Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (2): 435-448.doi: 10.3864/j.issn.0578-1752.2021.02.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore

CHEN HuaZhi1(),WANG Jie1(),ZHU ZhiWei1,JIANG HaiBin1,FAN YuanChan1,FAN XiaoXue1,WAN JieQi1,LU JiaXuan1,ZHENG YanZhen1,FU ZhongMin1,2,3,XU GuoJun1,CHEN DaFu1,2,3,GUO Rui1,2,3()   

  1. 1College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
    2Apitherapy Research Institution, Fujian Agriculture and Forestry University, Fuzhou 350002
    3Engineering Research Center of Processing and Application of Bee Products of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2020-02-10 Accepted:2020-02-25 Online:2021-01-16 Published:2021-02-03
  • Contact: Rui GUO E-mail:CHZ0720@outlook.com;wanglegejie@163.com;ruiguo@fafu.edu.cn

Abstract:

【Background】Ascosphaera apis is a fungal pathogen that exclusively infects honeybee larvae, causing a sharp decrease of the population of adult honeybees and colony population. Long non-coding RNA (lncRNA), a recently discovered non-coding RNA (ncRNA), plays a vital biological role in various activities such as epigenetics, cell cycle and dose compensation.【Objective】This study aimed to clarify the differences of number, type and expression profile of lncRNAs between A. apis mycelium and spore, and investigate the potential role of the common lncRNAs, specific lncRNAs and differentially expressed lncRNAs (DElncRNAs). 【Method】The purified mycelia (AaM) and purified spores (AaS) of A. apis were respectively sequenced using strand specific library-based lncRNA-seq technology. The expression levels of lncRNAs in AaM and AaS were calculated using FPKM (Fragment Per Kilobase of per Million mapped reads) method. Common lncRNAs and specific lncRNAs were filtered out following Venn analysis. DElncRNAs within AaM vs AaS comparison group were screened out following the standard of P≤0.05 and |log2 fold change|≥1. Upstream and downstream genes of common lncRNAs, specific lncRNAs and DElncRNAs were aligned against GO and KEGG databases to obtain function and pathway annotations. The competing endogenous RNA (ceRNA) regulation networks of common lncRNAs, specific lncRNAs and DElncRNAs were constructed following target binding relationships, followed by visualization using Cytoscape software. RT-qPCR was performed to verify the reliability of the sequencing data.【Result】In total, 108 614 646 and 105 675 408 raw reads were gained from AaM and AaS, and after strict filtering, 107 780 032 and 104 621 402 clean reads were obtained, respectively, with Q20 of 98.76% and 98.72%, and Q30 of 95.84% and 95.78%. A total of 850 lncRNAs were identified. Seven hundred and one lncRNAs were shared by AaM and AaS, and there were 39 and 110 specific lncRNAs. Via cis function, these shared lncRNAs could regulate 3 992 upstream and downstream genes involving in 42 functional terms such as cellular process, metabolism process and catalytic activity; and 117 pathways such as metabolism pathway, biosynthesis of secondary metabolites and biosynthesis of antibiotics. Specific lncRNAs for AaM and AaS could respectively regulate 243 and 672 upstream and downstream genes. In AaM vs AaS comparison group, 255 DElncRNAs were identified and found to regulate 1 479 upstream and downstream genes, which were associated with 41 functional terms including cellular process, metabolism process and catalytic activity; and 107 pathways including metabolism pathway, biosynthesis of secondary metabolites and biosynthesis of antibiotics. Forty one, five and 13 miRNA precursors were predicted from common lncRNAs, specific lncRNAs and DElncRNAs. The result of regulatory network analysis showed the formation of ceRNA networks of mycelium lncRNAs and spore lncRNAs; ten lncRNAs in mycelium could bind to eight miRNAs, further targeting 77 mRNAs; while eight lncRNAs in spore could link to seven miRNAs, further targeting 87 mRNAs; two DElncRNAs including TCONS_00008630 and TCONS_00009302 could simultaneously target miR-4968-y, further regulating ten mRNAs. The result of RT-qPCR suggested the differential expression trend of four DElncRNAs were in accordance of that in sequencing result, indicating the reliability of our sequencing data.【Conclusion】Common lncRNAs, specific lncRNAs and DElncRNAs are likely to affect material and energy metabolisms, autophagy, transcription, MAPK signaling pathway, ubiquitin-mediated proteolysis, proteasome and biosynthesis of secondary metabolites, by regulating the expression of upstream and downstream genes, serving as miRNA precursors or ceRNAs, thus regulating the growth, development, reproduction and pathogenicity of A. apis.

Key words: Ascosphaera apis, long non-coding RNA (lncRNA), mycelium, spore, competing endogenous RNA (ceRNA)

Table 1

Primers used in this study"

LncRNA名称
LncRNA ID
引物名称
Primer name
引物序列
Primer sequence
TCONS_00006988 F CTCCAGTTGTGCGTTCAT
R GTTGTCACCGTCTCTTCC
TCONS_00003707 F GGAATGAATGATGCCAACTT
R GTAGACCGAGGAAGAACAG
TCONS_00001814 F ACAAGGAGGAAGTCAAGGA
R CGAGCATAAGCAGTAGAGAT
TCONS_00007359 F CCATCGCCACGGATATTC
R CCAGAGCACATCAACATCA
actin F CAGGAAAGGCTATGTTCGC
R ATTACCGAGGAGCAAGACG

Table 2

Overview of lncRNA-seq dataset"

样品
Sample
原始读段
Raw reads
有效读段
Clean reads
99.9%碱基
正确率Q20
99.99%碱基
正确率Q30
AaM 108 614 646 107 780 032 98.76% 95.84%
AaS 105 675 408 104 621 402 98.72% 95.78%

Fig. 1

GO database annotations of upstream and downstream genes of common and specific lncRNAs"

Fig. 2

KEGG database annotations of upstream and downstream genes of common and specific lncRNAs"

Fig. 3

Hairpin structures of five lncRNAs as miRNA precursors Green bases indicate sequences of mature miRNAs"

Fig. 4

Regulation networks of lncRNAs in mycelium (A), lncRNAs in spore (B) and DElncRNAs (C)"

Fig. 5

RT-qPCR validation of DElncRNAs *: P<0.05; **: P<0.01"

[1] CALDERÓN R A, RIVERA G, SÁNCHEZ L A, ZAMORA L G. Chalkbrood (Ascosphaera apis) and some other fungi associated with Africanized honey bees (Apis mellifera) in Costa Rica. Journal of Apicultural Research, 2004,43(4):187-188.
[2] WOOD M. Microbes help bees battle chalkbrood. Agricultural Research, 1998,46(8):16-17.
[3] ARONSTEINK K A, MURRAY D. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010,103(Suppl.1):20-29.
[4] KAPRANOV P, CHENG J, DIKE S, NIX D A, DUTTAGUPTA R, WILLINGHAM A T, STADLER P F, HERTEL J, HACKERMÜLLER J, HOFACKER I L, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007,316(5830):1484-1488.
pmid: 17510325
[5] PONTIER D B, GRIBNAU J. Xist regulation and function explored. Human Genetics, 2011,130(2):223-236.
pmid: 21626138
[6] KINO T, HURT D E, ICHIJO T, NADER N, CHROUSOS G P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Science Signaling, 2010, 3(107): ra8.
pmid: 20124551
[7] HEO J B, SUNG S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 2011,331(6013):76-79.
[8] TSAI M C, MANOR O, WAN Y, MOSAMMAPARAST N, WANG J K, LAN F, SHI Y, SEGAL E, CHANG H Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010,329(5992):689-693.
[9] MERCER T R, MATTICK J S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural and Molecular Biology, 2013,20(3):300-307.
[10] LI M, SUN X, CAI H, SUN Y, PLATH M, LI C, LAN X, LEI C, LIN F, BAI Y, CHEN H. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica et Biophysica Acta, 2016,1859(7):871-882.
[11] ST LAURENT G, WAHLESTEDT C, KAPRANOV P. The landscape of long noncoding RNA classification. Trends in Genetics, 2015,31(5):239-251.
pmid: 25869999
[12] LI Z X, HAN K W, ZHANG D F, CHEN J G, XU Z, HOU L J. The role of long noncoding RNA in traumatic brain injury. Neuropsychiatric Disease and Treatment, 2019,15:1671-1677.
[13] 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018,58(6):1077-1089.
GUO R, WANG H P, CHEN H Z, XIONG C L, ZHENG Y Z, FU Z M, ZHAO H X, CHEN D F. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018,58(6):1077-1089. (in Chinese)
[14] KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018,172(3):393-407.
[15] KIM W, MIGUEL-ROJAS C, WANG J, TOWNSEND J P, TRAIL F. Developmental dynamics of long noncoding RNA expression during sexual fruiting body formation in Fusarium graminearum. mBio, 2018,9(4):e01292-18.
[16] HIRIART E, VERDEL A. Long noncoding RNA-based chromatin control of germ cell differentiation: a yeast perspective. Chromosome Research, 2013,21(6/7):653-663.
[17] CHEN D F, CHEN H Z, DU Y, ZHOU D D, GENG S H, WANG H P, WAN J Q, XIONG C L, ZHENG Y Z, GUO R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019,10(8):245.
[18] WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: Functional surprises from the RNA world. Genes and Development, 2009,23(13):1494-1504.
doi: 10.1101/gad.1800909 pmid: 19571179
[19] FAN G Q, WANG Z, ZHAI X Q, CAO Y B. ceRNA cross-talk in paulownia witches’ broom disease. International Journal of Molecular Sciences, 2018,19(8):2463.
[20] QIN X, EVANS J D, ARONSTEIN K A, MURRAY K D, WEINSTOCK G M. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006,15(5):715-718.
pmid: 17069642
[21] SPILTOIR C F. Life cycle of Ascosphaera apis (Pericystis apis). American Journal of Botany, 1955,42(6):501-508.
[22] FLORES J M, SPIVAK M, GUTIÉRREZ I. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Veterinary Microbiology, 2005,108(1/2):141-144.
[23] SKOU J P. More details in support of the class Ascosphaeromycetes. Mycotaxon, 1988,31(1):191-198.
[24] ANDERSON D, GIACON H SEARCH ARTICLES BY 'GIACON H' GIACON H, GIBSON N SEARCH ARTICLES BY 'GIBSON N' GIBSON N. Detection and thermal destruction of the chalkbrood fungus (Ascosphaera apis) in honey. Journal of Apicultural Research, 1997,36(3/4):163-168.
[25] SHANG Y F, XIAO G H, ZHENG P, CEN K, ZHAN S, WANG C S. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016,8(5):1374-1387.
pmid: 27071652
[26] 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福. 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613.
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F. Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese)
[27] FLÓREZ-ZAPATA N M V, REYES-VALDÉS M H, MARTÍNEZ O. Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates. BMC Genomics, 2016,17:490.
[28] YANG L, LONG Y P, LI C, CAO L, GAN H Y, HUANG K L, JIA Y J. Genome-wide analysis of long noncoding RNA profile in human gastric epithelial cell response to Helicobacter pylori. Japanese Journal of Infectious Diseases, 2015,68(1):63-66.
[29] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, LIANG Q, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, KUMAR D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018,49(5):660-670.
[30] WANG Z Q, ZHAO Y W, ZHANG Y. Viral lncRNA: A regulatory molecule for controlling virus life cycle. Noncoding RNA Research, 2017,2(1):38-44.
[31] GUO R, CHEN D F, XIONG C L, HOU C S, ZHENG Y Z, FU Z M, DIAO Q Y, ZHANG L, WANG H Q, HOU Z X, LI W D, DHIRAJ K, LIANG Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018,156:1-5.
pmid: 29894727
[32] GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y, WANG H P, DU Y, DIAO Q Y. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018,678:17-22.
[33] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017,60(4):401-411.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, HUANG Z J, ZHANG Z N, ZHANG L, LI W D, TONG X Y, XI W J. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera: Apidae). Acta Entomologica Sinica, 2017,60(4):401-411. (in Chinese)
[34] 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017,60(1):34-44.
ZHANG Z N, XIONG C L, XU X J, HUANG Z J, ZHENG Y Z, LUO Q, LIU M, LI W D, TONG X Y, ZHANG Q, LIANG Q, GUO R, CHEN D F. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017,60(1):34-44. (in Chinese)
[35] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 张曌楠, 黄枳腱, 张璐, 王鸿权, 解彦玲, 童新宇. 中华蜜蜂幼虫肠道响应球囊菌早期胁迫的转录组学. 中国农业科学, 2017,50(13):2614-2623.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, ZHANG Z N, HUANG Z J, ZHANG L, WANG H Q, XIE Y N, TONG X Y. Transcriptome of Apis cerana cerana larval gut under the stress of Ascosphaera apis. Scientia Agricultura Sinica, 2017,50(13):2614-2623. (in Chinese)
[36] LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009,10(3):R25.
[37] KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013,14(4):R36.
pmid: 23618408
[38] TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012,7(3):562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036
[39] KONG L, ZHANG Y, YE Z Q, LIU X Q, ZHAO S Q, WEI L P, GAO G. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 2007,35:W345-349.
[40] SUN L, LUO H T, BU D C, ZHAO G G, YU K T, ZHANG C H, LIU Y N, CHEN R S, ZHAO Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 2013,41(17):e166.
doi: 10.1093/nar/gkt646 pmid: 23892401
[41] ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26(1):139-140.
pmid: 19910308
[42] SHAO J, CHEN H, YANG D, JIANG M, ZHANG H, WU B, LI J, YUAN L, LIU C. Genome-wide identification and characterization of natural antisense transcripts by strand-specific RNA sequencing in Ganoderma lucidum. Scientific Reports, 2017,7(1):5711.
pmid: 28720793
[43] 陈华枝, 祝智威, 蒋海宾, 王杰, 范元婵, 范小雪, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析. 中国农业科学, 2020,53(17):3606-3619.
CHEN H Z, ZHU Z W, JIANG H B, WANG J, FAN Y C, FAN X X, WAN J Q, LU J X, XIONG C L, ZHENG Y Z, FU Z M, CHEN D F, GUO R. Comparative analysis of microRNAs and corresponding target mRNAs in Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2020,53(17):3606-3619. (in Chinese)
[44] 熊翠玲, 陈华枝, 陈大福, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 郭睿. 意大利蜜蜂工蜂中肠的环状RNA及其调控网络分析. 昆虫学报, 2018,61(12):1363-1375.
XIONG C L, CHEN H Z, CHEN D F, ZHENG Y Z, FU Z M, XU G J, DU Y, WANG H P, GENG S H, ZHOU D D, LIU S Y, GUO R. Analysis of circular RNAs and their regulatory networks in the midgut of Apis mellifera ligustica workers. Acta Entomologica Sinica, 2018,61(12):1363-1375. (in Chinese)
[45] ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028
[46] ATIANAND M K, FITZGERALD K A. Long non-coding RNAs and control of gene expression in the immune system. Trends in Molecular Medicine, 2014,20(11):623-631.
pmid: 25262537
[47] QURESHI I A, MEHLER M F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Reviews. Neuroscience, 2012,13(8):528-541.
doi: 10.1038/nrn3234 pmid: 22814587
[48] PAULI A, VALEN E, LIN M F, GARBER M, VASTENHOUW N L, LEVIN J Z, FAN L, SANDELIN A, RINN J L, REGEV A, SCHIER A F. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012,22(3):577-591.
doi: 10.1101/gr.133009.111 pmid: 22110045
[49] WANG Z, JIANG Y, WU H, XIE X, HUANG B. Genome-wide identification and functional prediction of long non-coding RNAs involved in the heat stress response in Metarhizium robertsii. Frontiers in Microbiology, 2019,10:2336.
doi: 10.3389/fmicb.2019.02336 pmid: 31649657
[50] YORIMITSU T, KLIONSKY D J. Autophagy: Molecular machinery for self-eating. Cell Death and Differentiation, 2005,12(Suppl. 2):1542-1552.
[51] FAN C L, CHANG A N, LIU T B. Role of autophagy in the reproduction of pathogenic fungi. Acta Microbiologica Sinica, 2019,59(2):224-234.
[52] LIU X H, ZHAO Y H, ZHU X M, ZENG X Q, HUANG L Y, DONG B, SU Z Z, WANG Y, LU J P, LIN F C. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Scientific Reports, 2017,7:40018.
pmid: 28067330
[53] DENG Y Z, RAMOS-PAMPLONA M, NAQVI N I. Autophagy- ssisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy, 2009,5(1):33-43.
doi: 10.4161/auto.5.1.7175 pmid: 19115483
[54] WANG P, GRANADOS R R. Observations on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting baculovirus infection. Journal of Invertebrate Pathology, 1998,72(1):57-62.
doi: 10.1006/jipa.1998.4759 pmid: 9647702
[55] SURESH B, LEE J, KIM K S, RAMAKRISHNA S. The importance of ubiquitination and deubiquitination in cellular reprogramming. Stem Cells International, 2016,2016:6705927.
doi: 10.1155/2016/6705927 pmid: 26880980
[56] BIDOCHKA M J, KHACHATOURIANS G G. The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology, 1991,58(1):106-117.
doi: 10.1016/0022-2011(91)90168-P
[57] GOTZ P, MATHA V, VILCINSKAS A. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology, 1997,43(12):1149-1159.
[58] JENSEN A B, ARONSTEIN K, FLORES J M, VOJVODIC S, PALACIO M A, SPIVAK M. Standard methods for fungal brood disease research. Journal of Apicultural Research, 2013, 52(1): 10.3896/IBRA.1.52.1.13.
doi: 10.3896/IBRA.1.52.1.13 pmid: 24198438
[59] BROWN A J P, BUDGE S, KALORITI D, TILLMANN A, JACOBSEN M D, YIN Z, ENE I V, BOHOVYCH I, SANDAI D, KASTORA S, POTRYKUS J, BALLOU E R, CHILDERS D S, SHAHANA S, LEACH M D. Stress adaptation in a pathogenic fungus. Journal of Experimental Biology, 2014,217(1):144-155.
[60] SO K K, KIM D H. Role of MAPK signaling pathways in regulating the hydrophobin cryparin in the chestnut blight fungus Cryphonectria parasitica. Mycobiology, 2017,45(4):362-369.
doi: 10.5941/MYCO.2017.45.4.362 pmid: 29371804
[61] JIANG C, ZHANG X, LIU H Q, XU J R. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathogens, 2018,14(3):e1006875.
pmid: 29543901
[62] NI X, GAO J X, YU C J, WANG M, SUN J N, LI Y Q, CHEN J. MAPKs and acetyl-CoA are associated with Curvularia lunata pathogenicity and toxin production in maize. Journal of Integrative Agriculture, 2018,17(1):139-148.
[63] SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011,146(3):353-358.
pmid: 21802130
[64] HUANG M J, ZHAO J Y, XU J J, LI Y, ZHUANG Y F, ZHANG X L. LncRNA ADAMTS9-AS2 controls human mesenchymal stem cell chondrogenic differentiation and functions as a ceRNA. Molecular Therapy-Nucleic Acids, 2019,18:533-545.
pmid: 31671346
[1] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[2] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[3] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[4] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
[5] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[6] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[7] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[8] ZHOU DingDing,SHI XiaoYu,WANG Jie,FAN YuanChan,ZHU ZhiWei,JIANG HaiBin,FAN XiaoXue,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Investigation of Competing Endogenous RNA Regulatory Network and Putative Function of Long Non-Coding RNAs in Nosema ceranae Spore [J]. Scientia Agricultura Sinica, 2020, 53(10): 2122-2136.
[9] DONG Xiang-li, GAO Yue-e, LI Bao-hua, YONG Dao-jing, WANG Cai-xia, LI Gui-fang, LI Bao-du. Epidemic Dynamics of Apple Marssonina Leaf Blotch over Whole Growth Season in the Central Area of Shandong Peninsula [J]. Scientia Agricultura Sinica, 2015, 48(3): 479-487.
[10] ZHAO Hai-Yan, HUANG Jin-Ling. Study on Microspore Abortion of Male Sterile Cotton Yamian A and Yamian B [J]. Scientia Agricultura Sinica, 2012, 45(20): 4130-4140.
[11] GAO Yue-e, LI Bao-hua, DONG Xiang-li, WANG Cai-xia, LI Gui-fang, LI Bao-du. Effects of Temperature and Moisture on Sporulation of Diplocarpon mali on Overwintered Apple Leaves [J]. Scientia Agricultura Sinica, 2011, 44(7): 1367-1374.
[12] HE Xin,HUANG Qi-wei,YANG Xing-ming,RAN Wei,XU Yang-chun,SHEN Biao,SHEN Qi-rong
.

Screening and Identification of Pathogen Causing Banana Fusarium Wilt and the Relationship Between Spore Suspension Concentration and the Incidence Rate

[J]. Scientia Agricultura Sinica, 2010, 43(18): 3809-3816 .
[13] FENG Hui,YANG Shuo,WANG Chao-nan,FU Ying
. Obtaining and Utilization of DH Lines in Pakchoi (Brassica rapa L. ssp. chinensis L.)#br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3195-3202 .
[14] . [J]. Scientia Agricultura Sinica, 2007, 40(7): 1388-1394 .
[15] . Genetic analysis of distorted segregation ratio of mating types in Lentinula edodes [J]. Scientia Agricultura Sinica, 2007, 40(10): 2296-2302 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!