Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 5063-5072.doi: 10.3864/j.issn.0578-1752.2020.24.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province

TIAN Yun(),WANG MengChen   

  1. School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073
  • Received:2020-05-04 Accepted:2020-07-21 Online:2020-12-16 Published:2020-12-28

Abstract:

【Objective】As a traditional agricultural province, Hubei Province has a heavy dependence on agricultural inputs such as chemical fertilizers and pesticides, which has objectively led to its relatively high carbon emissions in the agricultural production. Clarifying its agricultural carbon emission efficiency and influencing factors could provide necessary references and policy implications for the practical promotion of agricultural low-carbon production in Hubei Province. 【Method】The DEA-Malmquist decomposition method was employed to effectively measure the agricultural carbon emission efficiency of Hubei Province, and its temporal and spatial characteristics were analyzed. On this basis, Tobit model was adopted to explore the key factors affecting the change of its carbon emission efficiency. 【Result】Since 2011, the agricultural carbon emission efficiency of Hubei has been overall increasing but with certain interannual fluctuations, and the average annual growth rate was 2.9%. From the perspective of driving sources, its enhancement mainly depended on the progress of frontier technology rather than technical efficiency improvement. Further decomposition of technical efficiency showed that the pure technical efficiency had an obvious trend of deterioration, while the scale efficiency has been slightly improved. There were apparent differences in agricultural carbon emission efficiency among cities and prefectures in Hubei Province, among which Wuhan had the highest of 1.584 while Jingmen has the lowest of 0.803. Among to numerical differences, 15 regions could be divided into three different groups: high-speed growth, low-speed growth and decline. Frontier technological progress played a more obvious role in promoting the agricultural carbon emission efficiency for all regions, while the improvement of technical efficiency played a relatively small role. By decomposing the technical efficiency, it could be found that the influencing direction of pure technical efficiency and scale efficiency varied by regions, but the latter had a slightly greater effect than the former. Rural economic development level, urbanization level and rural electricity consumption had a significant and positive impact on agricultural carbon emission efficiency of Hubei Province, that is, under the premise that other conditions remained unchanged, the higher farmers’ net income per capita, the higher the urbanization level, or the greater the rural electricity consumption, the higher the agricultural carbon emission efficiency. However, the situation of agricultural industrial structure was exactly the opposite. Specifically, the higher proportion of the output value of planting industry was not conducive to the improvement of agricultural carbon emission efficiency. 【Conclusion】The agricultural carbon emission efficiency in Hubei Province was generally on the rise but with interannual fluctuations, and there were great differences among cities and prefectures. Whether it was Hubei Province or cities and prefectures, the enhancement of agricultural carbon emission efficiency depended more on frontier technological progress than technical efficiency improvement, which also required us not only to pay attention to the research and development of new technologies but to strengthen the rational use of various technologies in the process of promoting agricultural low-carbon production in Hubei Province. Considering the realistic situation that rural economic development, urbanization level, rural electricity consumption and agricultural industrial structure all had a significant impact on agricultural carbon emission efficiency, in practice, the enhancement of agricultural carbon emission efficiency could be effectively ensured by means of prospering rural economic development, improving urbanization level, ensuring rural electricity demand, optimizing agricultural industrial structure, improving the legal system construction and institutional support, etc.

Key words: agricultural carbon emissions, carbon emission efficiency, temporal and spatial differences, influencing factors, Hubei Province

Table 1

General descriptive statistical results of agricultural input and output indicators"

指标
Indicators
变量
Variable
单位
Unit
极小值
Minimum
极大值
Max
均值
Mean
标准差
St. deviation
产出指标
Output indicator
期望产出
Expected output
农业总产值
Gross agricultural output value
×108 yuan 31.86 352.19 141.75 83.32
非期望产出
Unexpected output
农业碳排放量
Agricultural carbon emissions
×104 t 25.55 212.07 98.19 60.10
投入指标Input index 劳动力Labor force ×104 7.81 134.35 62.09 34.82
土地Land khm2 70.22 470.34 225.3 120.87
农用机械Agricultural machinery ×104 kW 72.34 646.07 264.65 149.90
灌溉Irrigation khm2 30.38 423.26 151.1 101.23
役畜Beast of burden ×104 0.31 108.19 29.05 30.31

Table 2

Changes in agricultural carbon emission efficiency in Hubei Province"

年份
Year
前沿技术进步
CTECH
技术效率
CEFF
纯技术效率
CPECH
规模效率
CSECH
综合效率
CTFP
年际值
Interannual
累计值
Cumulative
年际值
Interannual
累计值
Cumulative
年际值
Interannual
累计值
Cumulative
年际值
Interannual
累计值
Cumulative
年际值
Interannual
累计值
Cumulative
2011 1.024 1.024 0.974 0.974 0.991 0.991 0.983 0.983 0.998 0.998
2012 1.007 1.031 0.951 0.926 0.944 0.936 1.008 0.991 0.958 0.956
2013 1.220 1.258 0.875 0.809 0.954 0.892 0.917 0.909 1.067 1.020
2014 1.070 1.339 0.989 0.791 1.016 0.903 0.974 0.884 1.059 1.083
2015 1.133 1.497 1.165 0.919 1.062 0.961 1.097 0.968 1.320 1.428
2016 0.769 1.118 1.070 1.021 1.030 0.996 1.039 1.017 0.822 1.152
2017 1.047 1.280 0.953 0.976 0.926 0.923 1.029 1.048 0.998 1.222
平均Average 1.036 0.997 0.989 1.007 1.029

Table 3

Comparison of agricultural carbon emission efficiency and growth sources among cities and prefectures"

地区
Region
前沿技术进步
CTECH
技术效率
CEFF
纯技术效率
CPECH
规模效率
CSECH
综合效率
CTFP
排名
Rank
增长类型
Growth type
武汉Wuhan 1.398 1.133 1.000 1.133 1.584 1 高速High speed
黄石Huangshi 1.012 0.984 0.987 0.996 0.995 9 下降Decline
十堰Shiyan 0.827 1.000 1.000 1.000 0.827 14 下降Decline
宜昌Yichang 1.191 1.000 1.000 1.000 1.191 2 高速High speed
襄阳Xiangyang 1.007 1.000 1.000 1.000 1.007 7 低速Low speed
荆门Jingmen 0.803 1.000 1.000 1.000 0.803 15 下降Decline
孝感Xiaogan 1.068 1.043 1.017 1.025 1.113 3 高速High speed
荆州Jingzhou 0.977 1.004 1.000 1.004 0.982 11 下降Decline
黄冈Huanggang 1.051 0.989 1.000 0.989 1.040 5 低速Low speed
咸宁Xianning 1.036 0.946 0.947 0.999 0.979 12 下降Decline
随州Suizhou 1.106 1.000 1.000 1.000 1.106 4 高速High speed
恩施Enshi 1.014 0.880 0.886 0.994 0.893 13 下降Decline
仙桃Xiantao 1.027 0.979 0.998 0.981 1.006 8 低速Low speed
潜江Qianjiang 1.008 0.978 0.994 0.984 0.986 10 下降Decline
天门Tianmen 1.043 0.980 0.995 0.985 1.022 6 低速Low speed

Table 4

Empirical analysis results on influencing factors of agricultural carbon emission efficiency"

变量Variable 系数Coefficient 标准差St. deviation 检验值Inspection value
农村经济发展水平Rural economic development level 0.0078** 0.7270 2.43
耕地规模Cultivated land scale -0.0484 0.1016 -0.48
农业产业结构Agricultural industrial structure -0.7449** 0.3618 -2.06
城镇化水平Urbanization level 0.0136*** 0.1681 3.15
农村用电量Rural electricity consumption 0.0025* 0.4502 1.32
常数项Constant term 1.3705*** 0.2778 4.94
[1] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解. 中国人口·资源与环境, 2011,21(8):80-86.
LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China. China Population, Resources and Environment, 2011,21(8):80-86. (in Chinese)
[2] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012,22(7):21-27.
MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 2012,22(7):21-27. (in Chinese)
[3] TIAN Y, ZHANG J B, HE Y Y. Research on spatial-temporal driving factor of agricultural carbon emissions in China. Journal of Integrative Agriculture, 2014(6):1393-1403.
doi: 10.1016/S2095-3119(13)60624-3
[4] 高鸣, 宋洪远. 中国农业碳排放绩效的空间收敛与分异——基于Malmquist-luenberger指数与空间计量的实证分析. 经济地理, 2015,35(4):142-148, 185.
GAO M, SONG H Y. Dynamic changes and spatial agglomeration analysis of the Chinese agricultural carbon emissions performance. Economic Geography, 2015,35(4):142-148, 185. (in Chinese)
[5] 程琳琳, 张俊飚, 何可. 农业产业集聚对碳效率的影响研究: 机理、空间效应与分群差异. 中国农业大学学报, 2018,23(9):218-230.
CHENG L L, ZHANG J B, HE K. Different spatial impacts of agricultural industrial agglomerations on carbon efficiency: Mechanism, spatial effects and groups differences. Journal of China Agricultural University, 2018,23(9):218-230. (in Chinese)
[6] 程琳琳, 张俊飚, 何可. 空间视角下城镇化对农业碳生产率的直接作用与间接溢出效应研究. 中国农业资源与区划, 2019,40(11):48-56.
CHENG L L, ZHANG J B, HE K. The direct influence and indirect spillover effect of urbanization on agricultural carbon productivity based on the perspective of space. Chinese Journal of Agricultural Resources and Regional Planning, 2019,40(11):48-56. (in Chinese)
[7] 高标, 房骄, 卢晓玲, 李玉波. 区域农业碳排放与经济增长演进关系及其减排潜力研究. 干旱区资源与环境, 2017,31(1):13-18.
GAO B, FANG J, LU X L, LI Y B. Evolution relationship between agricultural carbon emissions and economic growth and its reduction potential. Journal of Arid Land Resources and Environment, 2017,31(1):13-18. (in Chinese)
[8] 陈柔, 何艳秋, 朱思宇, 徐杰. 我国农业碳排放双重性及其与经济发展的协调性研究. 软科学, 2020,34(1):132-138.
CHEN R, HE Y Q, ZHU S Y, XU J. Duality of agricultural carbon emissions and coordination with economic development in China. Soft Science, 2020,34(1):132-138. (in Chinese)
[9] BAI Y P, DENG X Z, JIANG S J, ZHAO Z, MIAO Y. Relationship between climate change and low-carbon agricultural production: A case study in Hebei Province, China. Ecological Indicators, 2019,105(10):438-447.
doi: 10.1016/j.ecolind.2018.04.003
[10] 王小彬, 武雪萍, 赵全胜, 邓祥征, 蔡典雄. 中国农业土地利用管理对土壤固碳减排潜力的影响. 中国农业科学, 2011,44(11):2284-2293.
doi: 10.3864/j.issn.0578-1752.2011.11.010
WANG X B, WU X P, ZHAO Q S, DENG X Z, CAI D X. Effects of cropland-use management on potentials of soil sequestration and carbon emission mitigation in China. Scientia Agricultura Sinica, 2011,44(11):2284-2293. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.11.010
[11] 冉锦成, 马惠兰, 苏洋. 西北五省农业碳排放测算及碳减排潜力研究. 江西农业大学学报, 2017,39(3):623-632.
RAN J C, MA H L, SU Y. A study on agricultural carbon emission and carbon emission reduction potential in five provinces in Northwest China. Acta Agriculturae Universitatis Jiangxiensis, 2017,39(3):623-632. (in Chinese)
[12] WU X R, ZHANG J B, YOU L Z. Marginal abatement cost of agricultural carbon emissions in China:1993-2015. China Agricultural Economic Review, 2018,10(4):558-571.
doi: 10.1108/CAER-04-2017-0063
[13] ZORNOZA R, ROSALES R M, ACOSTA J A, ROSA J M, ARCENEGUI V, FAZ A, ALEJANDRO P P. Efficient irrigation management can contribute to reduce soil CO2 emissions in agriculture. Geoderma, 2016,263(2):70-77.
doi: 10.1016/j.geoderma.2015.09.003
[14] JOHN L F, PAUL, SIMON J S, STEPHAN M H. Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia. Applied Energy, 2016,177(9):612-624.
doi: 10.1016/j.apenergy.2016.05.100
[15] LIU Y, JORGE R M, ZHANG L, ZHANG J B, SWISHER M E. Technical training and rice farmers' adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. Journal of Cleaner Production, 2019,226(10):454-462.
doi: 10.1016/j.jclepro.2019.04.026
[16] 贺亚亚, 田云, 张俊飚. 湖北省农业碳排放时空比较及驱动因素分析. 华中农业大学学报(社会科学版), 2013(5):79-85.
HE Y Y, TIAN Y, ZHANG J B. Analysis on spatial-temporal difference and driving factors of agricultural carbon emissions in Hubei province. Journal of Huazhong Agricultural University (Social Sciences Edition), 2013(5):79-85. (in Chinese)
[17] 肖娥芳, 程静. 湖北省城乡一体化进程中农业产业化与农村碳排放关系实证研究. 农业经济, 2013(5):40-42.
XIAO E F, CHENG J. Empirical study on the relationship between agricultural industrialization and rural carbon emissions in the process of urban-rural integration in Hubei province. Agricultural Economy, 2013(5):40-42. (in Chinese)
[18] 周晶, 青平, 颜廷武. 技术进步、生产方式转型与中国生猪养殖温室气体减排. 华中农业大学学报(社会科学版), 2018(4):38-45, 167.
ZHOU J, QING P, YAN T W. Technology progress, production intensification and greenhouse gas emission reduction in China’s pig breeding. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018(4):38-45, 167. (in Chinese)
[19] 李波, 杜建国, 刘雪琪. 湖北省农业碳排放的时空特征及经济关联性. 中国农业科学, 2019,52(23):4309-4319.
doi: 10.3864/j.issn.0578-1752.2019.23.011
LI B, DU J G, LIU X Q. Spatial-temporal characteristics and economic relevance of agricultural carbon emissions in Hubei province. Scientia Agricultura Sinica, 2019,52(23):4309-4319. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.23.011
[20] 田云, 张俊飚, 陈池波. 中国低碳农业发展的空间异质性及影响机理研究. 中国地质大学学报(社会科学版), 2016,16(4):33-44, 156.
TIAN Y, ZHANG J B, CHEN C B. Research on the regional differences and influencing mechanism of low-carbon agricultural development in China. Journal of China University of Geosciences (Social Sciences Edition), 2016,16(4):33-44, 156. (in Chinese)
[21] 钱丽, 肖仁桥, 陈忠卫. 碳排放约束下中国省际农业生产效率及其影响因素研究. 经济理论与经济管理, 2013(9):100-112.
QIAN L, XIAO R Q, CHEN Z W. Research on China's provincial agricultural production efficiency and its influencing factors under carbon emission constraints. Economic Theory and Business Management, 2013(9):100-112. (in Chinese)
[22] 陈新华, 王厚俊. 基于生态效率评价视角的广东省农业生产效率研究. 农业技术经济, 2016(4):94-104.
CHEN X H, WANG H J. Research on the efficiency of agricultural input and output in Guangdong province—Based on the perspective of ecological efficiency evaluation. Journal of Agrotechnical Economics, 2016(4):94-104. (in Chinese)
[23] 郭四代, 钱昱冰, 赵锐. 西部地区农业碳排放效率及收敛性分析——基于SBM-Undesirable模型. 农村经济, 2018(11):80-87.
GUO S D, QIAN Y B, ZHAO R. Analysis of agricultural carbon emission efficiency and convergence in Western China —— Based on SBM-Undesirable model. Rural Economy, 2018(11):80-87. (in Chinese)
[24] 王海飞. 基于SSBM-ESDA模型的安徽省县域农业效率时空演变. 经济地理, 2020,40(4):175-183, 222.
WANG H F. Temporal and spatial analysis of county agricultural efficiency in Anhui province based on SSBM-ESDA model. Economic Geography, 2020,40(4):175-183, 222. (in Chinese)
[25] 张晓雷, 马丁, 王天日. 黑龙江省畜牧业碳排放效率及影响因素研究. 黑龙江畜牧兽医, 2020(4):7-12, 147.
ZHANG X L, MA D, WANG T R. Study on carbon emission efficiency and influencing factors of animal husbandry in Heilongjiang province. Heilongjiang Animal Science and Veterinary Medicine, 2020(4):7-12, 147. (in Chinese)
[26] 董红敏, 李玉娥, 陶秀萍, 彭小培, 李娜, 朱志平. 中国农业源温室气体排放与减排技术对策. 农业工程学报, 2008(10):269-273.
DONG H M, LI Y E, TAO X P, PENG X P, LI N, ZHU Z P. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Transactions of the Chinese Society of Agricultural Engineering, 2008(10):269-273. (in Chinese)
[27] 田云, 张银岭. 中国农业碳减排成效评估、目标重构与路径优化研究. 干旱区资源与环境, 2019,33(12):1-7.
TIAN Y, ZHANG Y L. Research on effectiveness evaluation, target reconstruction and path optimization of agricultural carbon emission reduction in China. Journal of Arid Land Resources and Environment, 2019,33(12):1-7. (in Chinese)
[28] 胡向东, 王济民. 中国畜禽温室气体排放量估算. 农业工程学报, 2010,26(10):247-252.
HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(10):247-252. (in Chinese)
[29] 刘其涛. 中国农业碳排放效率的区域差异——基于Malmquist- Luenberger指数的实证分析. 江苏农业科学, 2015,43(9):497-501.
LIU Q T. Regional difference of China’s agricultural carbon emissions efficiency—Based on empirical analysis of Malmquist-Luenberger index. Jiangsu Agricultural Sciences, 2015,43(9):497-501. (in Chinese)
[30] 张俊飚, 程琳琳, 何可. 中国农业低碳经济效率的时空差异及影响因素研究——基于“碳投入”视角. 环境经济研究, 2017,2(2):36-51.
ZHANG J B, CHENG L L, HE K. The difference of China’s agricultural low-carbon economic efficiency in spatial and temporal and its influencing factors: A perspective of carbon input. Journal of Environmental Economics, 2017,2(2):36-51. (in Chinese)
[31] 吴贤荣, 张俊飚, 田云, 李鹏. 中国省域农业碳排放:测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用. 资源科学, 2014,36(1):129-138.
WU X R, ZHANG J B, TIAN Y, LI P. Provincial agricultural carbon emissions in China: Calculation, performance change and influencing factors. Resources Science, 2014,36(1):129-138. (in Chinese)
[32] 马大来. 中国农业能源碳排放效率的空间异质性及其影响因素——基于空间面板数据模型的实证研究. 资源开发与市场, 2018,34(12):1693-1700, 1765.
MA D L. Spatial heterogeneity and influencing factors of agricultural energy carbon emission efficiency in China—An empirical research of spatial panel data model. Resource Development & Market, 2018,34(12):1693-1700, 1765. (in Chinese)
[1] FangJie LI,JianQiang REN,ShangRong WU,ZhongXin CHEN,NingDan ZHANG. Spatio-Temporal Variations of Winter Wheat Planting Frequency and Their Analysis of Influencing Factors in Henan Province [J]. Scientia Agricultura Sinica, 2020, 53(9): 1773-1794.
[2] ZHAO QingYue,XU ShiJie,ZHANG WuShuai,ZHANG Zhe,YAO Zhi,CHEN XinPing,ZOU ChunQin. Spatial Regional Variability and Influential Factors of Soil Fertilities in the Major Regions of Maize Production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120-3133.
[3] ZHU XiaoYu,XU DaWei,XIN XiaoPing,SHEN BeiBei,DING Lei,WANG Xu,CHEN BaoRui,YAN RuiRui. The Spatial-Temporal Distribution of Different Grassland Types in Hulunber Grassland Based on Remote Sensing from 1992 to 2015 [J]. Scientia Agricultura Sinica, 2020, 53(13): 2715-2727.
[4] LI Bo,DU JianGuo,LIU XueQi. Spatial-Temporal Characteristics and Economic Relevance of Agricultural Carbon Emissions in Hubei Province [J]. Scientia Agricultura Sinica, 2019, 52(23): 4309-4319.
[5] YU AiZhong, CHAI Qiang, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai. Responses of Soil Carbon Emission and Carbon Balance of Maize Field to Plastic Film Mulching Pattern and Row Space [J]. Scientia Agricultura Sinica, 2018, 51(19): 3726-3735.
[6] ZHANG Ling-E, SHUANG Wen-Yuan, YUN An-Ping, NIU Ling-An, HU Ke-Lin. Spatio-temporal Variability and the Influencing Factors of Soil Available Potassium in 30 Years in Quzhou County, Hebei Province [J]. Scientia Agricultura Sinica, 2014, 47(5): 923-933.
[7] HUANG Ming, WANG Lu-Sha. A Review of the Antioxidant Peptides Derived from Animal Protein [J]. Scientia Agricultura Sinica, 2013, 46(22): 4763-4773.
[8] LI Hong-Liang, LI Yong, ZHOU Mi, ZHANG Hong-Yong, SHI Zhe-Mei, MENG Xiu-Xiang. Variables Determining Average the Annual Musk Production in   Captive Alpine Musk Deer [J]. Scientia Agricultura Sinica, 2012, 45(3): 522-528.
[9] LI Li-min,WU Lin,HAO Qing-sheng.

An Empirical Study on Consumers’ Intention and Influence Factors on Blueberry Products —On the Basis of Survey of Customers in Jilin Province

[J]. Scientia Agricultura Sinica, 2011, 44(2): 423-431 .
[10] PANG Su,LI Ting-xuan,WANG Yong-dong,YU Hai-ying,GUO Qi-ling,CHEN Dong-ming
. Spatial Variability and Influencing Factors of the Concentrations of Cu, Zn, and Cr in Cropland Soil on County Scales
[J]. Scientia Agricultura Sinica, 2010, 43(4): 737-743 .
[11] . The Estrus Cycle, Diestrus and the Related Influencing Factors in Female Alpine Musk Deer (Moschus sifanicus) in Captivity
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1783-1788 .
[12] . Climate Change and Main Agrometeorological disasters Corresponding to in Hubei Province [J]. Scientia Agricultura Sinica, 2007, 40(8): 1646-1653 .
[13] ,,,,,. Soil Phosphorus Release to the Water Bodies in the Upland Fields of Yellow Soil Areas and the Influencing Factors [J]. Scientia Agricultura Sinica, 2006, 39(01): 118-124 .
[14] ,. Effect of Ultrasonic Treatment on the Extracting Activity of Kid Rennet [J]. Scientia Agricultura Sinica, 2004, 37(10): 1555-1559 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!