Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3611-3624.doi: 10.3864/j.issn.0578-1752.2019.20.012

• SPECIAL FOCUS: SOIL WATER AND FERTILIZER MANAGEMENT IN GREENHOUSE VEGETABLE FIELDS • Previous Articles     Next Articles

Effects of Drip Irrigation Water and Fertilizer Integration Combined with Organic Fertilizers on Soil N2O Emission and Enzyme Activity

YaJing XI1,2,JunYu WANG1,2,YinKun LI3,XuePing WU2(),XiaoXiu LI1(),BiSheng WANG2,ShengPing LI2,XiaoJun SONG2,CaiCai LIU2   

  1. 1 College of Resources Environment and Tourism, Capital Normal University, Beijing 100037
    2 Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing 100081
    3 Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097
  • Received:2019-06-03 Accepted:2019-09-02 Online:2019-10-16 Published:2019-10-28
  • Contact: XuePing WU,XiaoXiu LI E-mail:wuxueping@caas.cn;lxiaoxiu0548@sina.com

Abstract:

【Objective】 This paper mainly studied the dynamic changes of soil N2O emission and the activities of urease (UR), nitrate reductase (NR), nitrite reductase (Ni R) and hydroxylamine reductase (Hy R) under the condition of drip irrigation water and fertilizer integration by applying different amounts of inorganic nitrogen to organic nitrogen, and analyzed the soil N2O emission characteristics of every treatment and the effects of soil UR, NR, Ni R and Hy R activities on soil N2O emissions, the purpose of this research was to reveal the influence mechanism of N2O emission process under the integration of drip irrigation water and fertilizer.【Method】 The treatments consisted of CK (no nitrogen application), N1 (200 kg·hm -2 organic nitrogen), N2 (200 kg·hm -2organic nitrogen + 250 kg·hm -2 inorganic nitrogen), and N3 (200 kg·hm -2 organic nitrogen + 475 kg·hm -2inorganic nitrogen). Using static-chamber method, the soil N2O emission, enzyme activity, soil temperature and humidity during the growth period of tomato were monitored.【Result】 The integration of water and fertilizer in drip irrigation showed that the N2O emission peak of every treatment appeared at the first day after fertilization + irrigation, and decreased continuously with the passage of time. The N2O emission flux range under different treatments was 0.98-1544.79 μg·m -2·h -1. The total N2O emissions during the growth period of tomato under different treatments had significant differences among each treatment, which were N3 ((7.13±0.11) kg·hm -2) >N2 ((4.87±0.21) kg·hm -2) >N1 ((2.54±0.17) kg·hm -2) >CK ((1.56±0.23) kg·hm -2). Compared with N3, the total soil N2O emissions from N1 and N2 decreased by 64.38% and 31.70%, respectively. During the growth period of tomato, the characteristics of seasonal emission of N2O changed obviously, which revealed high in autumn and low in winter. The activity of soil nitrogen-related enzymes increased with the increase of nitrogen application rate. The soil N2O flux was positively correlated with 5 cm soil temperature, 0-10 cm soil nitrate nitrogen content, soil NR activity and soil Hy R activity (P<0.01).【Conclusion】 Under the integration of drip irrigation and water and fertilizer, soil N2O mainly came from the nitrification process, which reduced the N2O emissions generated by the denitrification process. Considering the factors such as tomato yield, quality and N2O emission, it was recommended to apply 200 kg·hm -2organic nitrogen +250 kg·hm -2 inorganic nitrogen, 75 kg·hm -2 P2O5 and 450 kg·hm -2 K2O in northern greenhouse autumn-winter tomato.

Key words: N2O emissions, soil nitrogen invertase, drip irrigation water and fertilizer integration, temperature, nitrate nitrogen, greenhouse tomato

Table 1

Physicochemical properties of soil under test greenhouse"

土层
Soil depth (cm)
有机质
Organic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
硝态氮
NO3--N (mg·kg-1)
电导率
Electrical conductivity (μS·cm-1)
容重
Bulk density (g·cm-3)
0-20 15.4 1.55 14.87 276 1.354
20-40 12.80 278 1.517
40-60 22.25 348 1.485
60-80 70.25 360 1.361
80-100 98.68 392 1.424

Fig. 1

Dynamic changes of soil temperature and humidity during the growth period of tomato The arrows in the figure represent fertilization. The same as below"

Fig. 2

Dynamic changes of soil inorganic nitrogen content in 0-10 cm soil layer"

Fig. 3

Dynamic changes of soil urease activity, nitrate reductase activity, nitrite reductase activity and hydroxylamine reductase activity under different treatments Different letters in the same growth period among the treatments mean significant difference (P<0.05)"

Fig. 4

Dynamic changes of soil N2O emission flux during tomato growth period"

"

处理
Treatment
排放总量
Total emissions (kg·hm-2)
排放系数
Emission coefficient (%)
CK 1.56±0.23d -
N1 2.54±0.17c 0.49
N2 4.87±0.21b 0.83
N3 7.13±0.11a 0.89

Table 3

Correlation analysis of soil N2O emission fluxes with environmental factors and inorganic nitrogen contents"

5 cm土温
5 cm soil temperature
土壤含水量
Soil water content
0-10 cm土层硝态氮含量
Nitrate nitrogen content in
0-10 cm soil layer
0-10 cm土层铵态氮含量
Ammonium nitrogen content in
0-10 cm soil layer
CK 0.278 0.134 0.124 0.102
N1 0.319** 0.158 0.506** 0.155
N2 0.401** 0.237 0.766** 0.351
N3 0.445** 0.352 0.820** 0.512**

Table 4

Correlation analysis between soil nitrogen invertase activity and N2O emission flux"

N2O排放通量
N2O emission flux
UR活性
UR activity
NR活性
NR activity
Ni R活性
Ni R activity
Hy R活性
Hy R activity
N2O排放通量 N2O emission flux 1 -0.055 0.516** 0.163 0.757**
UR活性 UR activity 1 0.704** 0.843** 0.567**
NR活性 NR activity 1 0.605** 0.712**
Ni R活性 Ni R activity 1 0.566**
Hy R活性 Hy R activity 1
[1] HUTCHINSON G L, MOSIER A R . Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Science Society of America Journal, 1981,45(2):311.
[2] Delgado J A, Mosier A R . Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux[J]. Journal of Environmental Quality, 1996,25(5):1105-1111.
[3] 张秀君, 徐慧, 陈冠雄 . 长白山阔叶红松林树木N2O排放及总量初步估算. 生态学杂志, 2004,23(5):232-235.
ZHANG X J, XU H, CHEN G X . N2O emission and total estimation of trees in broad-leaved Korean Pine Forest in Changbai Mountain. Chinese Journal of Ecology, 2004,23(5):232-235.(in Chinese)
[4] BOUWMAN A F . The role of soils and land use in the greenhouse effect. Netherlands Journal of Agricultural Science, 1989,37(1):13-19.
[5] 李银坤, 武雪萍, 郭文忠, 薛绪掌 . 不同氮水平下黄瓜-番茄日光温室栽培土壤N2O排放特征. 农业工程学报, 2014,30(23):260-267.
LI Y K, WU X P, GUO W Z, XUE X Z . Characteristics of N2O emission from cucumber-tomato in greenhouse cultivation under different nitrogen levels. Transaction of the Chinese Agricultural Engineering, 2014,30(23):260-267. (in Chinese)
[6] 闫鹏, 武雪萍, 华珞, 武其甫, 李银坤, 吴会军, 王小彬, 蔡典雄, 张彦才, 李若楠, 王丽英 . 不同水氮用量对日光温室黄瓜季土壤硝态氮淋失的影响. 植物营养与肥料学报, 2012,18(3):645-653.
doi: 10.11674/zwyf.2012.11386
YAN P, WU X P, HUA L, WU Q F, LI Y K, WU H J, WANG X B, CAI D X, ZHANG Y C, LI R N, WANG L Y . Effects of different water and nitrogen application rates on soil nitrate-nitrogen leaching in cucumber greenhouse in solar greenhouse. Journal of Plant Nutrition and Fertilizer, 2012,18(3):645-653. (in Chinese)
doi: 10.11674/zwyf.2012.11386
[7] 武其甫, 武雪萍, 李银坤, 吴会军, 闫鹏, 张彦才, 李若楠, 王丽英, 王小彬, 蔡典雄 . 保护地土壤N2O排放通量特征研究. 植物营养与肥料学报, 2011,17(04):942-948.
WU Q F, WU X P, LI Y K WU H , JYAN P, ZHANG Y C, LI R N, WANG L Y, WANG X B, CAI D X . Characteristics of N2O emission flux in protected soils. Journal of Plant Nutrition and Fertilizer, 2011,17(4):942-948. (in Chinese)
[8] 刘全国, 张义勇 . 北方日光温室生产存在的问题及对策. 北方园艺, 2006(1):74-75.
LIU Q G, ZAHNG Y Y . Problems and countermeasures in the production of solar greenhouses in North China. Northern Horticulture, 2006(1):74-75. (in Chinese)
[9] 刘兆辉, 江丽华, 张文君, 郑福丽, 王梅, 林海涛 . 山东省设施蔬菜施肥量演变及土壤养分变化规律. 土壤学报, 2008(2):296-303.
LIU Z H, JIANG L H, ZHANG W J, ZHENG F L, WANG M, LIN H T . Evolution of fertilization amount and soil nutrient variation in facility vegetables in Shandong Province. Journal of Soil Science, 2008(2):296-303. (in Chinese)
[10] 刘丽鹃 . 有机无机配施对大棚和露地蔬菜生长及土壤性状和温室气体排放的影响[D]. 南京: 南京农业大学, 2013.
LIU L J . Effects of organic and inorganic application on growth and soil properties and greenhouse gas emissions of greenhouse and open field vegetables[D]. Nanjing: Nanjing Agricultural University, 2013. ( in Chinese)
[11] PALMER I, PFAB H, RUSER R, FIEDLER S. Nitrogen loss from high N-input vegetable fields: a) Direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4 +, NO3 -) in soils [C]// EGU General Assembly Conference. EGU General Assembly Conference Abstracts, 2009.
[12] MOSIER A R, HEINEMEYER O . Current methods used to estimate N2O and N2 emissions from field soils[M]// Denitrification in the Nitrogen Cycle. Springer US, 1985.
[13] 王颀, 吴春涛, 李丹丹, 王海光, 毕焕改, 艾希珍 . 水肥一体化模式下日光温室黄瓜氮磷钾优化施肥方案的研究. 园艺学报, 2018,45(4):764-774.
WANG Q, WU C T, LI D D, WANG H G, BI H G, AI X Z . Study on optimized fertilization of nitrogen, phosphorus and potassium in solar greenhouse under water and fertilizer Integration model. Journal of Horticulture, 2018,45(4):764-774. (in Chinese)
[14] 李若楠, 武雪萍, 张彦才, 王丽英, 李孝兰, 陈丽莉, 翟凤芝 . 滴灌氮肥用量对设施菜地硝态氮含量及环境质量的影响. 植物营养与肥料学报, 2015,21(6):1642-1651.
doi: 10.11674/zwyf.2015.0632
LI R N, WU X P, ZHANG Y C, WANG L Y, LI X L, CHEN L L, ZHAI F Z . Effects of nitrogen application rate of drip irrigation on nitrate nitrogen content and environmental quality in greenhouse vegetable fields. Journal of Plant Nutrition and Fertilizer, 2015(6):1642-1651. (in Chinese)
doi: 10.11674/zwyf.2015.0632
[15] 刘素慧, 刘世琦, 张自坤, 尉辉, 齐建建, 段吉锋 . 大蒜连作对其根际土壤微生物和酶活性的影响[J]. 中国农业科学, 2010,43(05):1000-1006.
LIU S H, LIU S Q, ZHANG Z K, WEI H, QI J J . Effects of continuous cropping of garlic on microbial and enzyme activities in rhizosphere Soil[J]. Chinese Agricultural Science, 2010,43(5):1000-1006. (in Chinese)
[16] WRAGE N, GROENIGEN J W V, OENEMA O, BAGGS E M . A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Communications in Mass Spectrometry, 2005,19(22):3298-3306.
[17] 朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎 . 农田土壤N2O产生的关键微生物过程及减排措施. 环境科学, 2014,1(2):792-800.
ZHU Y G, WANG X H, YANG X R, XU H J, JIA Y . Key microbial processes and emission reduction measures for N2O production in farmland soils. Environmental Science, 2014,1(2):792-800. (in Chinese)
[18] 王苏平, 辉建春, 林立金, 朱雪梅, 朱波 . 施肥制度对川中丘陵区玉米不同生育期土壤反硝化酶活性的影响. 水土保持研究, 2012,19(3):274-283.
WANG S P, HUI J C, LIN L J, ZHU X M, ZHU B . Effects of fertilization system on soil denitrifying enzyme activities in Different growth stages of maize in hilly areas of central Sichuan. Soil and Water Conservation Research, 2012,19(3):274-283. (in Chinese)
[19] KUNC F. Soil enzymes// BURNS R G. Folia Microbiologica. London - New York- San Francisco: Academic Press, 1978.
[20] 徐国伟, 段骅, 王志琴, 刘立军, 杨建昌 . 麦秸还田对土壤理化性质及酶活性的影响. 中国农业科学, 2009,42(3):934-942.
XU G W, DUAN H, WANG Z Q, LIU L J, YANG C J . Effects of wheat straw returning on soil physical and chemical properties and enzyme activity. Chinese Agricultural Science, 2009,42(3):934-942. (in Chinese)
[21] 李银坤, 郭文忠, 薛绪掌, 乔晓军, 王利春, 陈红, 赵倩, 陈菲 . 不同灌溉施肥模式对温室番茄产量、品质及水肥利用的影响. 中国农业科学, 2017,50(19):3757-3765.
doi: 10.3864/j.issn.0578-1752.2017.19.012
LI Y K, GUO W Z, XUE X Z, QIAO X J, WANG L C, CHEN H, ZHAO Q, CHENG F . Effects of different fertigation patterns on yield, quality and water and fertilizer utilization of greenhouse tomatoes. Scientia Agricultura Sinica, 2017,50(19):3757-3765. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.19.012
[22] 于舜章 . 山东省设施黄瓜水肥一体化滴灌技术应用研究. 水资源与水工程学报, 2009,20(6):173-176.
YU S Z . Application research of integrated irrigation and drip irrigation technology for cucumber in Shandong Province. Journal of Water Resources and Water Engineering, 2009,20(6):173-176. (in Chinese)
[23] 强浩然, 张国斌, 郁继华, 马国礼, 张柏杨, 季磊, 王翠丽, 叶洁, 杜淼鑫 . 不同水分和氮素供应对日光温室辣椒栽培基质氮转化细菌和酶活性的影响. 园艺学报, 2018,45(5):943-958.
QIANG H R, ZHANG G B, YU J H, MA G L, ZHANG B Y, JI L, WANG C L, YE J, DU M X . Effects of different water and nitrogen supply on nitrogen-transformed bacteria and enzyme activities in pepper greenhouse cultivation in solar greenhouse. Acta Horticulturae Sinica, 2018,45(5):943-95. (in Chinese)
[24] 方泽涛, 王楷 . 不同灌溉模式和施氮处理稻田N2O排放与反硝化酶活性的关系. 应用与环境生物学报, 2017(6):1059-1066.
FANG Z T, WANG K . Relationship between N2O emission and denitrifying enzyme activity in different irrigation modes and nitrogen treatment. Journal of Applied and Environmental Biology, 2017(6):1059-1066. (in Chinese)
[25] 和文祥, 魏燕燕, 蔡少华 . 土壤反硝化酶活性测定方法及影响因素研究. 西北农林科技大学学报(自然科学版), 2006(1):121-124.
HE W X, WEI Y Y, CAI S H . Determination of soil denitrifying enzyme activity and its influencing factors. Journal of Northwest A&F University (Natural Science Edition), 2006(1):121-124. (in Chinese)
[26] 陈欢, 李玮, 张存岭, 乔玉强, 杜世州, 赵竹, 曹承富 . 淮北砂姜黑土酶活性对长期不同施肥模式的响应. 中国农业科学, 2014,47(3):495-502.
doi: 10.3864/j.issn.0578-1752.2014.03.009
CHEN H, LI W, ZHANG C L, QIAO Y Q, DU S Z, ZHAO Z, CAO C F . Response of enzyme activity of Shajiang black soil in Huaibei to long-term different fertilization models. Scientia Agricultura Sinica, 2014,47(3):495-502. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.03.009
[27] 史奕, 黄国宏 . 土壤中反硝化酶活性变化与N2O排放的关系. 应用生态学报, 1999(03):74-76.
SHI Y, HUANG G H . Relationship between changes of soil denitrifying enzyme activity and N2O emission in soil. Chinese Journal of Applied Ecology, 1999(03):74-76. (in Chinese)
[28] 鲁亚楠, 李开忠, 吕艳杰, 曹玉军 . 水氮互作下土壤脲酶活性与N2O排放的相关性研究. 吉林农业科技学院学报, 2015,24(4):24-27, 32.
LU Y N, LI K Z, LV Y J, CAO Y J . Correlation between soil urease activity and N2O emission under water-nitrogen interaction. Journal of Jilin Agricultural Science and Technology, 2015,24(4):24-27, 32. (in Chinese)
[29] 李华, 陈英旭, 梁新强, 田光明, 俞巧钢 . 土壤脲酶活性对稻田田面水氮素转化的影响. 水土保持学报, 2006(1):55-58.
LI H, CHEN Y X, LIANG X Q, TIAN G M, YU Q G . Effects of soil urease activity on nitrogen transformation in rice fields. Journal of Soil and Water Conservation, 2006(1):55-58. (in Chinese)
[30] 关松荫, 孟昭鹏 . 不同垦殖年限黑土农化性状与酶活性的变化. 土壤通报, 1986(4):157-159.
GUAN S Y, MENG Z P . Agrochemical characters and enzyme activities of black soils with different Years of reclamation. Chinese Journal of Soil Science, 1986(4):157-159. (in Chinese)
[31] 史云峰, 武志杰, 史奕, 陈利军, 王殳屹 . 土壤羟胺还原酶活性测定方法的改进. 生态学杂志, 2007(7):1133-1137.
SHI Y F, WU Z J, SHI Y, CHEN L J, WANG S Y . Improvement of determination method of soil hydroxylamine reductase activity. Chinese Journal of Ecology, 2007(7):1133-1137. (in Chinese)
[32] 王立刚, 李虎, 邱建军 . 黄淮海平原典型农田土壤N2O的排放特征. 中国农业科学, 2008,41(4):1248-1254.
WANG L G, LI H, QIU J J . Emission characteristics of N2O from typical farmland soils in the Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 2008,41(4):1248-1254. (in Chinese)
[33] CUI Z, YUE S, WANG G, MENG Q, WU L, YANG Z, ZHANG Q, LI S, ZHANG F, CHEN X . Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology, 2013,19(8):2467-2477.
[34] XIONG Z Q, XIE Y X, XING G X, ZHUA Z L, CHRIS B . Measurements of nitrous oxide emissions from vegetable production in China. Atmospheric Environment, 2006,40(12):2225-2234.
[35] HE F, JIANG R, CHRN Q, ZHANG F, FU F . Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environmental Pollution, 2009,157(5):1666-1672.
[36] WANG X, YANG X, ZHANG Z, YE X, KAO C M, CHEN S . Long-term effect of temperature on N2O emission from the denitrifying activated sludge. Journal of Bioscience & Bioengineering, 2014,117(3):298-304.
[37] DOBBIE K E, SMITH K A . Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water‐filled pore space and other controlling variables. Global Change Biology, 2010,9(2):204-218.
[38] 汪俊玉, 刘东阳, 宋霄君, 武雪萍, 李晓秀, 黄绍文, 李若楠 . 滴灌水肥一体化条件下番茄氮肥适宜用量探讨. 中国土壤与肥料, 2018(6):98-103.
WANG J Y, LIU D Y, SONG X J, WU X P, LI X X, HUANG S W, LI R N . Discussion on the suitable amount of nitrogen fertilizer for tomato under the condition of integrated drip irrigation with water and fertilizer. Soil and Fertilizer Sciences in China, 2018(6):98-103. (in Chinese)
[39] 黄绍文, 唐继伟, 殷学云, 张怀志, 袁硕 . 基于发育阶段的日光温室有机基质栽培番茄水肥一体化技术. 中国果菜, 2017,37(9):52-54, 60.
HUANG S W, TANG J W, YIN X Y, ZHANG H Z, YUAN S . Integrated water and fertilizer technology for tomato cultivation in solar greenhouse based on developmental stage. Chinese Fruit and Vegetable, 2017,37(9):52-54, 60. (in Chinese)
[40] 郝小雨, 高伟, 王玉军, 金继运, 黄绍文, 唐继伟, 张志强 . 有机无机肥料配合施用对设施菜田土壤N2O排放的影响. 植物营养与肥料学报, 2012,18(5):1073-1085.
HAO X Y, GAO W, WANG Y J, JIN J Y, HUANG S W, TANG J W, ZHANG Z Q . Effects of combined application of organic and inorganic fertilizers on soil N2O emissions from greenhouse vegetable fields. Journal of Plant Nutrition and Fertilizer, 2012,18(5):1073-1085. (in Chinese)
[41] 陈海燕, 李虎, 王立刚, 邱建军 . 京郊典型设施蔬菜地N2O排放规律及影响因素研究. 中国土壤与肥料, 2012(5):5-10.
CHEN H Y, LI H, WANG L G, QIU J J . Study on N2O emissions and influencing factors of typical vegetable areas in Beijing Suburbs. Soil and Fertilizer Sciences in China, 2012(5):5-10. (in Chinese)
[42] 张婧, 李虎, 王立刚, 邱建军 . 京郊典型设施蔬菜地土壤N2O排放特征. 生态学报, 2014,34(14):4088-4098.
doi: 10.5846/stxb201306091534
ZHANG J, LI H, WANG L G, QIU J J . Characteristics of soil N2O emission from typical vegetable fields in Beijing suburbs. Chinese Journal of Ecology, 2014,34(14):4088-4098. (in Chinese)
doi: 10.5846/stxb201306091534
[43] SMITH K A, THOMSON P E, CLAYTON H, IAIN M . Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment, 1998,32(19):3301-3309.
[44] 郑欠, 丁军军, 李玉中, 林伟, 徐春英, 李巧珍, 毛丽丽 . 土壤含水量对硝化和反硝化过程N2O排放及同位素特征值的影响. 中国农业科学, 2017,50(24):4747-4758.
doi: 10.3864/j.issn.0578-1752.2017.24.008
ZHENG Q, DING J J, LI Y Z, LIN W, XU C Y, LI Q Z, MAO L L . Effects of soil water content on N2O emission and isotope characteristics of nitrification and denitrification processes. Scientia Agricultura Sinica, 2017,50(24):4747-4758. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.24.008
[45] 丁洪, 王跃思, 项虹艳, 李卫华 . 菜田氮素反硝化损失与N2O排放的定量评价. 园艺学报, 2004(6):762-766.
DING H, WANG Y S, XIANG H Y, LI W H . Quantitative evaluation of nitrogen denitrification loss and N2O emission in vegetable fields. Acta Horticulturae Sinica, 2004(6):762-766. (in Chinese)
[46] 王艳丽, 李虎, 孙媛, 王立刚 . 水肥一体化条件下设施菜地的N2O排放. 生态学报, 2016,36(7):2005-2014.
doi: 10.5846/stxb201409301932
WANG Y L, LI H, SUN Y, WANG L G . N2O emissions from protected vegetable fields under water and fertilizer integration conditions. Acta Ecologica Sinica, 2016,36(7):2005-2014. (in Chinese)
doi: 10.5846/stxb201409301932
[47] DIAO T T, XIE L L, GUO L P, YAN H L . Measurements of N2O emissions from different vegetable fields on the North China Plain. Atmospheric Environment, 2013,72(2):70-76.
[48] 巨晓棠, 张福锁 . 关于氮肥利用率的思考. 生态环境, 2003(2):192-197.
JU X T, ZHANG F S . Thinking on the utilization ratio of nitrogen fertilizer. Ecological Environment, 2003(2):192-197. (in Chinese)
[49] 张光亚, 方柏山, 闵航, 陈美慈 . 设施栽培土壤氧化亚氮排放及其影响因子的研究. 农业环境科学学报, 2004(1):144-147.
ZHANG G Y, FANG B S, MIN H, CHEN M C . Study on nitrous oxide emission from soil in greenhouse cultivation and its impact factors. Journal of Agro-Environment Science, 2004,23(1):144-147. (in Chinese)
[50] 姚志生, 郑循华, 周再兴, 谢宝华, 梅宝玲, 顾江新, 王定勇 . 太湖地区冬小麦田与蔬菜地N2O排放对比观测研究. 气候与环境研究, 2006(6):691-701.
YAO Z S, ZHENG X H, ZHOU Z X, XIE B H, MEI B L, GU J X, WANG D Y . Comparative observation of N2O emissions from winter wheat fields and vegetable fields in Taihu Lake Region. Climatic and Environmental Research, 2006,11(6):691-701. (in Chinese)
[51] 徐文彬, 洪业汤 . 贵州省旱田土壤N2O释放及其环境影响因素. 环境科学, 2000,21(1):7-11.
XU W B, HONG Y T . N2O emission from dryland soils in Guizhou Province and its environmental impact factors. Environmental Science, 2000,21(1):7-11. (in Chinese)
[52] 郑循华, 王明星 . 温度对农田N2O产生与排放的影响. 环境科学, 1997(5):1-5.
ZHENG X H, WANG M X . Effects of temperature on N2O production and emission in farmland. Environmental Science, 1997(5):1-5. (in Chinese)
[53] 张恩平, 谭福雷, 王月, 张淑红, 段瑜, 周芳 . 氮磷钾与有机肥配施对番茄产量品质及土壤酶活性的影响. 园艺学报, 2015,42(10):2059-2067.
doi: 10.16420/j.issn.0513-353x.2015-0341
ZHANG E P, TAN F L, WANG Y, ZHANG S H, DUAN Y, ZHOU F . Effects of nitrogen, phosphorus, potassium and organic fertilizers on yield and quality of tomato and soil enzyme activities. Acta Horticulturae Sinica, 2015,42(10):2059-2067. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0341
[54] DICK W A . Influence of long-term tillage and crop rotation combinations on soil enzyme activities. Soil Science Society of America Journal, 1984,48(3):569-574.
[55] 孙建, 刘苗, 李立军, 刘景辉, 张星杰 . 免耕与留茬对土壤微生物量C、N及酶活性的影响. 生态学报, 2009,29(10):5508-5515.
SUN J, LIU M, LI L J, LIU J H, ZHANG X J . Effects of no-tillage and stubble on soil microbial biomass C, N and enzyme activities. Acta Ecologica Sinica, 2009,29(10):5508-5515. (in Chinese)
[56] 李东坡, 武志杰, 陈利军, 杨杰, 朱平, 任军, 彭畅, 高红军 . 长期培肥黑土脲酶活性动态变化及其影响因素. 应用生态学报, 2003(12):2208-2212.
LI D P, WU Z J, CHEN L J, YANG J, ZHU P, PENG C, GAO H J . Dynamic changes of urease activity in long-term fertilization black soil and its influencing factors. Chinese Journal of Applied Ecology, 2003(12):2208-2212. (in Chinese)
[57] 王栋, 李辉信, 胡锋 . 不同耕作方式下覆草旱作稻田土壤肥力特征. 土壤学报, 2011,48(6):1203-1209.
WANG D, LI H X, HU F . Characteristics of soil fertility in paddy field under different tillage patterns. Acta Pedologica Sinica, 2011,48(6):1203-1209. (in Chinese)
[58] 王树起, 韩晓增, 乔云发, 王守宇, 李晓慧 . 不同土地利用和施肥方式对土壤酶活性及相关肥力因子的影响. 植物营养与肥料学报, 2009,15(6):1311-1316.
doi: 10.11674/zwyf.2009.0610
WANG S Q, HAN X Z, QIAO Y F, WANG S Y, LI X H . Effects of different land use and fertilization methods on soil enzyme activities and related fertility factors. Journal of Plant Nutrition and Fertilizer, 2009,15(6):1311-1316. (in Chinese)
doi: 10.11674/zwyf.2009.0610
[59] 褚素贞, 张乃明, 史静, 毛昆明 . 云南省设施栽培土壤脲酶活性变化趋势研究. 土壤通报, 2010,41(4):811-814.
ZHU S Z, ZHANG N M, SHI J, MAO K M . Study on the change trend of soil urease activity in protected cultivation in Yunnan Province. Chinese Journal of Soil Science, 2010,41(4):811-814. (in Chinese)
[60] 肖新, 朱伟, 肖靓, 邓艳萍, 赵言文, 汪建飞 . 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮. 农业工程学报, 2013,29(21):91-98.
XIAO X, ZHU W, XIAO L, DENG Y P, ZHAO Y W, WANG J F . Appropriate water and nitrogen treatment to increase soil enzyme activity and soil microbial biomass carbon and nitrogen in rice-based farmland. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(21):91-98. (in Chinese)
[61] 夏雪, 谷洁, 车升国, 高华, 秦清军 . 施氮水平对塿土微生物群落和酶活性的影响. 中国农业科学, 2011,44(8):1618-1627.
XIA X, GU J, CHE S G, GAO H, QIN Q J . Effects of nitrogen application levels on microbial community and enzyme activities in bauxite. Scientia Agricultura Sinica, 2011,44(8):1618-1627. (in Chinese)
[62] 白红英, 韩建刚, 赵一萍 . 不同土层土壤理化性状与反硝化酶活性N2O排放通量的相关性研究. 农业环境保护, 2002,21(3):193-196.
BAI H Y, HAN J G, ZHAO Y P . Correlation between physical and chemical properties of different soil layers and denitrifying enzyme activity N2O emission flux. Agro- environmental Protection, 2002,21(3):193-196. (in Chinese)
[63] 周礼恺 . 土壤的酶活性. 土壤学进展, 1980,8(4):9-15.
ZHOU L K . Soil enzyme activity. Advances in Soil Science, 1980,8(4):9-15. (in Chinese)
[64] 陈利军, 武志杰, 姜勇, 周礼恺 . 与氮转化有关的土壤酶活性对抑制剂施用的响应. 应用生态学报, 2002(9):1099-1103.
CHEN L J, WU Z J, JIANG Y, ZHOU L K . Response of soil enzyme activity related to nitrogen conversion to inhibitor application. Chinese Journal of Applied Ecology, 2002(9):1099-1103. (in Chinese)
[65] KNOWLES R . Denitrification. Microbiology Reviews, 1982,46(1):43-70.
[66] 宋琴, 许雷 . 异养硝化作用酶学研究进展. 生物技术通报, 2008(5):60-62.
SONG Q, XU L . Advances in enzymology of heterotrophic nitrification. Biotechnology Bulletin, 2008(5):60-62. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[5] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[6] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[7] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[8] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[9] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[10] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[11] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[12] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[13] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[14] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[15] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!