9): 105-106. (in Chinese)
[60]
史双月, 王瑞, 姚照胜, 张伟军, 刘涛, 李冬双, 孙成明. 不同麦苗分布对小麦单株生长发育的影响. 扬州大学学报(农业与生命科学版), 2022, 43(1): 74-81, 134.
SHI S Y, WANG R, YAO Z S, ZHANG W J, LIU T, LI D S, SUN C M. Effects of different seedling distribution on growth and development of individual plant in wheat. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(1): 74-81, 134. (in Chinese)
[61]
马忠明, 陈娟, 刘婷婷, 吕晓东. 水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响. 作物学报, 2017, 43(11): 1705-1714.
MA Z M, CHEN J, LIU T T, X D. Effects of water and nitrogen coupling on root length density and yield of spring wheat in permanent raised-bed cropping system journal of crops. Acta Agronomica Sinica, 2017, 43(11): 1705-1714. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01705
[1] YIN Fei, WANG JunZhong, SUN XiaoMei, LI HongQi, FU GuoZhan, PEI RuiJie, JIAO NianYuan. Response of Spatial Concordance Index Between Maize Root and Soil Nitrate Distribution to Water and Nitrogen Treatments [J]. Scientia Agricultura Sinica, 2017, 50(11): 2166-2178.
[2] LIU Shi-Quan, CAO Hong-Xia, ZHANG Jian-Qing, HU Xiao-Tao. Effects of Different Water and Nitrogen Supplies on Root Growth, Yield and Water and Nitrogen Use Efficiency of Small Pumpkin [J]. Scientia Agricultura Sinica, 2014, 47(7): 1362-1371.
[3] QI Dong-Liang, WU Xue, HU Tian-Tian. Effects of Nitrogen Supply Methods on Root Growth, Yield and Nitrogen Use of Maize [J]. Scientia Agricultura Sinica, 2014, 47(14): 2804-2813.
[4] QIU Xin-Qiang, GAO Yang, HUANG Ling, LI Xin-Qiang, SUN Jing-Sheng, DUAN Ai-Wang. Temporal and Spatial Distribution of Root Morphology of Winter Wheat [J]. Scientia Agricultura Sinica, 2013, 46(11): 2211-2219.
[5] WANG Yong-Hua, WANG Yu-Jie, FENG Wei, WANG Chen-Yang, HU Wei-Li, XUAN Hong-Mei, GUO Tian-Cai. Effects of Different Cultivation Patterns on the Spatial-Temporal Distribution Characteristics of Roots and Grain Yield of Winter Wheat in Two Climatic Years [J]. Scientia Agricultura Sinica, 2012, 45(14): 2826-2837.
[6] ,,. Effects of drip fertigation strategies and frequencies on yield and root growth of tomato [J]. Scientia Agricultura Sinica, 2006, 39(7): 1419-1427 .
[7] ,,,,. Development and Testing of a Dynamic Knowledge Model for Wheat Cultural Management [J]. Scientia Agricultura Sinica, 2005, 38(02): 283-289 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!