Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 708-719.doi: 10.3864/j.issn.0578-1752.2021.04.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Grain Dehydration Characteristics of the Main Summer Maize Varieties in Huang-Huai-Hai Region

XU TianJun(),LÜ TianFang(),ZHAO JiuRan(),WANG RongHuan(),XING JinFeng,ZHANG Yong,CAI WanTao,LIU YueE,LIU XiuZhi,CHEN ChuanYong,WANG YuanDong,LIU ChunGe   

  1. Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097
  • Received:2020-04-27 Accepted:2020-07-29 Online:2021-02-16 Published:2021-02-16
  • Contact: JiuRan ZHAO,RongHuan WANG E-mail:xtjxtjbb@163.com;314565358@qq.com;maizezhao@126.com;ronghuanwang@126.com

Abstract:

【Objective】Grain mechanical harvesting is the developing direction of modern maize production in China. The moisture content at physiological maturity (PM) and grain dehydration rate after PM are the key factors for realizing maize grain mechanical harvesting. The aim of this study was to clarify the differences and influencing factors for the dehydration characteristics of different maize varieties, so as to provide a theoretical instruction for the breeding and extending of grain mechanical harvesting varieties.【Method】Taking18 main maize varieties in Huang-Huai-Hai region as research materials, the field experiment was conducted in 2017-2018, and the dynamics of maize grain moisture content were tested to study and clarify the differences and influencing factors for the dehydration characteristics.【Result】The moisture content of different maize varieties at PM and harvesting differed significantly, with an average of 30.67% (CV=2.58%) and 23.66% (CV=9.10%). There were significant differences between grain dehydration rate before and after PM of the tested varieties, with an average of 0.69%·d-1 and 0.48%·d-1, respectively. The average physical dehydration rate after PM of middle early maturing varieties was 0.55%·d-1, which was 14.58% and 44.74% higher than that of middle maturing and middle late maturing varieties, respectively. The average yield of the tested varieties was 10 205.90 kg·hm-2, with the range of 8 809.13-11 053.73 kg·hm-2. The yield of middle maturity variety (10 484.25 kg·hm-2) > middle late maturing variety (10 096.08 kg·hm-2) > middle early maturing variety (9 522.81 kg·hm-2), and Jingnongke728 and NK815 had the highest yield of 10 569.00 and 11 053.50 kg·hm-2, respectively. Correlation analysis showed that the dehydration rate of grain was significantly positively correlated with the dehydration rate of leaves, bracts, rachis, stalk, whole plant and stem and wind speed. There was significantly positively correlated with atmospheric temperature and negatively correlated with atmospheric humidity. The varieties were divided into 4 types according to the grain dehydrate rate and yield by two-way average method. JNK728, JNK729, MC812 and MC121 were selected by using maize core inbred Jing2416 and its improved inbred Jing2418, which were characterized by early maturity and fast dehydrating rate as the male parent belongs to the fast dehydration rate and high yield type (The average growth period was 108.9 d; The average grain dehydration rate after physiological maturity was 0.57 %·d-1; The moisture content of grain at harvest was 21.81%; The average yield was 10 811.33 kg·hm-2).【Conclusion】According to the growth period, grain dehydration rat and yield level, the maize varieties of JNK728, MC812, JNK729 and MC121 were characterized by medium-early and medium maturity, fast dehydration rate and high yield, and could realize lower grain moisture content and higher yield level in Huang-Huai-Hai region.

Key words: Huang-Huai-Hai region, summer maize, Jingnongke728, grain, dehydration characteristics

Table 1

The information of maize varieties"

品种
Variety
母本
Female inbred
父本
Male inbred
2017 2018
出苗期
Emergence stage (M-D)
生理成熟期
Physiological maturity (M-D)
生育期
Growth period (d)
出苗期
Emergence stage (M-D)
生理成熟期
Physiological maturity (M-D)
生育期
Growth period (d)
京农科728 JNK728 京MC01 JingMC01 京2416 Jing2416 06-15 09-29 106 06-16 09-27 103
京农科729 JNK729 京MC01 JingMC01 京2418 Jing2418 06-15 10-04 111 06-16 10-02 108
MC812 京B547 JingB547 京2416 Jing2416 06-15 10-03 110 06-16 10-04 110
MC121 京72464 Jing72464 京2416 Jing2416 06-15 10-06 113 06-16 10-04 110
NK815 京B547 JingB547 C1120 06-15 10-08 115 06-16 10-06 112
MC703 京X005 JingX005 京17 Jing17 06-15 10-04 111 06-16 10-06 112
MC278 京X005 JingX005 京27 Jing27 06-15 10-05 112 06-16 10-04 110
SK567 SK516 SK1098 06-15 09-28 105 06-16 10-01 107
郑单958 ZD958 郑58 Zheng58 昌7-2 Chang7-2 06-15 10-13 120 06-16 10-11 117
先玉335 XY335 PH6WC PH4CV 06-15 10-07 114 06-16 10-07 113
登海605 DH605 DH351 DH382 06-15 10-07 114 06-16 10-09 115
农华101 NH101 NH60 S121 06-15 10-03 110 06-16 10-05 111
华美1号 HM1 HF12202 HM12111 06-15 09-27 104 06-16 09-27 103
联创808 LC808 CT3566 CT3354 06-15 10-05 112 06-16 10-08 114
迪卡517 DK517 D1798Z HCL645 06-15 09-29 106 06-16 10-03 109
伟科702 WK702 WK858 WK798-2 06-15 10-13 120 06-16 10-11 117
蠡玉35 LY35 L5895 912 06-15 10-06 113 06-16 10-10 116
裕丰303 YF303 CT1669 CT3354 06-15 10-12 119 06-16 10-11 117

Fig. 1

Meteorological condition during growth stage of tested maize variety"

Fig. 2

System clustering of growth stage of tested maize variety"

Table 2

Yield and yield components of tested varieties"

品种
Variety
公顷穗数 Ears per hectare 穗粒数Grain number per ear 百粒重100-grain weight (g) 产量Yield (kg·hm-2)
2017 2018 2017 2018 2017 2018 2017 2018
JNK728 63576.4±189.5gh 65345.1±134.5b 494.4±11.4de 483.4±8.9e 35.9±1.1ab 34.5±1.2de 10734.5±84.5e 10403.5±93.9d
JNK729 63513.7±206.4h 64091.3±165.2f 524.0±10.8ab 519.3±11.5c 34.3±1.1def 34.1±1.1ef 10918.0±296ab 10727.0±192.0c
MC812 63132.8±193.2i 63000.4±152.2i 533.6±2.3a 548.0±8.0a 33.9±0.7efg 33.6±1.1fg 10850.0±118bc 10876.1±283.0b
MC121 64537.2±202.6e 62092.3±167.4l 527.1±2.6ab 542.3±8.1a 34.1±1.3efg 34.8±1.4cde 10940.5±224.3ab 11041.0±131.0a
NK815 62093.2±159.3n 62546.4±142.1k 533.2±1.7a 535.1±11.5b 34.8±1.9cde 35.1±1.2cd 11011.5±143.9a 11095.5±140.0a
MC703 63544.5±206.4gh 62998.3±167.4i 532.5±1.2a 545.3±19.0a 34.7±1.3cdef 35.2±1.3bcd 10597.0±83.7e 10652.0±171.2c
MC278 63621.1±192.6g 63871.8±133.3g 472.7±4.0g 463.5±9.2g 34.2±1.0def 34.9±0.9cde 10285.2±83.4f 10332.0±227.5de
SK567 65556.6±200.3c 64826.6±136.4d 441.0±4.0ij 437.6±7.0i 30.1±1.3k 30.4±1.0h 9498.5±149.6ij 9023.0±156.1j
ZD958 66134.4±145.1b 65012.4±172.1c 450.1±2.6hi 452.6±11.3h 32.8±2.2hi 33.2±0.9g 10206.5±161.9f 10069.5±174.6f
XY335 62557.5±209.2k 60740.0±189.4o 512.1±9.7c 515.9±6.6c 33.6±1.0fgh 34.1±1.1ef 10764.0±174.6cd 10685.5±138.1c
DH605 62355.4±100.6m 61095.6±146.9n 522.4±4.1b 533.4±11.3b 34.8±1.2cde 35.3±1.1bcd 10694.1±130.8de 10755.5±106.3bc
NH101 62677.5±145.7j 61864.3±162.6m 443.1±4.4ij 453.3±6.8h 36.9±1.4a 37.3±1.2a 9701.5±162gh 9613.5±84.5h
HM1 67105.4±159.3a 64997.8±142.7c 485.7±6.1ef 499.7±13.2d 29.0±0.5l 29.1±0.5i 9452.0±194.6j 9451.5±179.3i
LC808 62154.2±149.3n 63555.7±178.5h 496.3±9.7d 504.1±6.1d 35.7±1.1bc 36.0±0.6b 9595.0±98.4hi 10263.5±104.5e
DK517 64007.2±153.6f 62843.0±177.4j 436.3±11.7j 423.9±12.7j 31.9±1.3ij 32.7±1.1g 8908.5±120k 8711.0±145.1k
WK702 65062.4±163.1d 64813.3±153.2d 477.0±5.8fg 475.1±11.4f 33.1±1.5gh 33.3±0.8fg 10272.5±136.5f 10254.0±134.2e
LY35 67156.0±167.6a 66975.2±199.8a 455.1±6.2h 465.1±9.7g 31.1±0.9jk 31.3±0.9h 9505.0±135.9ij 9750.0±152.4g
YF303 62442.7±145.2l 64454.6±203.5e 446.0±2.8hij 437.0±5.5i 35.2±0.9bcd 35.4±1.1bc 9803.0±83.8g 9971.0±149.4f
均方
Mean squares
(ANOVA)
年份 Year ** NS NS NS
品种 Variety ** ** ** **
年份×品种Year×Variety ** ** ** **

Table 3

Correlation analysis between yield and growth period, grain number per ear and 100-grain weight"

相关系数
Correlation coefficient
x1 x2 x3 x4
x1 1
x2 -0.01 1
x3 0.33* 0.27 1
x4 0.34* 0.83** 0.49** 1

Table 4

Grain moisture content and dehydration rate of the tested varieties"

品种
Variety
生理成熟期籽粒含水率
Grain moisture content at physiological maturity (%)
收获期籽粒含水率
Grain moisture content at harvest (%)
生理成熟前籽粒生理降水速率
Grain dehydration rate before physiological maturity (%·d-1)
生理成熟后籽粒物理脱水速率
Grain dehydration rate after physiological maturity (%·d-1)
总脱水速率
Total dehydration rate
(%·d-1)
2017 2018 2017 2018 2017 2018 2017 2018 2017 2018
JNK728 30.73±0.80bcd 31.47±0.95bcd 20.87±1.05g 20.10±0.26i 0.87±0.01a 0.88±0.01a 0.57±0.05ab 0.57±0.06ab 0.72±0.07a 0.73±0.05a
JNK729 30.40±0.44def 31.90±1.49ab 22.57±0.95f 23.23±1.17g 0.66±0.06ef 0.64±0.09fgh 0.59±0.07a 0.58±0.04a 0.63±0.04b 0.61±0.03b
MC812 29.20±0.30i 29.60±0.85g 20.80±0.72g 21.37±1.05h 0.69±0.07cdef 0.67±0.04def 0.58±0.07a 0.55±0.06abc 0.64±0.10b 0.61±0.06bc
MC121 29.63±0.84hi 30.43±0.32ef 22.10±0.95f 23.43±1.59fg 0.67±0.04bcd 0.66±0.04defg 0.54±0.04b 0.54±0.04bc 0.61±0.07b 0.60±0.07bc
NK815 29.87±0.71gh 30.30±0.50fg 23.83±1.46de 24.30±1.25ef 0.68±0.04def 0.67±0.09defg 0.45±0.04efg 0.43±0.02gh 0.57±0.07cde 0.55±0.07cde
MC703 30.07±0.49fg 30.37±0.25efg 22.87±1.33ef 23.47±0.76fg 0.75±0.03b 0.73±0.05bb 0.48±0.04de 0.46±0.03fg 0.62±0.04bc 0.60±0.06bc
MC278 30.27±0.47efg 30.70±0.53def 22.27±1.86f 23.80±2.19fg 0.74±0.02bc 0.72±0.04bc 0.47±0.06ef 0.46±0.05fg 0.61±0.06bc 0.59±0.05bcd
SK567 30.17±0.35fg 30.60±0.70ef 22.60±1.31f 23.90±1.64fg 0.69±0.05cdef 0.65±0.06efgh 0.53±0.04b 0.51±0.06cd 0.61±0.05bc 0.58±0.06bcd
ZD958 30.70±0.50bcd 31.10±1.14cde 24.63±1.12cd 25.77±1.62cd 0.67±0.08ef 0.63±0.02gh 0.37±0.05h 0.35±0.07i 0.52±0.12f 0.49±0.07fg
XY335 30.13±1.01fgh 30.37±0.42efg 22.77±1.19f 23.13±1.14g 0.70±0.02bcde 0.69±0.05cde 0.51±0.09cd 0.49±0.07ef 0.61±0.05bc 0.59±0.05bcd
DH605 31.97±0.68a 31.93±1.00ab 26.23±1.12b 26.80±1.30bc 0.70±0.04bcde 0.68±0.07cde 0.36±0.02h 0.34±0.03i 0.53±0.05ef 0.51±0.04efg
NH101 31.10±0.85bc 30.33±0.47efg 24.10±1.31cd 24.43±1.76ef 0.70±0.04bcde 0.69±0.06cde 0.43±0.03g 0.40±0.06h 0.57±0.07cde 0.54±0.03def
HM1 30.07±0.75fgh 30.33±0.74efg 20.07±1.07g 20.23±0.59i 0.88±0.08a 0.85±0.06a 0.54±0.06bc 0.53±0.04bcd 0.71±0.04a 0.69±0.06a
LC808 31.17±0.96a 30.87±0.81def 22.97±1.60ef 23.53±1.57fg 0.59±0.04 0.58±0.10i 0.51±0.06cd 0.49±0.04def 0.55±0.01def 0.54±0.03def
DK517 29.37±0.74i 30.17±0.85fg 22.97±1.00ef 22.03±0.64h 0.64±0.05fg 0.62±0.05h 0.57±0.06ab 0.55±0.05ab 0.61±0.04bc 0.58±0.05bcd
WK702 31.87±1.01a 32.47±1.12a 27.50±1.18a 28.33±0.84a 0.68±0.03def 0.66±0.06defg 0.31±0.03i 0.28±0.06j 0.50±0.05f 0.47±0.05g
LY35 30.70±0.56cde 31.73±1.36abc 24.83±1.29c 25.17±1.06de 0.68±0.07def 0.66±0.05defg 0.45±0.05efg 0.43±0.1gh 0.57±0.06cde 0.54±0.1def
YF303 30.50±0.40def 31.67±0.97bc 26.93±0.72ab 27.83±1.36ab 0.58±0.06h 0.54±0.10j 0.48±0.06de 0.46±0.06fg 0.53±0.03ef 0.50±0.13fg
均方
Mean squares
(ANOVA)
年份 Year NS NS NS NS NS
品种 Variety ** ** ** ** **
年份×品种
Year×Variety
* * * * *

Fig. 3

Changes of moisture content of leaf, bract, cob, ear stalk, stem and whole plant of the tested varieties"

Table 5

Dehydration rate of leave, bracts, cob, ear stalk, stem and whole plant of the tested varieties"

品种
Variety
脱水速率Dehydration rate (%·d-1)
叶片 Leaf 苞叶 Bract 穗轴 Cob 穗柄 Ear stalk 茎秆 Stalk 整株 Whole plant
JNK728 1.50±0.06a 1.46±0.11a 0.60±0.07a 0.49±0.09a 0.42±0.05a 0.71±0.04a
JNK729 1.44±0.12ab 1.41±0.13abcd 0.52±0.05bc 0.31±0.06cd 0.39±0.06a 0.60±0.05bc
MC812 1.40±0.07bc 1.40±0.06abcd 0.49±0.08bcd 0.31±0.03cde 0.32±0.05b 0.55±0.11cd
MC121 1.31±0.09de 1.28±0.14ef 0.36±0.06ef 0.23±0.04ghi 0.25±0.03efg 0.45±0.06ef
NK815 1.26±0.10ef 1.28±0.13ef 0.34±0.07ef 0.23±0.02ghi 0.24±0.02efg 0.45±0.09ef
MC703 1.45±0.03ab 1.43±0.05abc 0.52±0.04bc 0.34±0.10bc 0.40±0.07a 0.61±0.06bc
MC278 1.39±0.15bcd 1.37±0.13bcd 0.47±0.10cd 0.28±0.06def 0.31±0.06bc 0.50±0.06de
SK567 1.34±0.11cd 1.34±0.07de 0.38±0.05e 0.25±0.04fg 0.28±0.07cde 0.48±0.11def
ZD958 1.14±0.11g 1.16±0.11g 0.20±0.04i 0.16±0.04jk 0.16±0.03j 0.33±0.07i
XY335 1.34±0.11cd 1.35±0.13cde 0.45±0.05d 0.26±0.05efg 0.29±0.06bcd 0.50±0.07de
DH605 1.21±0.13fg 1.19±0.09g 0.24±0.03hi 0.18±0.03ijk 0.18±0.04ij 0.38±0.05ghi
NH101 1.26±0.13ef 1.21±0.08fg 0.32±0.03fg 0.19±0.05hijk 0.22±0.03gh 0.44±0.03efg
HM1 1.49±0.13a 1.45±0.09ab 0.55±0.07ab 0.39±0.06b 0.41±0.05a 0.67±0.12ab
LC808 1.23±0.11f 1.21±0.03fg 0.27±0.04gh 0.18±0.06jk 0.20±0.06hi 0.41±0.04fgh
DK517 1.32±0.08de 1.32±0.09de 0.37±0.06ef 0.24±0.07fgh 0.26±0.05def 0.47±0.11ef
WK702 0.91±0.02h 0.63±0.15h 0.18±0.04i 0.15±0.03k 0.16±0.05j 0.21±0.07j
LY35 1.26±0.09ef 1.22±0.08fg 0.33±0.09ef 0.21±0.04ghij 0.23±0.10fgh 0.44±0.08efg
YF303 1.19±0.09fg 1.18±0.06g 0.20±0.02i 0.17±0.03jk 0.17±0.04ij 0.34±0.09hi

Table 6

Correlation analysis between maize grain dehydration rate with that of leaf, bract, cob, ear stalk, stem, whole plant and meteorological factors"

相关系数
Correlation coefficient
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x1 1
x2 0.96** 1
x3 0.92** 0.80** 1
x4 0.85** 0.71** 0.93** 1
x5 0.90** 0.75** 0.98** 0.94** 1
x6 0.97** 0.87** 0.96** 0.94** 0.96** 1
x7 0.73** 0.61* 0.51* 0.45 0.39 0.56* 1
x8 -0.58* -0.55* -0.45 -0.41 -0.52* -0.57* 0.62** 1
x9 0.73** 0.70** 0.59* -0.42 -0.57* -0.51* -0.67** -0.97** 1
x10 0.89** 0.76** 0.94** 0.96** 0.92** 0.95** -0.56* 0.53* 0.63** 1

Fig. 4

Relationship between yield and grain dehydration rate of the tested varieties"

[1] 赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013,15(3):1-6.
ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China. Journal of Agricultural Science and Technology, 2013,15(3):1-6. (in Chinese)
[2] 王成雨, 舒忠泽, 程备久, 江海洋, 李晓玉. 中国玉米机械化收获发展现状及展望. 安徽农业大学学报, 2018,45(3):551-555.
WANG C Y, SHU Z Z, CHENG B J, JIANG H Y, LI X Y. Advances and perspectives in maize mechanized harvesting in China. Journal of Anhui Agricultural University, 2018,45(3):551-555. (in Chinese)
[3] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017,35(3):265-272.
LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. Journal of Shihezi University (Natural Science), 2017,35(3):265-272. (in Chinese)
[4] 姜艳喜, 王振华, 金益, 张林, 鄂文弟. 玉米收获期子粒含水量相关性状的遗传及育种策略. 玉米科学, 2004,12(1):21-25.
JIANG Y X, WANG Z H, JIN Y, ZHANG L, E W D. Genetics on water content at harvesting and correlative traits and breeding strategy. Journal of Maize Sciences, 2004,12(1):21-25. (in Chinese)
[5] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50(11):2027-2035.
WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017,50(11):2027-2035. (in Chinese)
[6] PURDY J D, CRANE P L. Inheritance of drying rate in mature corn (Zea mays L.). Crop Science, 1967,7(4):294-297.
[7] 冯鹏, 申晓慧, 郑海燕, 张华, 李增杰, 杨海宽, 李明顺. 种植密度对玉米籽粒灌浆及脱水特性的影响. 中国农学通报, 2014,30(6):92-100.
FENG P, SHEN X H, ZHENG H Y, ZHANG H, LI Z J, YANG H K, LI M S. Effects of planting density on kernel filling and dehydration characteristics for maize hybrids. Chinese Agricultural Science Bulletin, 2014,30(6):92-100. (in Chinese)
[8] 万泽花, 任佰朝, 赵斌, 刘鹏, 董树亭, 张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应. 作物学报, 2018,44(10):1517-1526.
WAN Z H, REN B Z, ZHAO B, LIU P, DONG S T, ZHANG J W. Grain filling and dehydration characteristics of summer maize. Acta Agonomica Sinica, 2018,44(10):1517-1526. (in Chinese)
[9] MAIORANO A, FANCHINI D, DONATELLI M. MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels. European Journal of Agronomy, 2014,59:86-95.
[10] CROSS H Z. A selection procedure for ear drying-rates in maize. Euphytica, 1985,34(2):409-418.
[11] 刘显君, 王振华, 王霞, 李庭锋, 张林. 玉米籽粒生理成熟后自然脱水速率QTL的初步定位. 作物学报, 2010,36(1):47-52.
LIU X J, WANG Z H, WANG X, LI T F, ZHANG L. Primary mapping of QTL for dehydration rate of maize kernel after physiological maturing. Acta Agonomica Sinica, 2010,36(1):47-52. (in Chinese)
[12] 雷蕾, 王威振, 方伟, 张子学, 刘正, 李文阳. 影响夏玉米生理成熟后子粒脱水的相关因素分析. 玉米科学, 2016,24(3):103-109.
LEI L, WANG W Z, FANG W, ZHANG Z X, LIU Z, LI W Y. Analysis of factors affecting the kernel dehydrating after physiological mature in summer maize. Journal of Maize Sciences, 2016,24(3):103-109. (in Chinese)
[13] 金益, 王振华, 张永林, 王殊华, 王云生. 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997,28(1):29-32.
JIN Y, WANG Z H, ZHANG Y L, WANG S H, WANG Y S. Difference analysis on the natural dry rate of kernel after wax ripening maize hybrids. Journal of Northeast Agricultural University, 1997,28(1):29-32. (in Chinese)
[14] BROOKING I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Research, 1990,23:55-68.
[15] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018,44(12):1755-1763.
GAO S, MING B, LI L L, XIE R Z, XUE J, HOU P, WANG K R, LI S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai Rivers summer maize. Acta Agonomica Sinica, 2018,44(12):1755-1763. (in Chinese)
[16] 李璐璐. 黄淮海夏玉米籽粒脱水特征研究[D]. 北京: 中国农业科学院, 2017.
LI L L. Study on grain dehydration characteristics of summer maize in Huanghuaihai plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.(in Chinese)
[17] 雷晓鹏. 黄淮海地区玉米机械收获籽粒可行性研究[D]. 保定: 河北农业大学, 2015.
LEI X P. Studies on the feasibility of maize mechanically harvesting grain in Huanghuaihai regions[D]. Baoding: Hebei Agricultural University, 2015.(in Chinese)
[18] 李树岩, 任丽伟, 刘天学, 张亿博, 张明珠. 黄淮海夏玉米籽粒机收适宜光温指标研究. 中国生态农业学报, 2018,26(8):1149-1158.
LI S Y, REN L W, LIU T X, ZHANG Y B, ZHANG M Z. Suitable sunshine and temperature for mechanical grain harvesting of summer maize in the Huang-Huai-Hai plain. Chinese Journal of Eco- Agriculture, 2018,26(8):1149-1158. (in Chinese)
[19] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆. 影响玉米机械收粒质量因素的分析. 作物杂志, 2013(4):116-119.
LIU F H, WANG K R, LI J, WANG X M, SUN Y L, CHEN Y S, WANG Y H, HAN D S, LI S K. Factors affecting corn mechanically harvesting grain quality. Crops, 2013(4):116-119. (in Chinese)
[20] 张林, 王振华, 金益, 于天江. 玉米收获期含水量的配合力分析. 西南农业学报, 2005,18(5):32-35.
ZHANG L, WANG Z H, JIN Y, YU T J. Combining ability analysis of water content in harvest stage in corn. Southwest China Journal of Agricultural Sciences, 2005,18(5):32-35. (in Chinese)
[21] DAYNARD T B, KANNENBERG L W. Relationships between length of the actual and effective grain filling periods and grain yield of corn. Canada Journal Plant Science, 1976,56(2):237-242.
[22] 杨国航, 张春原, 孙世贤, 刘春阁, 王卫红, 赵久然. 夏玉米子粒收获期判定方法研究. 作物杂志, 2006(5):11-13.
YANG G H, ZHANG C Y, SUN S X, LIU C G, WANG W H, ZHAO J R. Study on the method to determine the harvest time of summer corn. Crops, 2006(5):11-13. (in Chinese)
[23] 吕丽华, 董志强, 曹洁璇, 梁双波, 贾秀领, 张丽华, 姚艳荣. 播期、收获期对玉米物质生产及光能利用的调控效应. 华北农学报, 2013,28(S1):177-183.
LÜ L H, DONG Z Q, CAO J X, LIANG S B, JIA X L, ZHANG L H, YAO Y R. Effects of planting and harvest date on matter production of summer maize and its utilization of solar and heat resource. Acta Agriculturae Boreali-Sinica, 2013,28(S1):177-183. (in Chinese)
[24] 刘武仁, 郑金玉, 罗洋, 郑洪兵, 李伟堂. 影响玉米子粒含水量的因素及低水分玉米生产技术. 吉林农业科学, 2009,34(1):1-2, 33.
LIU W R, ZHENG J Y, LUO Y, ZHENG H B, LI W T. Factors affecting water content of maize and cultural practice for low water content maize. Journal of Jilin Agricultural Science, 2009,34(1):1-2, 33. (in Chinese)
[25] 栗建枝, 李齐霞, 李中青, 祁丽婷, 王敏, 王瑞, 孙万荣. 不同玉米品种籽粒脱水特性. 山西农业科学, 2014,42(5):438-442.
LI J Z, LI Q X, LI Z Q, QI L T, WANG M, WANG R, SUN W R. Kernel dehydration characteristics of maize varieties. Journal of Shanxi Agricultural Sciences, 2014,42(5):438-442. (in Chinese)
[26] 李凤海, 郭佳丽, 于涛, 史振声. 不同熟期玉米杂交种及其亲本子粒脱水速率的比较研究. 玉米科学, 2012,20(6):17-20, 24.
LI F H, GUO J L, YU T, SHI Z S. Comparative study on dehydration rate of kernel among maize hybrids and parents with different maturity periods. Journal of Maize Sciences, 2012,20(6):17-20, 24. (in Chinese)
[27] HALLAUER A R, RUSSELL W A. Effects of selected weather factors on grain moisture reduction from silking to physiologic maturity in corn. Agronomy Journal, 1961,53:225-229.
[28] 闫淑琴. 玉米籽粒灌浆、脱水速率的配合力和相关分析[D]. 北京: 中国农业科学院, 2006.
YAN S Q. Combine ability and correlation of kernel dry-down and grain filling rate in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006.(in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[3] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[4] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[5] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[6] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
[7] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[8] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[9] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[10] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[11] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[12] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[13] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[14] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[15] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!