Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 449-458.doi: 10.3864/j.issn.0578-1752.2021.02.019

• RESEARCH NOTES • Previous Articles    

Effects of Different Soybean Varieties on the Yield and Quality of Yuba

ZENG ShiXiao(),NIAN Hai(),CHENG YanBo,MA QiBin,WANG Liang   

  1. College of Agriculture, South China Agricultural University/Guangdong Subcenter of National Center for Soybean Improvement, Guangzhou 510642
  • Received:2020-08-26 Accepted:2020-10-22 Online:2021-01-16 Published:2021-02-03
  • Contact: Hai NIAN E-mail:mrz@stu.scau.edu.cn;hnian@scau.edu.cn

Abstract:

【Objective】Soybean (Glycine max L.) is a crop with high economic value, as it is rich in protein and oil. The current study aimed to explore the correlations between soybean varieties and yuba yield, and the correlations between soybean varieties and yuba in the contents of protein, oil, soluble sugar and isoflavones. This study provides a reference for the production of yuba with high isoflavone. 【Method】24 different soybean varieties from Heilongjiang and Guangdong province were used to make yuba with the same processing method. Then the protein and oil content in soybean and yuba was determined by the Kjeldahl method and the Soxhlet extraction approach, respectively. The soluble sugar contents in soybean and yuba were estimated by the anthrone colorimetric method. Moreover, the isoflavones in soybean and yuba were assessed by high performance liquid chromatography. 【Result】Great difference was observed in the content of protein, oil, soluble sugar, isoflavones and yuba yield among the soybean varieties. The yuba yield from Huaxia 8 was the highest, with production rate of 60.50%, followed by Huachun 2 with production rate of 52.44%, indicating that the two varieties should be ideal varieties for producing yuba. Besides, the productivity of yuba from Suinong 37, Huachun 6 and Heihe 43 were relatively high, reaching 48.59%, 48.37% and 47.91%, respectively. Correlation analysis showed that the yuba yield was positively correlated with the protein content (r=0.598**) and negatively correlated with the soluble sugar content (r=-0.423**) in soybean. The contents of the protein, oil and isoflavones in yuba were positively correlated with those of corresponding traits in the soybean (r=0.700**, r=0.537**, r=0.879**). The soluble sugar content of yuba is positively correlated with the soluble sugar content of soybean (r=0.441*). The protein content in yuba was negatively correlated with the soluble sugar content of soybean (r=-0.519*). The oil content in yuba was significantly and negatively correlated with protein in soybean (r=-0.889**), and was positively correlated with soluble sugar and isoflavone content in soybean (r=0.614**, 0.574**), respectively. The content of isoflavones in yuba was negatively correlated with protein content in soybean (r=-0.589**), and was positively correlated with soluble sugar content in soybean (r=0.568**). 【Conclusion】 The productivity and quality traits of the yuba from soybean varieties were significantly different. Huaxia 8 and Huachun 2 were high-yielding varieties for making yuba. The quality characteristics of yuba were determined by the quality characteristics of soybean varieties, which are mainly determined by the genetic characteristics of soybean varieties.

Key words: soybean, yuba, protein, oil, isoflavones

Table 1

The statistical results of four indexes of soybean varieties and the yield of yuba"

统计指标
Statistical index
极小值
Minimum value
极大值
Maximum value
标准差
Standard deviation
均值
Mean value
渐近显著性
Asymptotic significance
变异系数
Coefficient of variation
蛋白质Protein (%) 34.76 45.90 3.46 40.15 0.828 9.27
油分Oil (%) 18.40 23.77 1.28 20.29 0.976 6.39
可溶性糖Soluble sugar (%) 11.29 16.39 1.81 13.69 0.457 13.48
异黄酮Isoflavone (μg·g-1) 1098.60 4306.80 1042.79 2726.36 0.435 38.25
产率Production rate (%) 33.16 60.50 5.71 44.07 0.804 13.00

Table 2

Yield of yuba made from different varieties of soybean"

序号 No. 品种
Variety
产率
Production rate
(%)
变异系数
Coefficient of variation
序号
No.
品种
Variety
产率
Production rate (%)
变异系数
Coefficient of variation
1 华春3号 Huachun3 37.09±0.50lm 1.36 13 华夏10 Huaxia10 44.53±1.38efghi 3.10
2 华春5号 Huachun5 45.01±1.04defgh 2.30 14 东农豆252 Dongnongdou252 46.49±1.38cdef 2.97
3 华夏3号 Huaxia3 45.05±0.45defg 1.00 15 垦丰16 Kenfeng16 37.21±0.90lm 2.41
4 华夏9号 Huaxia9 45.65±2.49cdefgh 5.46 16 垦丰17 Kenfeng17 42.83±2.23ghi 5.20
5 桂夏7号 Guixia7 43.71±0.46fghi 1.06 17 垦丰20 Kenfeng20 44.37±1.74efghi 3.91
6 华夏16 Huaxia16 38.82±1.43klm 3.69 18 垦丰22 Kenfeng22 36.30±2.90m 7.99
7 桂1306 Gui1306 42.89±2.45ghi 5.72 19 垦豆25 Kendou25 33.16±1.76n 5.32
8 华春2号 Huachun2 52.44±0.91b 1.73 20 垦豆43 Kendou43 41.61±1.26ijk 3.03
9 华春6号 Huachun6 48.37±1.19c 2.47 21 绥农26 Suinong26 39.76±0.34jkl 0.85
10 华春8号 Huachun8 45.95±1.88cdefg 4.09 22 绥农37 Suinong37 48.59±0.49c 1.01
11 华夏7号 Huaxia7 46.97±1.27cde 2.71 23 绥农39 Suinong39 42.53±2.63hij 6.19
12 华夏8号 Huaxia8 60.50±1.56a 2.58 24 黑河43 Heihe43 47.91±1.49cd 3.12

"

品种
Variety
异黄酮 Isoflavone (μg·g-1) 蛋白质Protein (%) 油分Oil (%) 可溶性糖Soluble sugar (%)
大豆
Soybean
腐竹
Yuba
大豆
Soybean
腐竹
Yuba
大豆
Soybean
腐竹
Yuba
大豆
Soybean
腐竹
Yuba
华春3号Huachun3 2744.28±257.17 2603.74±200.71 40.82±1.48 58.15±0.01 19.80±0.20 25.12±0.01 11.48±0.10 5.23±0.06
华春5号Huachun5 1912.48±234.66 1932.3±26.41 42.71±0.42 46.39±0.01 18.90±0.17 22.23±0.01 14.40±0.11 10.82±0.14
华夏3号Huaxia3 1497.82±421.54 1125.12±65.52 42.19±0.77 57.73±0.00 21.63±0.12 22.91±0.01 11.31±0.08 5.62±0.04
华夏9号Huaxia9 1774.26±393.91 1448.86±87.81 45.67±0.94 58.32±0.00 18.67±0.21 19.52±0.01 11.50±0.28 4.27±0.01
桂夏7号Guixia7 4306.79±701.36 4544.13±222.57 39.45±1.16 54.36±0.01 20.97±0.23 26.92±0.01 12.93±0.20 6.75±0.11
华夏16 Huaxia16 3409.07±983.23 2392.81±103.05 37.97±0.21 55.37±0.01 18.47±0.25 28.64±0.01 11.88±0.40 4.79±0.12
桂1306 Gui1306 2105.61±292.24 1901.16±76.19 44.18±1.41 61.02±0.02 19.27±0.06 22.86±0.01 12.01±0.12 6.15±0.12
华春2号Huachun2 1098.59±191.12 1094.35±33.81 43.53±1.25 59.79±0.02 22.00±0.10 24.76±0.01 11.29±0.08 7.15±0.01
华春6号Huachun6 1567.59±342.12 1787.34±52.1 45.90±0.30 57.5±0.00 18.90±0.10 19.47±0.01 11.67±0.10 6.81±0.04
华春8号Huachun8 2162.92±579.48 1945.24±89.99 43.49±1.05 59.83±0.02 19.93±0.15 22.47±0.01 12.40±0.03 7.20±0.02
华夏7号Huaxia7 2144.12±397.43 2249.19±146.86 42.55±0.23 60.74±0.00 18.40±0.10 24.32±0.01 14.78±0.04 7.84±0.09
华夏8号Huaxia8 2477.31±740.49 2506.3±144.29 44.46±1.30 59.77±0.01 19.53±0.21 23.35±0.02 11.80±0.03 9.28±0.05
华夏10 Huaxia10 2250.72±205.56 2592.96±60.19 41.77±0.88 59.35±0.00 18.60±0.30 24.66±0.01 15.68±0.02 8.60±0.10
东农豆252 Dongnongdou252 2449.64±376.87 2286.4±127.99 40.54±0.79 56.37±0.01 20.47±0.29 26.23±0.01 14.47±0.10 8.18±0.13
垦丰16 Kenfeng16 3068.86±503.54 3027.13±123.18 35.39±0.96 50.63±0.00 20.67±0.21 29.69±0.01 15.97±0.06 10.29±0.09
垦丰17 Kenfeng17 4218.86±581.81 4683.07±179.47 35.43±0.68 51.07±0.00 21.10±0.26 29.44±0.02 15.66±0.09 10.34±0.03
垦丰20 Kenfeng20 3536.12±520.47 3379.48±45.52 37.31±0.75 51.93±0.02 19.50±0.35 26.86±0.01 14.79±0.02 11.41±0.11
垦丰22 Kenfeng22 4246.46±501.32 4520.08±101.5 36.92±1.00 50.65±0.01 20.73±0.12 28.8±0.00 15.49±0.10 9.72±0.25
垦豆25 Kendou25 4279.03±583.06 3883.34±246.71 34.76±0.53 54.06±0.00 20.50±0.10 33.01±0.01 16.39±0.05 6.03±0.06
垦豆43 Kendou43 4166.03±648.31 4717.91±83.44 37.21±0.50 51.00±0.02 21.10±0.26 25.79±0.01 15.37±0.04 12.84±0.20
绥农26 Suinong26 2115.05±400.96 1911.15±35.87 37.08±0.35 53.07±0.01 20.63±0.06 29.75±0.02 14.28±0.06 7.36±0.01
绥农37 Suinong37 1677.17±276.54 1492.24±19.94 35.90±0.36 48.47±0.01 23.77±0.15 30.58±0.01 12.43±0.01 9.81±0.58
绥农39 Suinong39 2111.11±66.44 2055.64±92.83 39.25±1.14 53.00±0.00 21.90±0.20 30.75±0.01 14.69±0.09 7.46±0.06
黑河43 Heihe43 4112.56±784.96 4012.35±534.03 38.24±1.13 53.16±0.01 19.60±0.10 31.43±0.01 16.00±0.22 4.02±0.09
标准偏差Standard deviation 1042.79 1213.17 3.46 4.17 1.30 3.74 1.84 2.35
变异系数
Coefficient of variation
38.25 43.59 9.27 7.57 6.39 14.26 13.48 30.14

Table 4

Correlation analysis of soybean isoflavone, protein, oil, and soluble sugar in soybean and yuba"

大豆
Soybean
腐竹Yuba
蛋白质
Protein
油分
Oil
可溶性糖
Soluble sugar
异黄酮
Isoflavone
产率
Production rate
蛋白质Protein 0.700** -0.889** -0.356 -0.589** 0.598**
油分Oil -0.402 0.537** 0.172 0.012 -0.072
可溶性糖Soluble sugar -0.519** 0.614** 0.441* 0.568** -0.423*
异黄酮Isoflavone -0.412* 0.574** 0.189 0.879** -0.478*
蛋白质油分比Protein/oil 0.636** -0.839** -0.303 -0.411* 0.441*
蛋白质可溶性糖比Protein/sugar 0.667** -0.800** -0.470* -0.682** 0.531**
油分可溶性糖比Oil/sugar 0.302 -0.304 -0.335 -0.574** 0.342*

Supplemental table 1

Soybean varieties list"

序号
No.
品种
Variety
缩写
Abbr.
序号
No.
品种
Variety
缩写
Abbr.
1 华春3号Huachun 3 HC3 13 华夏10号 Huaxia 10 HX10
2 华春5号Huachun 5 HC5 14 东农豆252 Dongnongdou 252 DND252
3 华夏3号Huaxia 3 HX3 15 垦丰16 Kenfeng 16 KF16
4 华夏9号Huaxia 9 HX9 16 垦丰17 Kenfeng 17 KF17
5 桂夏7号Guixia 7 GX7 17 垦丰20 Kenfeng 20 KF20
6 华夏16 Huaxia 16 HX16 18 垦丰22 Kenfeng 22 KF22
7 桂1306 Gui 1306 G1306 19 垦豆25 Kendou 25 KD25
8 华春2号Huachun 2 HC2 20 垦豆43 Kendou 43 KD43
9 华春6号Huachun 6 HC6 21 绥农26 Suinong 26 SN26
10 华春8号Huachun 8 HC8 22 绥农37 Suinong 37 SN37
11 华夏7号Huaxia 7 HX7 23 绥农39 Suinong 39 SN39
12 华夏8号Huaxia 8 HX8 24 黑河43 Heihe 43 HH43

Fig. 1

The proportion of isoflavones in soybean (A), the proportion of isoflavones in yuba (B)"

[1] 谢向机. 高出品率腐竹加工工艺的研究[D]. 厦门: 福建农林大学, 2008.
XIE X J. Study on the processing technology of high yield bean curd stick[D]. Xiamen: Fujian Agriculture and Forestry University, 2008. (in Chinese)
[2] 谢丽燕. 腐竹生产工艺及影响因素研究[D]. 南宁: 广西大学, 2014.
XIE L Y. Study on preparation and influence factors of yuba[D]. Nanning: Guangxi University, 2014. (in Chinese)
[3] 杨月. 大豆品种对腐竹品质的影响及其品质评价体系的初步构建[D]. 郑州: 河南农业大学, 2011.
YANG Y. Studies on effects of soybean species on yuba and initial establishment of quality evaluation system for yuba[D]. Zhengzhou: Henan Agricultural University, 2011. (in Chinese)
[4] 臧茜茜, 吴婧, 潘思轶, 徐晓云. 蛋白及脂肪含量对腐竹差异成膜的影响. 现代食品科技, 2015,31(6):129-135.
ZANG X X, WU J, PAN S Y, XU X Y. Effect of protein and lipid content on yuba film-formation. Modern Food Science & Technology, 2015,31(6):129-135. (in Chinese)
[5] 李永吉, 曾茂茂, 何志勇, 陈洁. 腐竹加工技术及品质影响因素的研究进展. 食品科学, 2013,34(23):333-337.
LI Y J, ZENG M M, HE Z Y, CHEN J. Research progress of yuba stick processing technologies and factors affecting its quality, Food Science, 2013,34(23):333-337. (in Chinese)
[6] 黄伟. 豆腐皮生产过程关键工艺的优化和品质改进研究[D]. 杭州: 浙江大学, 2008.
HUANG W. Research on optimization of key technology and quality improvement of tofu skin production process[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
[7] 姚虹. 腐竹加工工艺优化及营养强化剂筛选的研究[D]. 杨凌: 西北农林科技大学, 2008.
YAO H. Improvement and nutritional fortification study on the process of dried beancurd sticks[D]. Yangling: Northwest Agriculture and Forestry University, 2008. (in Chinese)
[8] 田志刚, 刘香英, 康立宁. 大豆品种品质与腐竹品质的关系研究. 吉林农业科学, 2013,38(3):72-75.
TIAN Z G, LIU X Y, KANG L N. Studies on the correlation between soybean varieties and yuba quality parameters. Journal of Jilin Agricultural Sciences, 2013,38(3):72-75. (in Chinese)
[9] 黄明伟, 于寒松, 刘瑞雪, 李松, 姜丽冬, 胡耀辉. 中国北方地区大豆主栽品种五种成分检测与分析. 中国食物与营养, 2015,21(8):31-34.
HUANG M W, YU H S, LIU R X, LI S, JIANG L D, HU Y H. Research and thinking of boosting development of "three brands and one sigh"Cause in China. Food and Nutrition in China, 2015,21(8):31-34. (in Chinese)
[10] 张玉梅, 胡润芳, 林国强. 大豆籽粒可溶性糖和淀粉含量的初步研究. 福建农业学报, 2018,33(6):604-607.
ZHANG Y M, HU R F, LIN G Q. A preliminary study on contents of soluble sugars and starch in soybeans. Fujian Journal of Agricultural Sciences, 2018,33(6):604-607. (in Chinese)
[11] 韩智, 石谷孝佑, 李再贵. 不同豆浆浓度和浆液深度对腐竹生产的影响. 农业工程学报, 2005,21(11):179-181.
HAN Z, I TAKASUKE, LI Z G. Effects of different soymilk concentrations and depth on the formation of yuba. Transactions of The Chinese Society of Agricultural Engineering, 2005,21(11):179-181. (in Chinese)
[12] 梅忠, 孙健, 孙恺, 舒小丽, 吴殿星. 大豆异黄酮的保健功效, 生物合成及种质发掘与遗传育种. 核农学报, 2014,28(7):1208-1213.
MEI Z, SUN J, SUN K, SHU X L, WU D X. Soybean isoflavones' health efficacy, biosynthesis, germplasm discovery and genetic breeding. Journal of Nuclear Agricultural Sciences, 2014,28(7):1208-1213. (in Chinese)
[13] 朱莹, 褚姗姗, 张培培, 程浩, 喻德跃, 王娇. R2R3-MYB转录因子GmMYB184调节大豆异黄酮合成. 作物学报, 2018,44(2):185-196.
ZHU Y, CHU S S, ZHANG P P, CHENG H, YU D Y, WANG J. An R2R3-MYB transcription factor GmMYB184 regulates soybean isoflavone synthesis. Acta Agronomica Sinica, 2018,44(2):185-196. (in Chinese)
[14] ANTHONY M S, CLARKSON T B, HUGHES C J. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. Journal of Nutrition, 1996,126(1):43-50.
[15] 周盼盼. 大豆异黄酮对HT-29细胞间质转化的影响[D]. 天津: 天津科技大学, 2017.
ZHOU P P. The effect of soybean isoflavones on epithelial mesenchymal transition of HT-29 cells[D]. Tianjin: Tianjin University of Science and Technology, 2017. (in Chinese)
[16] 袁晓洁, 郭英, 孙维琦, 张义全, 靖雪妍. 大豆异黄酮与大豆皂甙抗疲劳作用. 中国公共卫生, 2007(3):327-328.
YUAN X J, GUO Y, SUN W Q, ZHANG Y Q, JING X Y. Anti-fatigue effect of soy isoflavones and soy saponin. Chinese Journal of Public Health, 2007(3):327-328. (in Chinese)
[17] 王永成. 大豆异黄酮对游泳大鼠能量代谢和抗氧化功能的影响. 基因组学与应用生物学, 2019,38(12):5732-5737.
WANG Y C. Effects of soybean isoflavones on energy metabolism and antioxidant function in swimming rats. Genomics and Applied Biology, 2019,38(12):5732-5737. (in Chinese)
[18] 刘郭飞. 中国与日本大豆及大豆制品中六种异黄酮的对比分析[D]. 武汉: 武汉科技大学, 2013.
LIU G F. Comparison of 6 isoflavones isomers in soy and soy processed produce from China and Japan[D]. Wuhan: Wuhan University of Science and Technology, 2013. (in Chinese)
[19] 王雅, 赵萍, 苏阿龙, 董晓琳, 石璐. 不同大豆制品中大豆异黄酮含量的比较研究. 中国食品工业, 2010(5):53-54.
WANG Y, ZHAO P, SU A L, DONG X L, SHI L. The comparison study of content of soy isoflovone in soybean and soybean products. China Food Industry, 2010(5):53-54. (in Chinese)
[20] ALAN P U. New food engineering research trends. New York: Nova Science Publishers, 2008: 195-223.
[21] 吴婧. 蛋白脂肪含量对腐竹差异成膜的影响研究[D]. 武汉: 华中农业大学, 2013.
WU J. Effects of protein and lipid content on yuba film forming[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[22] 朱石龙. 优质腐竹生产的工艺优化[D]. 南昌: 南昌大学, 2011.
ZHU S L. Process optimization of the production of quality yuba[D]. Nanchang: Nanchang University, 2011. (in Chinese)
[23] 宋莲军, 杨月, 乔明武, 赵秋艳, 张莹. 大豆品种与腐竹品质之间的相关性研究. 食品科学, 2011,32(7):65-68.
SONG L J, YANG Y, QIAO M W, ZHAO Q Y, ZHANG Y. Correlation between soybean variety and yuba quality. Food Science, 2011,32(7):65-68. (in Chinese)
[24] 葛宏贺, 潘思轶, 徐晓云. 不同大豆品种对腐竹品质的影响. 中国粮油学报, 2015,30(6):10-14.
GE H H, PAN S Y, XU X Y. Effects of different soybean varieties on the quality of yuba. Journal of The Chinese Cereals and Oils Association, 2015,30(6):10-14. (in Chinese)
[25] 苗虹, 赵云峰, 周蕊, 吴永宁. 高效液相色谱法测定食品中大豆异黄酮含量. 中国食品添加剂, 2004,5(5):92-96.
MIAO H, ZHAO Y F, ZHOU R, WU Y N. Determination of total isoflavones in food by high-performance liquid chromatography. China Food Additives, 2004,5(5):92-96. (in Chinese)
[26] 于寒松, 陈今朝, 胡耀辉. 一次测定12种大豆异黄酮单体的HPLC方法优化及在豆制品检测中的应用. 粮油加工(电子版), 2015(4):24-28.
YU H S, CHEN J Z, HU Y H. HPLC method optimization for 12 kinds of soy isoflavone monomers determination and method application some soy products. Cereals and Oils Processing, 2015(4):24-28. (in Chinese)
[27] 孙君明, 丁安林, 东惠茹. 高效液相色谱(HPLC)技术检测大豆异黄酮含量. 大豆科学, 2000(1):15-20.
SUN J M, DING A L, DONG H R. High performance liquid chromatography (HPLC) technology to detect soy isoflavones. Soybean Science, 2000(1):15-20. (in Chinese)
[28] 孙君明, 孙宝利, 韩粉霞, 闫淑荣, 杨华, 菊池彰夫. 快速检测大豆籽粒中十二种异黄酮组分的HPLC方法. 中国农业科学, 2009,42(7):2491-2498.
SUN J M, SUN B L, HAN F X, YAN S R, YANG H, KIKUCHI A. A rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Scientia Agricultura Sinica, 2009,42(7):2491-2498. (in Chinese)
[29] 李艳艳. 高效液相色谱法测定杜仲中主要成分和食品中大豆异黄酮[D]. 重庆: 西南大学, 2010.
LI Y Y. High performance liquid chromatography applied to the chief ingredients of eucommia ulmoides oliv and isoflavones in food analysis[D]. Chongqing: Southwest University, 2010. (in Chinese)
[30] 张海军, 英王, 王庆钰. 大豆异黄酮检测方法研究概述. 粮食与油脂, 2011(3):39-42.
ZHANG H J, YING W, WANG Q Y. Survey on methods of detection for soybean isoflavone. Cereals & Oils, 2011(3):39-42. (in Chinese)
[31] 胡莉, 靳可婷, 仲伶俐, 杨晓凤, 江永洪. 高效液相色谱法同时测定粮食中6种大豆异黄酮. 食品安全质量检测学报, 2017,8(11):4368-4374.
HU L, JIN K T, ZHONG L L, YANG X F, JIANG Y H. Determination of 6 kinds of isoflavones in food crops by high performance liquid chromatography. Food Safety and Quality Detection Technology, 2017,8(11):4368-4374. (in Chinese)
[32] 赵秋艳, 乔明武, 宋莲军, 司腾龙. 大豆浸泡温度对腐竹产率及品质的影响. 湖南农业科学, 2011(21):87-90.
ZHAO Q Y, QIAO M W, SONG L J, SI T L. Influences of soaking temperature on yield and quality of yuba. Hunan Agricultural Sciences, 2011(21):87-90. (in Chinese)
[33] 李利华, 田光辉. 影响腐竹生产因素的研究. 汉中师范学院学报(自然科学), 2003(3):64-68.
LI L H, TIAN G H. Research on factors affecting yuba production. 2003(3):64-68. (in Chinese)
[34] 邢德洲. 腐竹行业的发展与现状. 现代商业, 2010(29):284.
XING D Z. The development and current situation of yuba industry. Modern Commerce, 2010(29):284. (in Chinese)
[35] 张光杰, 王聪, 刘书梅, 李艳莉. 免浸泡腐竹复合保鲜工艺研究. 中国调味品, 2015, 40(6): 94-97+101.
ZHANG G J, WANG C, LIU S M, LI Y L. Study on compound preservation technology of dried beancurd sticks without soaking. China Condiment, 2015, 40(6): 94-97+101. (in Chinese)
[36] 张海军. 高异黄酮大豆种质资源筛选及相关基因的QTL分析[D]. 长春: 吉林大学, 2012.
ZHANG H J. Screening of germplasm with high isoflavone content in soybean and QTL mapping of relative genes[D]. Changchun: Jilin University, 2012. (in Chinese)
[37] TAN Y, CHANG S K, ZHANG Y. Innovative soaking and grinding methods and cooking affect the retention of isoflavones, antioxidant and antiproliferative properties in soymilk prepared from black soybean. Journal of Food Science, 2016,81(4):1016-1023.
[38] 张爽, 焦妍津, 陶冠军, 陈洁. 中国传统豆制品中异黄酮的超高效液相色谱-紫外检测器快速定量法. 食品工业科技, 2018, 39(1): 253-256+261.
ZHANG S, JIAO Y J, TAO G J, CHEN J. Rapid quantification of isoflavones in traditional Chinese soybean food by ultra-high performance liquid chromatography coupling to the UV detector. Science and Technology of Food Industry, 2018, 39(1): 253-256+261. (in Chinese)
[39] 赵秋艳, 张平安, 宋莲军, 乔明武. 揭竹过程中浆液成分与腐竹品质的变化及其相关性研究. 食品与发酵工业, 2011,37(9):157-160.
ZHAO Q Y, ZHANG P A, SONG L J, QIAO M W. Study on changes and correlation of serum composition and yuba quality in the process of uncovering bamboo. Food and Fermentation Industry, 2011,37(9):157-160. (in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[3] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[4] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[7] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[12] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[13] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[14] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[15] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!