Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2484-2499.doi: 10.3864/j.issn.0578-1752.2019.14.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Various Paddy-Upland Crop Rotations and Nitrogen Fertilizer Levels on CH4 Emission in the Middle and Lower Reaches of the Yangtze River

LIU ShaoWen,YIN Min,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song()   

  1. China National Rice Research Institute/State Key Laboratory of Rice Biology, Hangzhou 311400
  • Received:2019-01-11 Accepted:2019-02-25 Online:2019-07-16 Published:2019-07-26
  • Contact: Song CHEN E-mail:chensong02@caas.cn

Abstract:

【Objective】The study was carried out to evaluate the effects of various paddy-upland systems and nitrogen fertilizer levels on CH4 emissions from paddy fields in the middle and lower reaches of the Yangtze River. 【Method】 Field CH4 emissions were collected during the rice growing season based on the long-term paddy-upland crop rotation experiments (2003-by now), including rice-fallow (RF), rice-green manure (Chinese milk vetch; RC-G), rice-wheat (RW) and rice- potato with rice straw mulch (RP), with three nitrogen levels (N0), N1 (142.5 kg N·hm -2) and N2 (202.5 kg N·hm -2)) from 2016 to 2017. 【Result】 (1) The results showed that the effect of crop rotation and nitrogen fertilizer on CH4 emission in paddy fields was significant mainly on the early stage of tillering (from 7 to 30 days after transplanting), which accounted for 51.9%-72.3% of the cumulative CH4 emission of the whole growth period. (2) In addition, both crop rotations and nitrogen levels affected the CH4 emission. Rotations with winter crops (including RP, RW and RC-G) significantly increased CH4 cumulative emissions in rice season at N0 level compared to the RF, being 74.1%-145.1%, 68.5%-109.9% and 56.4%-108.6% higher in RP, RW, and RC-G, respectively. (3) The response of CH4 emissions to rotations was different along with increasing nitrogen fertilizer (N0 to N1 and N2). CH4 emissions increased along with the increase of nitrogen fertilizer application under RF, RP and RW, at N2 level, CH4 cumulative emissions of RP, RW and RF were 51.2-55.8 g·m -2, 45.3-51.5 g·m -2 and 25.0-30.5 g·m -2, respectively, with 23.0%-38.4%, 26.7%-33.7% and 35.3%-43.5% higher than that of N0 level, and 9.9%-19.7%, 20.8%-23.1% and 17.4%-18.8% higher than that of N1 level. While decreased or kept consistent in RC-G, CH4 cumulative emissions under N1 and N2 decreased by 20.7%-42.4% and 10.6%-16.6%, respectively compare with N0. (4) Analyses of functional microbial in related to CH4 emission during early tillering stage showed that rotations with full return of straw and/or green manure could significantly increase the abundance of both methanogens and methane oxidizing bacteria under N0. The response mechanism of related microorganisms to nitrogen fertilizer varied with crop rotation pattern, and the application of nitrogen fertilizer promoted the proliferation of methanogens, but inhibited the proliferation of methane oxidizing bacteria, but the extent of the change varied with crop rotations. With the increase of nitrogen application, the mcrA gene abundance of RP, RW and RF increased by 191.4%, 160.6% and 143.3%, respectively, while RC-G only increased by 62.6%. (5) In addition, the ratio of mcrA/pmoA in RF, RP and RW increased along with the increase of nitrogen application, which increased 71.4%-141.1%, 197.1%-258.2% and 84.6%-165.5%, respectively. The RC-G showed a downward trend, which declined 26.8%-42.3%. The change rule was basically consistent with CH4 emission. 【Conclusion】 Combining with the properties of straw returning in winter, the amount of straw returning in RW and RP was significantly higher than that under RC-G in this study, while the ratio of C/N in RP and RC-G was significantly lower than that under RW. Therefore, the relative amount of C/N returned from straw might be the key to interfere with the effect of nitrogen fertilizer level on CH4 emission from paddy field systems. When carbon was abundant in the system, the relevant microbial activity was restricted by available nitrogen in the soil, and the input of inorganic nitrogen could reduce nitrogen limitation and significantly increase CH4 emission. When the carbon was insufficient and the inorganic nitrogen continues to be invested, the related microbial reproduction was inhibited by the limited carbon source in the soil, and the CH4 emission was relatively reduced.

Key words: rotation pattern, rice, nitrogen fertilizer, CH4 emission, methanogenic bacteria, methane oxidizing bacteria

Table 1

Basic properties of soil under different rotation systems and different N rates(the two years’ average)"

轮作 Rotation 肥料 Fertilizer TN (g·kg-1) AN (g·kg-1) SOM (g·kg-1) pH
RF N0 2.52g 0.14fc 31.2e 6.18ab
N1 3.27cd 0.17e 39. 7bcd 5.87bc
N2 2.91ef 0.18cd 39.8cd 5.76c
RC-G N0 2.77f 0.19cd 37.8d 6.27a
N1 2.87ef 0.19cd 38.1cd 6.12abc
N2 3.48abc 0.19bc 41.9b 5.84bc
RW N0 3.10de 0.17de 39.7bcd 5.89bc
N1 3.29bcd 0.20bc 40.8bc 5.80c
N2 3.24cd 0.19cd 38.3bcd 5.78c
RP N0 3.40abc 0.21b 45.0a 5.83bc
N1 3.52ab 0.25a 46.1a 5.86bc
N2 3.58a 0.19bc 46.4a 5.84bc

Fig. 1

Amount (A) and C/N ratio (B) of straw incorporated under different rotations Different small letters in same year indicated significant difference among different rotation systems at P<0.05"

Table 2

Aplification primer and reaction condition of quantitative PCR"

目的基因
Target gene
引物
Primer
引物序列(5′→3′)
Sequence (5′→3′)
定量PCR反应程序
Thermal profile
mcrA[26] MLf GGTGGTGTMGGATTCACACARTAYGCWACAGC 94℃预变性3 min,94℃变性25 s,50℃退火45 s,72℃延伸60 s,35个循环
Pre-denaturation at 94℃ for 3 min, denaturation at 94℃ for 25 s, annealing at 50℃ for 45 s, extension at 72°C for 60 s, 35 cycles
MLr TTCATTGCRTAGTTWGGRTAGTT
pmoA[27] PmoA A189f GGNGACTGGGACTTCTGG 95℃预变性5 min,92℃变性1 min,55℃退火1.5 min,72℃延伸60 s,35个循环
Pre-denaturation at 95℃ for 5 min, denaturation at 92℃ for 1 min, annealing at 55℃ for 1.5 min, extension at 72℃ for 60 s, 35 cycles
pmoA mb661r CCGGMGCAACGTCYTTACC

Fig. 2

Seasonal variations of CH4 fluxes in rice season under different rotation systems and N fertilizer rates in 2016 (A, C, E), 2017 (B, D, F)"

Fig. 3

CH4 accumulation emissions in rice season under different rotations and N fertilizer rates in 2016 (A) and 2017 (B) Different small letters in the same year indicated significant difference among different rotation systems and fertilizers at P<0.05"

Fig. 4

CH4 accumulation emissions at different rice growth periods under different rotation systems and N fertilizer rates in 2016 (A, C and E) and 2017 (B, D and F) Ⅰ, Ⅱ and Ⅲ represent tillering stage, booting stage and filling stage; respectively. Different small letters in the same growth period indicated significant difference among different rotation systems at P<0.05"

Fig. 5

Abundance of methanogenic gene mcrA (A and B) and methanotrophic gene pmoA (C and D) and mcrA/pmoA ratio (E and F) under different rotation systems and N rates in 2018 Different small letters in the same day after transplanting indicated significant difference among different rotation systems at P<0.05"

Fig. 6

Variations of soil redox potential in rice season under different rotation systems and N fertilizer rates"

[1] 杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响Ⅰ. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010,43(2):329-336.
YANG X G, LIU Z J, CHEN F . Possible impacts of global warming on China's cropping system I. Analysis of the possible impacts of global warming on the northern boundary of China's cropping system and grain yield. Scientia Agricultura Sinica, 2010,43(2):329-336. (in Chinese)
[2] 张亚莉 . 浅谈林业碳汇与全球气候变化之关联. 吉林农业, 2010(5):86-86.
ZHANG Y L . A brief talk on the relationship between forest carbon sequestration and global climate change. Jilin Agriculture, 2010(5):86-86. (in Chinese)
[3] GUO J, ZHOU C . Greenhouse gas emissions and mitigation measures in Chinese agroecosystems. Agricultural & Forest Meteorology, 2007,142(2):270-277.
[4] GHOSH S, MAJUMDAR D, JAIN M C . Methane and nitrous oxide emissions from irrigated rice of north India. Chamosphere, 2003,51(3):181-195.
doi: 10.1016/S0045-6535(02)00822-6
[5] 胡安永, 孙星, 刘勤 . 太湖地区不同轮作模式对稻田温室气体(CH4和N2O)排放的影响. 应用生态学报, 2016,27(1):99-106.
HU A Y, SUN X, LIU Q . Effects of different rotation systems on greenhouse gas ( CH4 and N2O) emissions in the Taihu Lake region, China. Chinese Journal of Applied Ecology, 2016,27(1):99-106. (in Chinese)
[6] 刘永卓 . 重金属污染稻田土壤温室气体产生相关的微生物群落结构及活性变化[D]. 南京: 南京农业大学, 2012.
LIU Y Z . Changes of microbial community structure and activity related to greenhouse gas production in paddy soils polluted by heavy metals[D]. Nanjing: Nanjing Agricultural University, 2012. ( in Chinese)
[7] CHANTON J P . The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry, 2005,36(5):753-768.
doi: 10.1016/j.orggeochem.2004.10.007
[8] BUTTERBACH-BAHL K, PAPEN H, RENNENBERG H . Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant Cell & Environment, 2010,20(9):1175-1183.
[9] SMITH P, MARTINO D, CAI Z . Greenhouse gas mitigation in agriculture. Philosophical Transactions Biological Sciences, 2008,363(1492):789-813.
doi: 10.1098/rstb.2007.2184
[10] 徐华, 邢光熹, 蔡祖聪, 鹤田治雄 . 土壤水分状况和质地对稻田N2O排放的影响. 土壤学报, 2000,37(4):499-505.
HU H, XING G X, CAI Z C, HETIAN Z X . Effect of soil water regime and soil texture on N2O emission from rice paddy field. Acta Pedologica Sinica, 2000,37(4):499-505. (in Chinese)
[11] 蒋静艳, 黄耀, 宗良纲 . 水分管理与秸秆施用对稻田CH4和N2O 排放的影响. 中国环境科学, 2003,23(5):552-556.
JIANG J Y, HUANG Y, ZONG L G . Effects of water management and straw application on CH4 and N2O emissions from paddy fields. China Environmental Science, 2003,23(5):552-556. (in Chinese)
[12] 黄勤, 魏朝富 . 不同耕作制对稻田甲烷排放通量的影响. 西南大学学报(自然科学版), 1996(5):436-439.
HUANG Q, WEI C F . Effects of different tillage systems on methane emission flux from paddy fields.Journal of Southwest University (Natural Science Edition), 1996(5):436-439. (in Chinese)
[13] 彭世彰, 李道西, 缴锡云, 何岩, 郁进元 . 节水灌溉模式下稻田甲烷排放的季节变化. 浙江大学学报(农业与生命科学版), 2006,32(5):546-550.
PENG S Z, LI D X, JIAO X Y, HE Y, YU J Y . Seasonal variation of methane emission from paddy fields under water-saving irrigation. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2006,32(5):546-550. (in Chinese)
[14] 蒋静艳, 黄耀, 宗良纲 . 稻田土壤理化特性对CH4排放的影响. 生态环境学报, 2001,10(1):27-29.
JIANG J Y, HUANG Y, ZONG L G . Effects of physical and chemical properties of paddy soil on CH4 emissions. Journal of Ecology and Environment, 2001,10(1):27-29. (in Chinese)
[15] 商庆银, 杨秀霞, 成臣, 罗亢, 黄山, 石庆华, 潘晓华, 曾勇军 . 秸秆还田条件下不同水分管理对双季稻田综合温室效应的影响. 中国水稻科学, 2015,29(2):181-190.
doi: 10.3969/j.issn.10017216.2015.02.010
SHANG Q Y, YANG X X, CHENG C, LUO K, HUANG S, SHIQ H, PAN X H, ZENG Y J . Effects of different water management on the comprehensive greenhouse effect of double cropping paddy fields. China Rice Science, 2015,29(2):181-190. (in Chinese)
doi: 10.3969/j.issn.10017216.2015.02.010
[16] YANG X, SHANG Q, WU P, LIU J, SHEN Q, GUO S, XIONG Z . Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China. Agriculture Ecosystems & Environment, 2010,137(3):308-316.
[17] 钟磊 . 麦稻、油稻轮作系统中硫砷的交互作用及其效应[D]. 武汉: 华中农业大学, 2010.
ZGONG L . Interaction and effects of sulfur and arsenic in wheat-rice and oil-rice rotation systems[D]. Wuhan: Huazhong Agricultural University, 2010. ( in Chinese)
[18] 元生朝 . 合理的复种轮作与湖北省稻田耕作制度改革. 作物学报, 1981,7(3):211-216.
YUAN S C . The suitable crop rotation and the improvement of the cropping system on rice field in Hubei Province. Acta Agronomica Sinica, 1981,7(3):211-216. (in Chinese)
[19] 顾敏京, 左文刚, 严漪云, 臧彩云, 薛伟杰, 柏彦超, 单玉华, 封克 . 氮肥管理对秸秆全量还田双季晚稻土壤固定态铵的影响. 扬州大学学报(农业与生命科学版), 2017(2):73-78, 85.
GU M J, ZUO W G, YAN Y Y, ZANG C Y, XUE W J, BAI Y C, SHAN Y H, FENG K . Effects of nitrogen fertilizer management on soil fixed ecological ammonium of late rice with full straw returning to field.Journal of Yangzhou University (Agriculture and Life Sciences Edition), 2017(2):73-78, 85. (in Chinese)
[20] 刘玲玲, 刘婷, 狄霖, 吴文祥, 盛海军 . 秸秆全量还田对水稻生长及土壤理化性质的影响. 扬州大学学报(农业与生命科学版), 2018,39(3):81-85.
LIU L L, LIU T, DI L, WU W X, SHENG H J . Effects of total straw returning on rice growth and soil physical and chemical properties. Journal of Yangzhou University (Agriculture and Life Sciences Edition), 2018,39(3):81-85. (in Chinese)
[21] CHEN G, HUANG G, HUANG B . CH4 and N2O emission from a rice field and effect of Azolla and fertilitaion on them. Chinese Journal of Applied Ecology, 1995,6(4):378-382.
[22] 刘金剑, 吴萍萍, 谢小立, 傅心赣, 沈其荣, 郭世伟 . 长期不同施肥制度下湖南红壤晚稻田CH4的排放. 生态学报, 2008,28(6):2878-2886.
LIU J J, WU P P, XIE X L, FU X G, SHEN Q R, GUO S W . Methane emission from late rice fields in Hunan red soil under different long-term fertilizing systems. Acta Ecologica Sinica, 2008,28(6):2878-2886.
[23] CAI Z, XING G, YAN X, XU H, TSURATA H, YAGI K, MINAMI K . Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant & Soil, 1997,196(1):7-14.
[24] 伍玉鹏, 刘田, 彭其安 . 氮肥配施下不同C/N作物残渣还田对红壤温室气体排放的影响. 农业环境科学学报, 2014,33(10):2053-2062.
WU Y P, LIU T, PENG Q A . Effects of different C/N crop residues on greenhouse gas emissions from red soil under combined application of nitrogen fertilizer. Journal of Agricultural Environmental Sciences, 2014,33(10):2053-2062
[25] 许欣, 陈晨, 熊正琴 . 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响. 土壤学报, 2016,53(6):1517-1527.
XU X, CHEN C, XIONG Z Q . Effects of biochar and nitrogen fertilizer on methane production and the number and potential activity of oxidizing bacteria in paddy fields. Acta Pedologica Sinica, 2016,53(6):1517-1527. (in Chinese)
[26] BARBIER B A, DZIDUCH I, LIEBNER S . Methane-cycling communities in a permafrost‐affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiology Ecology, 2012,82(2):287-302.
doi: 10.1111/fem.2012.82.issue-2
[27] COSTELLO A . Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied Environmental Microbiology, 1999,65(11):5066-5074.
[28] ZOU J, LIU S, QIN Y, PAN G, ZHU D . Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agriculture, Ecosystems and Environment, 2009,129(4):516-522.
doi: 10.1016/j.agee.2008.11.006
[29] 孙会峰, 周胜, 陈桂发, 付子轼, 刘国兰, 宋祥甫 . 水稻品种对稻田CH4和N2O排放的影响. 农业环境科学学报, 2015,34(8):1595-1602.
SUN H F, ZHOU S, CHEN G F, FU Z S, LIU G L, SONG X F . Effects of rice varieties on CH4 and N2O emissions from paddy fields. Journal of Agricultural Environmental Sciences, 2015,34(8):1595-1602. (in Chinese)
[30] 张岳芳, 周炜, 陈留根, 王子臣, 朱普平, 盛婧, 郑建初 . 太湖地区不同水旱轮作方式下稻季甲烷和氧化亚氮排放研究. 中国生态农业学报, 2013,21(3):290-296.
ZHANG Y F, ZHOU W, CHEN L G, WANG Z C, ZHU P P, SHENG J, ZHENG J C . Methane and nitrous oxide emissions from rice seasons under different cropping patterns in Taihu Lake Region. Chinese Journal of Eco-Agriculture, 2013,21(3):290-296. (in Chinese)
[31] 黄太庆 . 不同轮作制度稻田生态系统温室气体排放研究[D]. 南京: 南京农业大学, 2011.
HUANG T Q . Greenhouse gases emissions from different rotation systems in paddy fields[D]. Nanjing: Nanjing Agricultural University, 2011. ( in Chinese)
[32] 张啸林 . 不同稻田轮作体系下温室气体排放及温室气体强度研究[D]. 南京: 南京农业大学, 2013.
ZHANG X L . Greenhouse gases emissions and greenhouse gas intensity from different rice-based cropping systems[D]. Nanjing: Nanjing Agricultural University, 2013. ( in Chinese)
[33] FINN D, KOPITTKE P M, DENNIS P G, DAAL R C . Microbial energy and matter transformation in agricultural soils. Soil Biology and Biochemistry, 2017, 111(15):176-192.
[34] WATANABE T, KIMURA M, ASAKAWA S . Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biology and Biochemistry, 2007,39(11):2877-2887.
doi: 10.1016/j.soilbio.2007.05.030
[35] CONRAD R, KLOSE M, LU Y, CHILDTHAISONG A . Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw. Frontiers in Microbiology, 2012,3(11):566-576. DOI: 10.3389/FMICB.2012.00004.
[36] 李大明, 成艳红, 刘满强, 秦江涛, 焦加国, 李辉信, 胡锋 . 双季稻田甲烷排放与土壤产甲烷菌群落结构和数量关系研究. 农业环境科学学报, 2013(4):866-873.
LI D M, CHENG Y H, LIU M Q, QIN J T, JIAO J G, LI H X, HU F . Relationship between methane emission and the community structure and abundance of soil methanogens under double rice cropping system.Journal of Agricultural Environmental Science, 2013(4):866-873. (in Chinese)
[37] 颜永毫, 王丹丹 . 生物炭对土壤N2O和CH4排放影响的研究进展. 中国农学通报, 2013,29(8):140-146.
YAN Y H, WANG D D . Advances in effects of biochar on the soil N2O and CH4 emissions. China Agricultural Bulletin, 2013,29(8):140-146. (in Chinese)
[38] BAO Q L, XIAO K Q, CHEN Z, YAO H Y, ZHU Y G . Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiology Ecology, 2014,88(2):372-385.
doi: 10.1111/fem.2014.88.issue-2
[39] ARIF M A S, HOUWEN F, VERSTRAETE W . Agricultural factors affecting methane oxidation in arable soil. Biology and Fertility of Soils, 1996,21(1/2):95-102.
doi: 10.1007/BF00335999
[40] 刘启明, 朱艺贞, 焦玉佩, 曹英兰, 黄云凤, 黄宁 . 生态恢复红壤区土壤微生物活性的对比研究. 地球与环境, 2015,43(4):420-424.
LIU Q M, ZHU Y Z, JIAO Y P, CAO Y L, HUANG Y F, HUANG N . Comparative study on microbial activity of red soil from ecological restoration zone. Earth and Environment, 2015,43(4):420-424. (in Chinese)
[41] 陈建 . 不同氮肥类型和耕作方式对稻田温室气体排放及土壤碳库的影响[D]. 武汉: 华中农业大学, 2016.
CHEN J . Effects of different fertilizer sources and tillage practices on GHG emissions and soil carbon pool in paddy fields[D]. Wuhan: Huazhong Agricultural University, 2016. ( in Chinese)
[42] ZHU B, YI L X, HU Y G, ZENG Z H, TANG H M, YANG G L XIAO X P . Effects of Chinese milk vetch (Astragalus sinicus L.) residue incorporation on CH4 and N2O emission from a double-rice paddy soil. Journal of Integrative Agriculture, 2012,11(9):1537-1544.
[43] 付薇薇, 尹力初, 张蕾, 张艺 . 有机物料碳和土壤有机碳对水稻土甲烷排放的影响. 中国土壤与肥料, 2016(2):14-20.
FU W W, YIN L C, ZHANG L, ZHANG Y . Effects of exogenous organic carbon and soil organic carbon on the CH4 emission in paddy soils with different fertilities.Soils and Fertilizers Sciences in China, 2016(2):14-20. (in Chinese)
[44] KONG Y H, NAGANO H, KÁTAI J, VAGO I, YASHIMA M, INUBUSHI K . CO2, N2O and CH4 production/consumption potentials of soils under different land-use types in central Japan and eastern Hungary. Soil Science & Plant Nutrition, 2013,59(3):455-462.
[45] KNAPP E B, ELLIOTT L F, CAMPBELL G S . Microbial respiration and growth during the decomposition of wheat straw. Soil Biology & Biochemistry, 1983,15(3):319-323.
[46] NYKÄNEN H, VASANDER H, HUTTUNEN J T, MARTIKAINEN P J . Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant & Soil, 2002,242(1):147-155.
[47] 颜永毫, 王丹丹, 郑纪勇 . 生物炭对土壤N2O和CH4排放影响的研究进展. 中国农学通报, 2013,29(8):140-146.
YAN Y H, WANG D D, ZHEN J Y . Advances in effects of biochar on the soil N2O and CH4 emissions. Chinese Agricultural Science Bulletin, 2013,29(8):140-146. (in Chinese)
[48] 胡敏杰, 仝川, 邹芳芳 . 氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制. 草业学报, 2015,24(6):204-212.
doi: 10.11686/cyxb2014313
HU M J, TONG C, ZOU F F . Effects of nitrogen input on CH4 production, oxidation and transport in soils, and mechanisms. Acta Prataculturae Sinica, 2015,24(6):204-212. (in Chinese)
doi: 10.11686/cyxb2014313
[49] 韩冰 . 甲烷氧化菌及甲烷单加氧酶的研究进展. 生物工程学报, 2008,24(9):1511-1519.
HAN B . Research progresses of methanotrophs and methane monooxygenases. Chinese Journal Biotechnology, 2008,24(9):1511-1519. (in Chinese)
[50] CRILL P M, MARTIKAINEN P J, NYKANEN H, SILVOLA J . Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biology and Biochemistry, 1994,26(10):1330-1339.
[51] 丁维新, 蔡祖聪 . 氮肥对土壤甲烷产生的影响. 农业环境科学学报, 2003,22(3):380-383.
DING W X, CAI Z C . Effect of nitrogen fertilization on methane production in wetland soils. Journal of Agro-environment Science, 2003,22(3):380-383. (in Chinese)
[52] LIU H F, WU X, LI Z S, WANG Q, LIU G H . Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China. Environmental Science & Pollution Research, 2017,24(9):1-13.
[53] WATANABE A, YOSHIDA M, KIMURA M . Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw . Journal of Geophysical Research Atmospheres, 1998,103(D7):8237-8242.
doi: 10.1029/97JD03460
[54] 吴讷, 侯海军, 汤亚芳, 沈建林, 刘波, 魏文学, 秦红灵 . 稻田水分管理和秸秆还田对甲烷排放的微生物影响. 农业工程学报, 2016,32(增刊2):69-76.
WU N, HOU H J, TANG Y F, SHEN J L, LIU B, WEI W X, QIN H L . Methane-related microbe influenced by water management and rile straw returning in paddy soil. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(Suppl.2):69-76. (in Chinese)
[55] 贾仲君, 蔡祖聪 . 水稻植株对稻田甲烷排放的影响. 应用生态学报, 2003,14(11):2049-2053.
JIA Z J, CAI Z C . Effects of rice plants on methane emission from paddy fields. Chinese Journal of Applied Ecology, 2003,14(11):2049-2053. (in Chinese)
[56] 江瑜, 管大海, 张卫建 . 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展. 中国生态农业学报, 2018,26(2):175-181.
JIANG Y, GUAN D H, ZHANG W J . The effect of rice plant traits on methane emissions from paddy fields. Chinese Journal of Eco- Agriculture, 2018,26(2):175-181. (in Chinese)
[57] 王红妮, 王学春, 黄晶, 李军, 胡运高 . 秸秆还田对土壤还原性和水稻根系生长及产量的影响. 农业工程学报, 2017,33(20):116-126.
WANG H N, WANG X C, HUANG J, LI J, HU Y G . Effect of straw incorporated into soil on reducibility in soil and root system and yield of rice. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(20):116-126. (in Chinese)
[58] 王延华, 杨浩 . 产甲烷菌和甲烷氧化菌分布对土壤-植物系统甲烷逸出的影响. 环境科学研究, 2011,24(10):1136-1141.
WANG Y H, YANG H . Effects of methanogens and methanotrophs distribution on methane emissions from a soil-plant system. Research of Environmental Sciences, 2011,24(10):1136-1141. (in Chinese)
[59] AULAKH M S, BODENBENDER J, WASSMANN R, RENNENBERG H . Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems, 2000,58(1):367-375.
doi: 10.1023/A:1009839929441
[60] DENIER VAN DER GON H A C, NEUE H U . Oxidation of methane in the rhizosphere of rice plants. Biology and Fertility of Soils, 1996,22(4):359-366.
doi: 10.1007/BF00334584
[61] 周小燕, 林红梅, 苏卫国, 何春萍 . 大棚秸秆覆盖马铃薯-小青菜-水稻高效栽培模式. 农业科技通讯, 2013(2):191-191.
ZHOU X Y, LIN H M, SU W G, HE C P . High-efficient cultivation mode of potato-cabbage-rice covered with straw in greenhouse.Bulletin of Agricultural Science and Technology, 2013(2):191-191. (in Chinese)
[62] 王西娜, 王朝辉, 李华, 王荣辉, 谭军利, 李生秀 . 旱地土壤中残留肥料氮的动向及作物有效性. 土壤学报, 2016,53(5):1202-1212.
WANG X N, WANG Z H, LI H, WANG R H, TAN J L, LI S X . Dynamics and availability to crops of residual fertilizer nitrogen in upland soil. Acta Pedologica Sinica, 2016,53(5):1202-1212. (in Chinese)
[63] LORENZ K, LAL R . Soil organic carbon sequestration in agroforestry systems. Agronomy for Sustainable Development, 2014,34(34):443-454.
doi: 10.1007/s13593-014-0212-y
[64] 范如芹, 梁爱珍, 杨学明, 张晓平, 时秀焕, 贾淑霞, 陈学文 . 耕作与轮作方式对黑土有机碳和全氮储量的影响. 土壤学报, 2011,48(4):788-796.
FAN R Q, LIANG A Z, YANG X M, ZHANG X P, SHI X H, JIA S X, CHEN X W . Effects of tillage and rotation on soil organic carbon and total nitrogen stocks of a black soil. Acta Pedologica Sinica, 2011,48(4):788-796. (in Chinese)
[65] 汪娟, 蔡立群, 毕冬梅, 王新建, 张仁陟 . 保护性耕作对麦-豆轮作土壤有机碳全氮及微生物量碳氮的影响. 农业环境科学学报, 2009,28(7):1516-1521.
WANG J, CAI L Q, BI D M, WANG X J, ZHANG R Z . Effects of conservation tillage on the SOC, TN, SMBC and SMBN in two sequence rotation systems with spring wheat and pea. Journal of Agro-Environment Science, 2009,28(7):1516-1521. (in Chinese)
[66] 李菊梅, 王朝辉, 李生秀 . 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义. 土壤学报, 2003,40(2):232-238.
LI J M, WANG Z H, LI S X . Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity. A cta Pedologica Sinica, 2003,40(2):232-238. (in Chinese)
[67] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999: 108-109.
LU R K. Analytical Methods of Soil Agrochemistry. Beijing: China Agricultural Science and Technology Press, 1999. ( in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!