Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1613-1626.doi: 10.3864/j.issn.0578-1752.2021.08.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed

YUAN Yuan1(),WANG Bo1,ZHOU GuangSheng1,LIU Fang2,HUANG JunSheng3,KUAI Jie1()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070
    2National Agricultural Technology Extension Service Center, Beijing 100125
    3Animal Husbandry Technology Extension Service Station, Enshi 445300, Hubei
  • Received:2020-06-22 Accepted:2020-08-17 Online:2021-04-16 Published:2021-04-25
  • Contact: Jie KUAI E-mail:2788049152@qq.com;kuaijie@mail.hzau.edu.cn

Abstract:

【Objective】Stem lodging is an important factor that restricts the increase of rapeseed production efficiency in China. The purpose of this study was to investigate the changing discipline and physiological mechanism of the lodging resistance of rapeseed stem treated with different sowing dates and densities, so as to provide theoretical and technical supports for high-yield and lodging resistance of rapeseed cultivation. 【Method】A split-plot experiment with two canola varieties (Huayouza 62 and Fengyou 520), two sowing dates (September 25, October 25) and four densities (15×104, 30×104, 45×104, and 60×104 plants/hm2)was performed to investigate yield and yield composition, stem mechanical strength, lodging index, microstructure, the main components of stem and key enzyme activities of lignin synthesis. 【Result】(1) At the sowing date of September 25 (T1), yield per plant, effective pods per plant and seeds per pod decreased with the density increased from 15×104 hm-2 to 60×104 hm-2, and the highest yield with the lowest lodging index was observed at density of 45×104 hm-2; Under the delayed the sowing date to October 25 (T2), the population yield, yield per plant, effective pods per plant and seeds per pod decreased significantly compared with those under T1, but the above-ground fresh weight decreased more significantly, resulting in the decrease of lodging index and the increase of lodging resistance under delayed sowing dates; (2)When sowing at the appropriate time, both the plant height and stem dry weight decreased significantly, while the lodging index was with a tendency of increasing firstly and then decreasing with increased densities, and the susceptible lodging part was transferred from the upper part to the base part of rapeseed stem. The parameters such as vascular bundle length/the thickness outside the pith and vascular bundle area/stem cross-sectional area gradually increased, and the content of lignin and cellulose of stem increased first and then decreased. With sowing dates delayed from September 25 to October 25, plant height, stem dry weight, stem lignin and cellulose content decreased significantly, but the above-ground fresh weight decreased more, resulting in the decreased lodging index. Stepwise regression analysis showed that lignin was the key index to improve the structure of the transport tissue, coordinate the lodging index and the population yield. The higher lignin content and the population lignin content of the stem could simultaneously obtain stronger lodging resistance of the stem and a higher population yield. (3) When the density increased from 15×104 hm-2 to 60×104 hm-2, the activities of peroxidase (POD), cinnamyl alcohol dehydrogenase (CAD), phenylalanine ammonia lyase (PAL) and 4-coumaryl: CoA ligase (4CL) under T1 increased, and those decreased significantly with sowing date delayed from T1 to T2. 【Conclusion】Optimizing planting density under different sowing dates could significantly increase the population yield, and the decreased yield at the delayed sowing date could be compensated by increasing planting density. The ability of lignin synthesis enhanced, and the lignin content increased under delaying sowing dates with higher plant densities, and coordinated the contradiction between high yield and lodging resistance in rapeseed.

Key words: rapeseed, sowing date, planting density, lodging resistance, yield

Table 1

Rapeseed growth process and meteorological factor during 2017-2019"

播期
Sowing date
品种
Variety
密度
Density
2017-2018 2018-2019
生育期
Growth days (d)
有效积温
Effective accumulated temperature (℃)
降雨量
Rainfall
(mm)
生育期
Growth days (d)
有效积温
Effective accumulated temperature (℃)
降雨量
Rainfall
(mm)
T1 华油杂62
HZ 62
D1 218 2772.2 207.3 218 2669.9 492.8
D2 216 2727.5 207.3 216 2623.5 492.8
D3 214 2678.6 206.3 214 2581.4 492.8
D4 213 2653.4 206.3 213 2564.0 492.8
沣油520
FY 520
D1 210 2586.1 206.1 210 2519.2 449.5
D2 208 2548.0 206.1 208 2478.0 449.5
D3 206 2516.1 199.3 206 2433.3 449.5
D4 205 2494.2 181.8 205 2415.4 448.4
T2 华油杂62
HZ 62
D1 191 2318.3 183.0 193 2010.4 475.9
D2 189 2275.3 180.0 192 1974.8 453.1
D3 188 2254.8 180.0 191 1949.8 453.1
D4 187 2234.6 180.0 190 1927.4 453.1
沣油520
FY 520
D1 185 2195.1 144.2 187 1995.8 474.7
D2 184 2172.7 144.2 186 1955.9 474.7
D3 183 2150.4 144.2 185 1933.3 474.7
D4 182 2126.3 144.2 184 1909.2 474.7

Table 2

Effects of different sowing dates and planting densities on rapeseed yield and yield composition"

年份
Year
播期
Sowing date
品种
Variety
密度
Density
单株角果数
Effective pods per plant
每角粒数
Seeds
per pod
千粒重
1000-seed
weight (g)
单株产量
Yield
per plant (g)
成株率
Survival
rate (%)
实际产量
Yield
(kg·hm-2)
2017-2018 T1 华油杂62
HZ 62
D1 315.0b 17.41a 3.68a 20.51a 93.60a 2742.3c
D2 185.0ef 17.00ab 3.76a 11.82d 87.93bc 2901.0b
D3 156.8gh 16.46bcd 3.60a 9.24e 84.22cd 3290.9a
D4 103.7k 16.14cde 3.69a 6.11h 82.59de 2649.1cd
沣油520
FY 520
D1 372.4a 16.88b 3.18bc 19.99a 93.53a 2555.7de
D2 222.8d 16.58bcd 3.08bcd 11.39d 87.06bc 2939.5b
D3 172.6fg 15.45fgh 3.13bcd 8.36f 81.57de 2731.0c
D4 128.4ij 15.03h 3.04cde 7.03g 77.30fg 2625.9cde
T2 华油杂62
HZ 62
D1 262.9c 16.63bc 3.26b 14.25b 94.51a 1866.0i
D2 171.8fg 16.17cde 3.23bc 8.96ef 88.57b 2261.0gh
D3 141.7hi 15.88ef 3.19bc 7.19g 83.99cd 2467.1ef
D4 106.9k 15.01h 3.19bc 5.12i 79.91ef 2484.9def
沣油520
FY 520
D1 274.3c 16.07de 3.02cde 13.33c 96.94a 1857.7i
D2 190.8e 15.66efg 2.92de 8.73ef 87.36bc 2203.5gh
D3 154.9h 15.38fgh 2.94de 6.99g 79.94ef 2362.2fg
D4 113.5jk 15.29gh 2.87e 4.99i 75.55g 2126.8h
2018-2019 T1 华油杂62
HZ 62
D1 284.0b 16.26a 3.58c 17.19a 97.60a 2311.5c
D2 173.6e 16.00ab 3.77ab 10.45b 93.10ab 2704.5ab
D3 139.6g 15.77bcd 3.79a 8.28d 84.50c 2854.7a
D4 96.1ij 15.49de 3.70b 5.52f 83.30c 2655.0b
沣油520
FY 520
D1 312.6a 16.16a 3.30de 16.60a 95.20a 2113.5d
D2 182.6de 15.80bcd 3.26ef 9.67bc 93.30ab 2660.3b
D3 152.7fg 15.50de 3.29ef 7.75de 83.80c 2534.6b
D4 102.3ij 15.34ef 3.21 f 5.06 fg 80.70 cde 2339.1 c
T2 华油杂62
HZ 62
D1 194.1 cd 16.04ab 3.21f 10.00bc 94.80a 1384.5h
D2 141.4fg 15.95abc 3.24ef 7.31e 84.40c 1669.5fg
D3 108.7hi 15.66cd 3.37d 5.74f 78.30def 1792.0ef
D4 86.0j 15.06f 3.28ef 4.26gh 76.90ef 1932.7e
沣油520
FY 520
D1 206.0c 15.73bcd 2.94g 9.39c 89.70b 1198.2i
D2 157.4f 15.32ef 2.92g 7.05e 82.20cd 1514.6gh
D3 123.4h 15.13f 2.98g 5.58f 77.30ef 1836.3ef
D4 89.8j 14.74g 2.95g 3.90h 75.60f 1570.7g
方差分析Variance analyses
2017-2018 T ** ** ** ** NS **
V ** ** ** * ** **
D ** ** NS ** ** **
T×V ** * ** NS NS NS
T×D ** NS NS ** NS **
V×D ** NS NS * * **
T×V×D ** * NS NS NS **
2018-2019 T ** ** ** ** ** **
V ** ** ** ** * **
D ** ** ** ** ** **
T×V NS * ** NS NS NS
T×D ** NS NS ** * **
V×D ** NS ** NS NS *
T×V×D ** NS NS NS NS *

Fig. 1

Effects of different sowing dates and planting densities on mechanical strength, above-ground fresh weight and lodging index of rapeseed stem D1, D2, D3, and D4 indicate the planting densities of 15×104, 30×104, 45×104 and 60×104 plants/hm2, respectively; T1 and T2 represent respectively sowing time on September 25 and October 25. HZ62 and FY520 represent respectively varieties of huayouza 62 and fengyou 520. The same as below"

Fig. 2

Effects of different sowing dates and planting densities on plant height and stem dry weight SS, BS, FS and MS represent seedling stage, bolting stage, flowering stage, and maturity stage, respectively"

Fig. 3

Microstructural characteristics of rapeseed stem at different planting densities"

Table 3

Effects of different sowing dates and planting densities on main composition of rapeseed stem (%)"

年份
Year
播期
Sowing date
品种
Variety
密度
Density
酸不溶木质素
Acid insoluble lignin
酸溶木质素
Soluble
lignin
总木质素
Total
lignin
半纤维素
Hemicel
lulose
纤维素
Cellulose
可溶性糖
Soluble
sugar
2017-2018 T1 华油杂62
HZ 62
D1 24.00bc 1.73abc 25.73abcd 19.03cde 34.74bc 3.44a
D2 24.23abc 1.70abc 25.93abc 20.11b 36.00ab 3.24b
D3 24.96a 1.57c 26.53a 21.13a 37.25a 3.05c
D4 23.38cde 1.73abc 25.11cde 18.75def 35.98ab 3.40a
沣油520
FY 520
D1 22.43fg 1.83ab 24.26fg 18.66def 32.78cd 3.29b
D2 23.74bcd 1.80ab 25.54bcd 18.61def 34.84bc 3.11c
D3 24.53ab 1.74abc 26.26ab 19.84bc 35.61ab 3.06c
D4 23.78bcd 1.77ab 25.55bcd 19.33bcd 34.78bc 3.27b
T2 华油杂62
HZ 62
D1 21.84g 1.73abc 23.57g 16.96hi 29.14e 3.08c
D2 22.72ef 1.72abc 24.43efg 17.56gh 30.89de 2.86e
D3 24.03bc 1.68abc 25.71abcd 17.98fg 31.51d 2.71f
D4 24.48ab 1.63bc 26.11ab 18.09efg 32.61d 2.68f
沣油520
FY 520
D1 21.73g 1.87a 23.59g 16.91hi 22.32h 2.96d
D2 22.32fg 1.82ab 24.14fg 17.22ghi 23.79gh 2.72f
D3 23.08def 1.82ab 24.90def 16.301i 25.46fg 2.70f
D4 23.36cde 1.81ab 25.17cde 17.95fg 27.09f 2.63f
2018-2019 T1 华油杂62
HZ 62
D1 24.43b 2.03bcde 26.46b 18.32abc 27.97cd 5.50a
D2 25.43a 1.99cdef 27.42a 18.90a 28.85bc 4.87c
D3 25.66a 1.94efg 27.60a 19.25a 32.45a 4.06h
D4 22.58cd 2.11ab 24.68cd 17.10defg 27.88cd 4.41f
沣油520
FY 520
D1 20.96fgh 2.06abcd 23.02efg 17.38cdef 26.70de 4.96b
D2 22.44cd 1.98def 24.42cd 18.10abcd 29.06bc 4.49e
D3 23.20c 1.85gh 25.05c 18.36abc 30.59b 3.21l
D4 21.22efg 2.01bcde 23.23ef 17.53bcde 28.96bc 4.33f
T2 华油杂62
HZ 62
D1 20.23hi 1.91fgh 22.14gh 17.44cde 26.36de 5.04b
D2 21.17efgh 1.88gh 23.05efg 17.62bcde 26.75de 4.57d
D3 22.04de 1.86gh 23.90de 18.21abcd 28.14cd 4.18g
D4 23.40c 1.76i 25.16c 18.63ab 28.90bc 3.76j
沣油520
FY 520
D1 19.73i 2.13a 21.87h 15.13h 23.71g 4.80c
D2 20.55ghi 2.08abc 22.64fgh 16.15g 24.68fg 3.95i
D3 21.84def 1.87gh 23.71de 16.30fg 26.01ef 3.43k
D4 23.06c 1.84hi 24.90c 16.64efg 27.01de 3.36k
方差分析Variance analyses
2017-2018 T ** NS ** ** ** **
V ** ** ** ** ** **
D ** NS ** ** ** **
T×V NS NS NS NS ** NS
T×D ** NS ** ** * **
V×D NS NS NS ** NS *
T×V×D ** NS ** NS NS NS
2018-2019 T ** ** ** ** ** **
V ** ** ** ** ** **
D ** ** ** ** ** **
T×V ** ** ** ** ** NS
T×D ** ** ** ** ** **
V×D NS ** NS NS NS **
T×V×D NS NS NS NS NS **

Fig. 4

Correlation between microstructure of stem and main components"

Table 4

Regression coefficients and significance tests between lodging index and yield with stem main components"

播期
Sowing date
因变量
Dependent variable
自变量
Independent variable
回归系数
Regression coefficients
校准误
Calibration
error
标准系数
Standard coefficient
显著性Saliency
T P
T1 倒伏指数
Lodging index
酸溶木质素soluble lignin 0.412 0.124 0.414 3.334 0.002
总木质素Total lignin -0.042 0.016 -0.328 -2.643 0.011
小区产量
Yield
群体可溶性糖Group soluble sugar -2.399 0.382 -0.654 -6.283 0.000
群体总木质素Group total lignin 0.670 0.085 0.821 7.889 0.000
T2 倒伏指数
Lodging index
酸溶木质素soluble lignin -0.078 0.013 -0.636 -6.226 0.000
总木质素Total lignin 0.285 0.105 0.278 2.721 0.009
小区产量
Yield
群体总木质素Group total lignin 1.144 0.071 1.001 16.074 0.000
群体可溶性糖Group soluble sugar -3.392 0.643 -0.329 -5.274 0.000

Fig. 5

Effects of different sowing dates and planting densities on enzyme activities related to lignin synthesis HZD1 and HZD3 indicate huayouza 62 with the planting densities of 15×104 and 45×104 plants/hm2, respectively; FYD1 and FYD4 indicate fengyou 520 with the planting densities of 15×104 and 60×104 plants/hm2, respectively"

[1] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41(4):485-489.
LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019,41(4):485-489. (in Chinese)
[2] 蒯婕, 孙盈盈, 左青松, 廖庆喜, 冷锁虎, 程雨贵, 曹石, 吴江生, 周广生. 机械收获模式下直播冬油菜密度与行距的优化. 作物学报, 2016,42(6):898-908.
KUAI J, SUN Y Y, ZUO Q S, LIAO Q X, LENG S H, CHENG Y G, CAO S, WU J S, ZHOU G S. Optimization of plant density and row spacing for mechanical harvest inwinter rapeseed (Brassica napus L.). Acta Agronomica Sinica, 2016,42(6):898-908. (in Chinese)
[3] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018,51(24):4625-4632.
KUAI J, WANG J J, ZUO Q S, CHEN H L, GAO J Q, WANG B, ZHOU G S, FU T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Scientia Agricultura Sinica, 2018,51(24):4625-4632. (in Chinese)
[4] BERRY P M, SPINK J H, GAY A P, CRAIGON J. A comparison of root and stem lodging risks among winter wheat cultivars. Journal of Agricultural Science, 2003,141:191-202.
[5] 雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻F优498机械化种植的茎秆理化性状与抗倒伏性. 中国水稻科学, 2014,28(6):612-620.
LEI X L, LIU L, LIU B, HUANG G Z, MA R C, REN W J. Physical and chemical characteristics and lodging resistance of culm of indica hybrid rice F you 498 under mechanical planting. Chinese Journal of Rice Science, 2014,28(6):612-620. (in Chinese)
[6] 吴莲蓉. 油菜茎秆生化成分和倒伏相关性研究[D]. 武汉: 华中农业大学, 2015.
WU L R. Study on the stem biochemical components in rapeseed and their relationship with lodging characters[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[7] 李华英. 种植密度和播期对冬小麦籽粒产量和抗倒性能的影响[D]. 泰安: 山东农业大学, 2015.
LI H Y. Effects of plant density and sowing date on grain yieldand lodging resistance of winter wheat[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[8] BHAGAT K P, SAIRAM R K, DESHMUKH P S, KUSHWAHA S R. Biochemical analysis of stem in lodging tolerant and susceptible wheat (Triticum aestivum L.) genotypes under normal and late sown conditions. Indian Journal of Plant Physiology, 2011,16:68-74.
[9] TANAKA K, MURATA K, YAMAZAKI M, ONOSATO K, MIYAO A, HIROCHIKA H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiology, 2003,133:78-83.
[10] LI X Y, ZUO Q S, CHANG H B, BAI G P, KUAI J, ZHOU G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River basin of China. Field Crops Research, 2018,218:97-105.
doi: 10.1016/j.fcr.2018.01.013
[11] 孙盈盈. 不同栽培措施对油菜产量及抗倒性的影响[D]. 武汉: 华中农业大学, 2016.
SUN Y Y. Effect of different cultivation measures on rapeseed yieldand lodging resistance[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[12] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018,44(2):278-287.
LI X Y, ZHOU M, WANG T, ZHANG L, ZHOU G S, KUAI J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agronomica Sinica, 2018,44(2):278-287. (in Chinese)
[13] CROOK M J, ENNOS A R. The effect of nitrogen and growth regulators on stem and root characteristics associated with lodging in two cultivars of winter wheat. Journal of Experimental Botany, 1995,46(289):931-938.
[14] LI X J, LI S Y, LIN J X. Effect of GA3 spraying on lignin and auxin contents and the correlated enzyme activities in bayberry (Myrica rubra Bieb.) during flower-bud induction. Plant Science, 2003,164:549-556.
doi: 10.1016/S0168-9452(03)00004-9
[15] 赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响. 作物学报, 2020,46(4):586-595.
ZHAO X H, BAI Y X, WANG K, YAO Y H, YAO X H, WU K L. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties. Acta Agronomica Sinica, 2020,46(4):586-595. (in Chinese)
[16] VANHOLME R, MORREEL K, RALPH J, BOERJAN W. Lignin engineering. Current Opinion in Plant Biology, 2008,11:278-285.
doi: 10.1016/j.pbi.2008.03.005 pmid: 18434238
[17] 汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014,40(10):1846-1856.
WANG C, RUAN R W, YUAN X H, HU D, YANG H, LIN T T, HE P L, LI Y, YI Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agronomica Sinica, 2014,40(10):1846-1856. (in Chinese)
[18] 束红梅, 赵新华, 周治国, 郑密, 王友华. 不同棉花品种纤维比强度形成的温度敏感性差异机理研究. 中国农业科学, 2009,42(7):2332-2341.
SHU H M, ZHAO X H, ZHOU Z G, ZHENG M, WANG Y H. Physiological mechanisms of variation in temperature-sensitivity of cotton fiber strength formation between two cotton cultivars. Scientia Agricultura Sinica, 2009,42(7):2332-2341. (in Chinese)
[19] SONG X, LIU F L, ZHENG P Y, ZHANG X K, LU G Y, FU G P, CHENG Y. Correlation analysis between agronomic traits and yield of rapeseed (Brassica napusL.) for high-density planting. Scientia Agricultura Sinica, 2010,43(9):1800-1806.
[20] OZER H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. European Journal of Agronomy, 2003,19(3):453-463.
[21] MATINFAR M, MATINFAR M, MAHJOOR M, SHIRANI RAD A H, MAHMODI R. Effect of plant density on yield and yield seed components of rapeseed (Brassica napus) cultivars. Journal of Crop Ecophysiology, 2013,6(4):405-414.
[22] LI H G, CHENG X, ZHANG L P, HU J H, ZHANG F G, CHEN B Y, XU K, GAO G Z, LI H, LI L X, HUANG Q, LI Z Y, YAN G X, WU X M. An integration of genome-wide association study and gene co-expression network analysis identifies candidate genes of stem lodging-related traits in Brassica napus. Frontiers in Plant Science, 2018,9:796.
doi: 10.3389/fpls.2018.00796 pmid: 29946333
[23] KATAHIRA R, SLUITER J B, SCHELL D J, DAVIS M F. Degradation of carbohydrates during dilute sulfuric acid pretreatment can interfere with lignin measurements in solid residues. Journal of Agricultural and Food Chemistry, 2013,61(13):3286-3292.
pmid: 23428141
[24] PEI Y J, LI Y Y, ZHANG Y B, YU C B, FU T D, ZOU J, TU Y Y, PENG L C, CHEN P. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresour Technol, 2016,203:325-333.
doi: 10.1016/j.biortech.2015.12.072 pmid: 26748046
[25] 周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003,36(11):1378-1382.
ZHOU G S, MEI F Z, ZHOU Z Q, ZHU X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Scientia Agricultura Sinica, 2003,36(11):1378-1382. (in Chinese)
[26] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34(3):447-455.
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008,34(3):447-455. (in Chinese)
[27] 胡焕焕, 刘丽平, 李瑞奇, 李慧玲, 李雁鸣. 播种期和密度对冬小麦品种河农822产量形成的影响. 麦类作物学报, 2008,28(3):490-495.
HU H H, LIU L P, LI R Q, LI H L, LI Y M. Effect of sowing date and planting density on the yield formation of a winter wheat cultivar Henong 822. Journal of Triticeae Crops, 2008,28(3):490-495. (in Chinese)
[28] LIU W G, DENG Y C, HUSSAIN S, ZOU J L, YUAN J, LUO L, YANG C Y, YUAN X Q, YANG W Y. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research, 2016,196:261-267.
[29] 崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012,45(17):3497-3505.
CUI H Y, JIN L B, LI B, ZHANG J W, ZHAO B, DONG S T, LIU P. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Scientia Agricultura Sinica, 2012,45(17):3497-3505. (in Chinese)
[30] 佘恒志, 聂姣, 李英双, 刘星贝, 胡丹, 马珊, 次仁卓嘎, 汪灿, 吴东倩, 阮仁武, 易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征. 中国农业科学, 2017,50(7):1202-1209.
SHE H Z, NIE J, LI Y S, LIU X B, HU D, MA S, CIREN Z G, WANG C, WU D Q, RUAN R W, YI Z L. Lignin and lignin monomer synthetic characteristics of culm incommon buckwheat with different lodging resistance capabilities. Scientia Agricultura Sinica, 2017,50(7):1202-1209. (in Chinese)
[31] 卢昆丽, 尹燕枰, 王振林, 李勇, 彭佃亮, 杨卫兵, 崔正勇, 杨东清, 江文文. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制. 作物学报, 2014,40(9):1686-1694.
LU K L, YIN Y P, WANG Z L, LI Y, PENG D L, YANG W B, CUI Z Y, YANG D Q, JIANG W W. Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat. Acta Agronomica Sinica, 2014,40(9):1686-1694. (in Chinese)
[32] 师恭曜. 甘蓝型油菜茎秆抗倒伏性构成因素的鉴定与评价[D]. 郑州: 郑州大学, 2010: 27-31.
SHI G Y. Characterization and evaluation of stem lodging resistance in rapeseed (Brassica Campestris L.)[D]. Zhengzhou: Zhengzhou University, 2010: 27-31. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!