Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 5050-5062.doi: 10.3864/j.issn.0578-1752.2020.24.008
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
WU Lei1(),HE ZhiLong2,TANG ShuiRong3,WU Xian2,ZHANG WenJu1,HU RongGui2(
)
[1] | Climate change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[2] | YUAN Y, DAI X, WANG H, XU M, FU X, YANG F. Effects of land-use conversion from double rice cropping to vegetables on methane and nitrous oxide fluxes in Southern China. PLoS One, 2015,26(1):147-154. |
[3] |
LIU H, XING W, LI Z, WANG Q, DAN L, LIU G. Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China. Environmental Science and Pollution Research, 2017,24(9):8731-8743.
doi: 10.1007/s11356-017-8628-y pmid: 28213705 |
[4] | FAO. 2013. http://faostat.fao.org/beta/en/. |
[5] |
ZHANG W, YU Y, LI T, SUN W, HUANG Y. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environmental Science & Technology, 2014,48(5):2589-2597.
doi: 10.1021/es404352h pmid: 24512240 |
[6] |
HAO H, SUN B, ZHAO Z. Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils. Environmental Pollution, 2008,156(3):1046-1052.
doi: 10.1016/j.envpol.2008.04.021 pmid: 18554761 |
[7] |
LU H, BAI Y, REN H, CAMPBELL DE. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: implications for agricultural policy in China. Journal of Environmental Management, 2010,91(12):2727-2735.
doi: 10.1016/j.jenvman.2010.07.025 |
[8] |
KRAUS D, WELLER S, JANZ B, KLATT S, SANTABÁRBARA I, HAAS E, WERNER C, WASSMANN R, KIESE R, BUTTERBACH-BAHL K. How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with biogeochemical models? Agriculture, Ecosystems and Environment, 2016,224:104-115.
doi: 10.1016/j.agee.2016.03.037 |
[9] |
WELLER S, JANZ B, JÖRG L, KRAUS D, RACELA HSU, WASSMANN R, BUTTERBACH-BAHL K, KIESE R. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology, 2016,22(1):432-448.
doi: 10.1111/gcb.13099 pmid: 26386203 |
[10] |
NISHIMURA S, YONEMURA S, SAWAMOTO T, SHIRATO Y, AKIYAMA H, SUDO S, YAGI K. Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agriculture, Ecosystems and Environment, 2008,125(1):9-20.
doi: 10.1016/j.agee.2007.11.003 |
[11] |
JIANG C, WANG Y, ZHENG X, ZHU B, HUANG Y, HAO Q. Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China. Advances in Atmospheric Sciences, 2006,23(3):415-424.
doi: 10.1007/s00376-006-0415-5 |
[12] | KONG A Y, FONTE S J, VAN KESSEL C, SIX J. Transitioning from standard to minimum tillage: Trade-offs between soil organic matter stabilization, nitrous oxide emissions, and N availability in irrigated cropping systems. Soil & Tillage Research, 2009,104(2):256-262. |
[13] |
SHENG R, MENG D, WU M, DI H, QIN H, WEI W. Effect of agricultural land use change on community composition of bacteria and ammonia oxidizers. Journal of Soils and Sediments, 2013,13(7):1246-1256.
doi: 10.1007/s11368-013-0713-3 |
[14] |
WANG H, GUAN D, ZHANG R, CHEN Y, HU Y, XIAO L. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering, 2014,70:206-211.
doi: 10.1016/j.ecoleng.2014.05.027 |
[15] |
WANG W, DALAL R C, REEVES S H, BUTTERBACH-BAHL K, KIESE R. Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Global Change Biology, 2011,17(10):3089-3101.
doi: 10.1111/j.1365-2486.2011.02458.x |
[16] | 龚子同, 张甘霖, 陈志诚. 土壤发生与系统分类. 北京: 科学出版社, 2007. |
GONG Z T, ZHANG G L, CHEN Z C. Pedogenesis and Soil Taxonomy. Beijing: Science Press, 2007. (in Chinese) | |
[17] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. |
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press, 2005. (in Chinese) | |
[18] |
朱晓晴, 安晶, 马玲, 陈松岭, 李嘉琦, 邹洪涛, 张玉龙. 秸秆还田深度对土壤温室气体排放及玉米产量的影响. 中国农业科学, 2020,53(5):977-989.
doi: 10.3864/j.issn.0578-1752.2020.05.010 |
ZHU X Q, AN J, MA L, CHEN S L, LI J Q, ZOU H T, ZHANG Y L. Effects of different straw returning depths on soil greenhouse gas emission and maize yield. Scientia Agricultura Sinica, 2020,53(5):977-989. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.05.010 |
|
[19] |
INUBUSHI K, CHENG W, AONUMA S, HOQUE MM, KOBAYASHI K, MIURA S, KIM HY, OKADA M. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology, 2003,9(10):1458-1464.
doi: 10.1046/j.1365-2486.2003.00665.x |
[20] |
BREIDENBACH B, BLASER MB, KLOSE M, CONRAD R. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community. Environmental Microbiology, 2015,18(9):2868-2885.
doi: 10.1111/1462-2920.13041 pmid: 26337675 |
[21] |
LIU D, ISHIKAWA H, NISHIDA M, TSUCHIYA K, TAKAHASHI T, KIMURA M, ASAKAWA S. Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil. Microbial Ecology, 2015,69(1):160-168.
doi: 10.1007/s00248-014-0477-3 pmid: 25113614 |
[22] | AULAKH M S, WASSMANN R, RENNENBERG H. Methane emissions from rice fields-quantification, mechanisms, role of management, and mitigation options. Advances in Agronomy, 2001,70:193-260. |
[24] |
WU L, TANG S, HE D, WU X, SHAABAN M, WANG M, ZHAO J, KHAN I, ZHENG X, HU R. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Science of the Total Environment, 2017,583:190-201.
doi: 10.1016/j.scitotenv.2017.01.050 |
[25] |
REPO M E, SUSILUOTO S, LIND S E, JOKINEN S, ELSAKOV V, BIASI C, VIRTANEN T, MARTIKAINEN P J. Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience, 2009,2(3):189-192.
doi: 10.1038/ngeo434 |
[26] |
SHANG Q, YANG X, GAO C, WU P, LIU J, XU Y, SHEN Q, ZOU J, GUO S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Global Change Biology, 2011,17(6):2196-2210.
doi: 10.1111/j.1365-2486.2010.02374.x |
[27] |
GRANDY A, ROBERTSON G. Initial cultivation of a temperate- region soil immediately accelerates aggregate turnover and CO2 and N2O fluxes. Global Change Biology, 2006,12(8):1507-1520.
doi: 10.1111/gcb.2006.12.issue-8 |
[28] |
ZhANG Y, LIN F, JIN Y, WANG X, LIU S, ZOU J. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China. Scientific Reports, 2016,6:20700.
doi: 10.1038/srep20700 pmid: 26848094 |
[29] |
奚雅静, 汪俊玉, 李银坤, 武雪萍, 李晓秀, 王碧胜, 李生平, 宋霄君, 刘彩彩. 滴灌水肥一体化配施有机肥对土壤N2O排放与酶活性的影响. 中国农业科学, 2019,52(20):3611-3624.
doi: 10.3864/j.issn.0578-1752.2019.20.012 |
XI Y J, WANG J Y, LI Y K, WU X P, LI X X, WANG B S, LI S P, SONG X J, LIU C C. Effects of drip irrigation water and fertilizer integration combined with organic fertilizers on soil N2O emission and enzyme activity. Scientia Agricultura Sinica, 2019,52(20):3611-3624. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.20.012 |
|
[30] |
GARCIA-MONTIEL D, MELILLO J, STEUDLER P, CERRI C, PICCOLO M. Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon. Biology and Fertility of Soils, 2003,38(5):267-272.
doi: 10.1007/s00374-003-0637-y |
[31] |
PENTON C R, DEENIK J L, POPP B N, BRULAND G L, ENGSTROM P, LOUIS D S, TIEDJE J. Importance of sub-surface rhizosphere-mediated coupled nitrification-denitrification in a flooded agroecosystem in Hawaii. Soil Biology and Biochemistry, 2013,57:362-373.
doi: 10.1016/j.soilbio.2012.10.018 |
[32] |
DEPPE M, WELL R, GIESEMANN A, SPOTT O, FLESSA H. Soil N2O fluxes and related processes in laboratory incubations simulating ammonium fertilizer depots. Soil Biology and Biochemistry, 2017,104:68-80.
doi: 10.1016/j.soilbio.2016.10.005 |
[33] |
NIKIÈMA P, ROTHSTEIN D E, MILLER R O. Initial greenhouse gas emissions and nitrogen leaching losses associated with converting pastureland to short-rotation woody bioenergy crops in northern Michigan, USA. Biomass Bioenergy, 2012,39:413-426.
doi: 10.1016/j.biombioe.2012.01.037 |
[34] |
GRANDY A, ROBERTSON G. Aggregation and organic matter protection following tillage of a previously uncultivated soil. Soil Science Society of America Journal, 2006,70(4):1398-1406.
doi: 10.2136/sssaj2005.0313 |
[35] |
ZUMFT W G. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 1997,61(4):533-616.
pmid: 9409151 |
[36] |
HU H, CHEN D, HE J. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015,39(5):729-749.
doi: 10.1093/femsre/fuv021 pmid: 25934121 |
[37] |
STANGE C F, SPOTT O, ARRIAGA H, MENÉNDEZ S, ESTAVILLO J M, MERINO P. Use of the inverse abundance approach to identify the sources of NO and N2O release from Spanish forest soils under oxic and hypoxic conditions. Soil Biology and Biochemistry, 2013,57:451-458.
doi: 10.1016/j.soilbio.2012.10.006 |
[38] |
SPOTT O, RUSSOW R, STANGE C F. Formation of hybrid N2O and hybrid N2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation. Soil Biology and Biochemistry, 2011,43(10):1995-2011.
doi: 10.1016/j.soilbio.2011.06.014 |
[39] |
VAN CLEEMPUT O. Subsoils: chemo- and biological denitrification, N2O and N2 emissions. Nutrient Cycling in Agroecosystems, 1998,52:187-194.
doi: 10.1023/A:1009728125678 |
[40] |
QU Z, WANG J, ALMØY T, BAKKEN L R. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Global Change Biology, 2014,20(5):1685-1698.
doi: 10.1111/gcb.12461 |
[41] |
SIX J, OGLE S M, CONANT R T, MOSIER A R, PAUSTIAN K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 2004,10(2):155-160.
doi: 10.1111/gcb.2004.10.issue-2 |
[42] |
PIVA J T, DIECKOW J, BAYER C, ZANATTA J A, DE MORAES A, PAULETTI V, TOMAZI M, PERGHER M. No-till reduces global warming potential in a subtropical Ferralsol. Plant and Soil, 2012,361(1/2):359-373.
doi: 10.1007/s11104-012-1244-1 |
[43] | 邬磊. 稻田转菜地对生态系统碳平衡和温室气体排放的影响研究[D]. 湖北: 华中农业大学, 2018. |
WU L. Effects of land-use conversion from double-rice to vegetable cultivation on net ecosystem carbon budget and greenhouse gas emissions[D]. Hubei: Huazhong Agricultural University, 2018. (in Chinese) |
[1] | WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171. |
[2] | ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012. |
[3] | WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133. |
[4] | LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002. |
[5] | LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779. |
[6] | YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690. |
[7] | Shan ZHUANG,Wei LIN,JunJun DING,Qian ZHENG,XinYue KOU,QiaoZhen LI,YuZhong LI. Effects of Different Root Exudates on Soil N2O Emissions and Isotopic Signature [J]. Scientia Agricultura Sinica, 2020, 53(9): 1860-1873. |
[8] | LI YongHua,WU XuePing,HE Gang,WANG ZhaoHui. Benefits of Yield, Environment and Economy from Substituting Fertilizer by Manure for Wheat Production of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890. |
[9] | XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645. |
[10] | DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034. |
[11] | YaJing XI,JunYu WANG,YinKun LI,XuePing WU,XiaoXiu LI,BiSheng WANG,ShengPing LI,XiaoJun SONG,CaiCai LIU. Effects of Drip Irrigation Water and Fertilizer Integration Combined with Organic Fertilizers on Soil N2O Emission and Enzyme Activity [J]. Scientia Agricultura Sinica, 2019, 52(20): 3611-3624. |
[12] | YaJing XI,DongYang LIU,JunYu WANG,XuePing WU,XiaoXiu LI,YinKun LI,BiSheng WANG,MengNi ZHANG,XiaoJun SONG,ShaoWen HUANG. Effect of Organic Partial Replacement of Inorganic Fertilizers on N2O Emission in Greenhouse Soil [J]. Scientia Agricultura Sinica, 2019, 52(20): 3625-3636. |
[13] | LIU ShaoWen,YIN Min,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song. Effects of Various Paddy-Upland Crop Rotations and Nitrogen Fertilizer Levels on CH4 Emission in the Middle and Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499. |
[14] | ZHANG Lang,XU HuaQin,LI LinLin,CHEN YuanWei,ZHENG HuaBing,TANG QiYuan,TANG JianWu. Comparative Study on CH4Emission from Ratoon Rice and Double-Cropping Rice Fields [J]. Scientia Agricultura Sinica, 2019, 52(12): 2101-2113. |
[15] | WANG Cong, LI ShuQing, LIU ShuWei, ZOU JianWen. Response of N2O Emissions to Elevated Atmospheric CO2 Concentration and Temperature in Rice-wheat Rotation Agroecosystem [J]. Scientia Agricultura Sinica, 2018, 51(13): 2535-2550. |
|