Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3625-3636.doi: 10.3864/j.issn.0578-1752.2019.20.013

• SPECIAL FOCUS: SOIL WATER AND FERTILIZER MANAGEMENT IN GREENHOUSE VEGETABLE FIELDS • Previous Articles     Next Articles

Effect of Organic Partial Replacement of Inorganic Fertilizers on N2O Emission in Greenhouse Soil

YaJing XI1,2,DongYang LIU1,2,JunYu WANG1,2,XuePing WU2(),XiaoXiu LI1,YinKun LI3(),BiSheng WANG2,MengNi ZHANG2,XiaoJun SONG2,ShaoWen HUANG2   

  1. 1 College of Resource Environment and Tourism, Capital Normal University, Beijing 100037
    2 Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097
  • Received:2019-05-15 Accepted:2019-09-04 Online:2019-10-16 Published:2019-10-28
  • Contact: XuePing WU,YinKun LI E-mail:wuxueping@caas.cn;lykun1218@163.com

Abstract:

【Objective】 Under the condition of replacing the inorganic fertilizer part with the same amount of nitrogen, the purpose of this study was to study the emission characteristics of greenhouse tomato soil N2O and to explore the environmental factors affecting N2O emissions, which could provide data support and theoretical basis for the N2O emission inventory of the greenhouse vegetable system and its emission reduction potential.【Method】 Taking greenhouse autumn-winter tomato as the research object, the static-chamber method was used to monitor the soil N2O emission, soil temperature and soil water content during the growth period of tomato. The experiment was set 4 treatments, including non-fertilization (CK), single application of organic fertilizer (MN), single application of inorganic fertilizer (CN), and organic partial replacement of inorganic fertilizers (CMN).【Result】 Under the same nitrogen application rate, the total N2O emission under CMN was 4.05 kg·hm -2. Compared with CN and MN, the total N2O emission under CMN decreased by 45.1% and 33.2% , respectively; the emission factor of soil N2O was reduced by 50.0% and 37.5%, respectively; the emission intensity was reduced by 50.0% and 42.1%, respectively. The peak soil N2O of all treated appeared on the first day after fertilization and irrigation, and the discharge was mainly concentrated within 5 days after fertilization and irrigation. The N2O emission flux in greenhouse tomato soil showed significant or extremely significant correlation with the ground temperature of 0-5 cm soil, and showed a significant or extremely significant logarithm function relationship with soil water-filled porosity (WFPS). The peak of soil N2O emission under different fertilization treatments appeared in 60%~80% soil-filled porosity.【Conclusion】 The relationship between the growth and decline of N2O emissions in greenhouse tomato soil was reflected in the changes of temperature and humidity and the type of nitrogen fertilizer input. Reasonable emission reduction measures should be considered based on the above factors. Partial replacement of inorganic fertilizers with organic fertilizers was an important means to increase greenhouse tomato production, to reduce N2O emissions intensity, factor and total N2O emissions increase fertilizer utilization, and to achieve zero growth of fertilizers.

Key words: N2O emission, greenhouse tomato, organic fertilizer, inorganic fertilizer, soil temperature, soil water-filled porosity

Table 1

Greenhouse tomato experiment scheme"

处理
Treatment
氮总量
Total amount of nitrogen (kg·hm-2)
施氮量
Nitrogen application rate
CK 0 不施氮 No nitrogen application
CMN 675 375 kg·hm-2无机氮+300 kg·hm-2有机氮
375 kg·hm-2 Inorganic nitrogen+300 kg·hm-2 Organic nitrogen
CN 675 675 kg·hm-2无机氮
675 kg·hm-2Inorganic nitrogen
MN 675 675 kg·hm-2有机氮
675 kg·hm-2 Organic nitrogen

Fig. 1

Dynamic of N2O emission under different N application rates The arrow indicates topdressing fertilizer; A and B represent the base fertilizer stage N2O emission and the emission flux on the 1th day; a, b, c, d indicate changes in N2O emission flux after topdressing fertilizer in flowering stage, fruit expansion stage, harvest stage and final harvest stage"

Table 2

Different treatments of tomato yield and soil N2O emissions, emission factors, emission intensity"

处理
Treatment
番茄产量
Tomato yield (t·hm-2)
基肥阶段排放量
Base fertilizer stage emission (kg·hm-2)
追肥阶段排放量
Topdressing fertilizer stage emission (kg·hm-2)
排放总量
Total emission
(kg·hm-2)
排放系数
Emission factor
(%)
排放强度
Emission intensity (kg·t-1)
CK 29.03±1.33c 0.17±0.06c 0.48±0.02d 0.65±0.03d 0.02
CMN 36.54±1.28a 2.14±0.01b 1.91±0.03c 4.05±0.04c 0.5 0.11
CN 34.00±2.28ab 1.94±0.02b 5.43±0.04a 7.37±0.01a 1.0 0.22
MN 32.56±1.64b 3.56±0.02a 2.50±0.02b 6.06±0.01b 0.8 0.19

Fig. 2

The relationship between N2O emission flux and WFPS a, b, c, d Indicates the four periods of the tomato topdressing fertilizer stage (flowering stage, fruit expansion stage, harvest stage and final harvest stage ). ** Represented significant correlation at 0.01 level, * Represented significant correlation at 0.05 level"

Fig. 3

Relationship between N2O emission flux and 5 cm soil temperature ** Represented significant correlation at 0.01 level, * Represented significant correlation at 0.05 level"

[1] RAVISHANKARA A R, DANIEL J S, PORTMANN R W . Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 2009,326(5949):123.
[2] HUTCHINSON G L, MOSIER A R . Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Science Society of America Journal, 1981,45(2):311.
Delgado J A, Mosier A R . Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. Journal of Environmental Quality, 1996,25(5):1105-1111.
[4] DAVIDSON E A, KANTER D . Drawing down N2O to protect Climate and the Ozone Layer: A UNEP Synthesis Report. United Nations Environment Programme (UNEP), Nairobi, Keny, 2013, [ 2016-6-9].
[5] MEIJIDE A, DIEZ J A, SÁNCHEZMARTÍN L, LOPEZ FERNANDEZ S, VALLEJO A . Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agriculture Ecosystems & Environment, 2007,121(4):383-394.
[6] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2013.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2013. ( in Chinese)
[7] 王敬国 . 设施菜田退化土壤修复与资源高效利用. 北京: 中国农业大学出版社, 2011.
WANG J G. Degraded Soil Restoration and Efficient Use of Resources in Facility Vegetable Fields. Beijing: China Agricultural University Press, 2011. ( in Chinese)
[8] VAN GROENIGEN J W, G L VELTHOF, O OENEMA, VAN GROENIGEN K J, VAN KESSEL C . Towards an agronomic assessment of N2O emissions: A case study for arable crops. European Journal of Soil Science, 2010,61(6):903-913.
[9] DOBBIE K . The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. European Journal of Soil Science, 2010,52(4):667-673.
[10] ZHANG M Y, WANG F J, CHEN F, MALEMELA M P, ZHAN H L . Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. Journal of Cleaner Production, 2013,54:101-107.
[11] 黄树辉, 吕军 . 农田土壤N2O排放研究进展. 土壤通报, 2004,35(4):516-522.
HUANG S H, LÜ J . Advances in Research on N2O emission from farmland soils. Chinese Journal of Soil Science, 2004,35(4):516-522. (in Chinese)
[12] 邱炜红, 刘金山, 胡承孝, 孙学成, 谭启玲 . 菜地系统土壤氧化亚氮排放的日变化. 华中农业大学学报, 2011,30(2):210-213.
QIU W H, LIU J S, HU C X, SUN X C, TAN Q L . Diurnal variation of soil nitrous oxide emissions from vegetable plot system. Journal of Huazhong Agricultural University, 2011,30(2):210-213. (in Chinese)
[13] 田慎重, 宁堂原, 迟淑筠, 王瑜, 王丙文, 韩惠芳, 李成庆, 李增嘉 . 不同耕作措施的温室气体排放日变化及最佳观测时间. 生态学报, 2012,32(3):879-888.
doi: 10.5846/stxb201108021132
TIAN S Z, NING T Y, CHI S J, WANG Y, WANG B W, HAN H F, LI C Q, LI Z J . Diurnal variation of greenhouse gas emissions and optimal observation time for different farming practices. Journal of Ecology, 2012,32(3):879-888. (in Chinese)
doi: 10.5846/stxb201108021132
[14] 徐文彬, 刘维屏, 刘广深 . 温度对旱田土壤N2O排放的影响研究. 土壤学报, 2002,39(1):1-8.
XU W B, LIU W P, LIU G S . Effects of temperature on N2O emissions from sub-tropical upland soils. Acta Pedologica Sinica, 2002,39(1):1-8. (in Chinese)
[15] 李燕青, 唐继伟, 车升国, 温延臣, 孙文彦, 赵秉强 . 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响. 中国农业科学, 2015,48(21):4381-4389.
doi: 10.3864/j.issn.0578-1752.2015.21.018
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q . Effects of long-term application of organic manure and fertilizer nitrogen on N2O and CO2 emissions from summer maize in North China. Scientia Agricultura Sinica, 2015,48(21):4381-4389. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.21.018
[16] 毕智超, 张浩轩, 房歌, 郭澍, 熊正琴 . 不同配比有机无机肥料对菜地N2O排放的影响. 植物营养与肥料学报, 2017,23(1):154-161.
BI Z C, ZHANG H X, FANG G, GUO P, XIONG Z Q . Effects of combined organicand inorganic fertilizers on N2O emissions in intensified vegetable field. Journal of Plant Nutrition and Fertilizer, 2017,23(1):154-161. (in Chinese)
[17] 刘丽鹃 . 有机无机配施对大棚和露地蔬菜生长及土壤性状和温室气体排放的影响[D]. 南京: 南京农业大学, 2013.
LIU L J . Effect of ratio of organic manure/chemical fertilizer on vegetables' growth, soil properties and greenhouse gas emission under greenhouse and open field conditions[D]. Nanjing: Nanjing Agricultural University, 2013. ( in Chinese)
[18] JIA J X, LI B, CHEN Z Z, XIE Z B, XIONG Z Q . Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Science and Plant Nutrition, 2012,58(4):503-509.
[19] 郝小雨, 高伟, 王玉军, 金继运, 黄绍文, 唐继伟, 张志强 . 有机无机肥料配合施用对设施菜田土壤N2O排放的影响. 植物营养与肥料学报, 2012,18(5):1073-1085.
HAO X Y, GAO W, WANG Y J, JIN J Y, HUANG S W, TANG J W, ZHANG Z Q . Effects of combined application of organic manure and chemical fertilizers on N2O emission from greenhouse vegetable soil. Plant Nutrition and Fertilizer Science, 2012,18(5):1073-1085. (in Chinese)
[20] 张仲新, 李玉娥, 华珞, 万运帆, 姜宁宁 . 不同施肥量对设施菜地N2O排放通量的影响. 农业工程学报, 2010,26(5):269-275.
ZHANG Z X, LI Y E, HUA L, WAN Y F, JIANG N N . Effects of different fertilizer levels on N2O flux from protected vegetable land. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(5):269-275. (in Chinese)
[21] FRANZLUEBBERS A J . Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Applied Soil Ecology, 1999,11(1):91-101.
[22] 王立刚, 李虎, 邱建军 . 黄淮海平原典型农田土壤N2O的排放特征. 中国农业科学, 2008,41(4):1248-1254.
WANG L G, LI H, QIU J J . Emission characteristics of N2O from typical farmland soils in the Huang-Huai-Hai Plain. Scientia Agricultura Sinica, 2008,41(4):1248-1254. (in Chinese)
[23] CUI Z, YUE S, WANG G, MENG Q, WU L . Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China. Global Change Biology, 2013,19(8):2467-2477.
[24] 闵继胜, 胡浩 . 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012,22(7):21-27.
MIN J S, HU H . Measurement of greenhouse gas emissions from agricultural production in China. China Population, Resources and Environment, 2012,22(7):21-27. (in Chinese)
[25] LI C, FROLKING S, BUTTERBACHBAHL K . Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change, 2005,72(3):321-338.
[26] BAGGS E M, STEVENSON M, PIHLATIE M, REGAR H, COOK G , CADISCH. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant & Soil, 2003,254(2):361-370.
[27] TOYODA S, YANO M, NISHIMURA S, HIROKO A . Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Global Biogeochemical Cycles, 2011,25(2):96-101.
[28] HALVORSON A D, DEL GROSSO S J, REULE C A . Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems. Journal of Environment Quality, 2008,37(4):1337.
[29] BURNEY J A, DAVIS S J, LOBELL D B . Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences, 2010,107(26):12052-12057.
[30] 刘运通, 万运帆, 林而达, 李玉娥, 陈德立, 秦晓波, 高清竹, 金琳, 武艳娟 . 施肥与灌溉对春玉米土壤N2O排放通量的影响. 农业环境科学学报, 2008,27(3):997-1002.
LIU Y T, WAN Y F, LIN E D, LI Y E, CHEN D L, QIN X B, GAO Q Z, JIN L, WU Y J . N2O flux variations from spring maize soil under fertilization and irrigation. Journal of Agre-Environment Science, 2008,27(3):997-1002. (in Chinese)
[31] 翟振, 王立刚, 李虎, 邱建军, 杨军, 董小雨 . 有机无机肥料配施对春玉米农田N2O排放及净温室效应的影响. 农业环境科学学报, 2013,32(12):2502-2510.
ZHAI Z, WANG L G, LI H, QIU J J, YANG J, DONG X Y . Nitrous oxide emissions and net greenhouse effect from spring-maize field as influenced by combined application of manure and inorganic fertilizer. Journal of Agricultural Environmental Science, 2013,32(12):2502-2510. (in Chinese)
[32] 兰翔 . 有机无机配施及DMPP对土壤N2O排放和氨氧化微生物的影响[D]. 武汉: 华中农业大学, 2017.
LAN X . Effects of organic fertilizer and DMPP on n2o emission and ammonia-oxidizing microorganisms[D]. Wuhan: Huazhong Agricultural University, 2017. ( in Chinese)
[33] 姜珊珊, 庞炳坤, 张敬沙, 蒋静艳 . 减氮及不同肥料配施对稻田CH4和N2O排放的影响. 中国环境科学, 2017,37(5):1741-1750.
JIANG S S, PANG B K, ZHANG J S, JIANG Y Y . Effects of reduced nitrogen and combined application of different fertilizers on CH4 and N2O emissions in paddy fields. China Environmental Science, 2017,37(5):1741-1750. (in Chinese)
[34] 邹建文, 黄耀, 宗良纲, 蒋静艳, 郑循华, 王跃思 . 稻田灌溉和秸秆施用对后季麦田N2O排放的影响. 中国农业科学, 2003,36(4):409-414.
ZOU J W, HUANG Y, ZONG L G, JIANG J Y, ZHENG X H, WANG Y S . Effects of paddy field irrigation and straw application on N2O emission in wheat fields in the late season. Scientia Agricultura Sinica, 2003,36(4):409-414. (in Chinese)
[35] 李银坤, 武雪萍, 郭文忠, 薛绪掌 . 不同氮水平下黄瓜-番茄日光温室栽培土壤N2O排放特征. 农业工程学报, 2014,30(23):260-267.
LI Y K, WU X P, GUO W Z, XUE X Z . Characteristics of N2O emission from cucumber-tomato in greenhouse cultivation under different nitrogen levels. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(23):260-267. (in Chinese)
[36] DIAO T, XIE L, GUO L, YAN H L . Measurements of N2O emissions from different vegetable fields on the North China Plain. Atmospheric Environment, 2013,72(2):70-76.
[37] GRANLI T, BØCKMAN O C . Nitrous oxide (N2O) emissions from soils in warm climates//Nitrogen Economy in Tropical Soils. Springer Netherlands, 1995.
[38] 张婧, 李虎, 王立刚, 邱建军 . 京郊典型设施蔬菜地土壤N2O排放特征. 生态学报, 2014,34(14):4088-4098.
doi: 10.5846/stxb201306091534
ZHANG J, LI H, WANG L G, QIU J J . Characteristics of nitrous oxide emissions from typical greenhouse vegetable fields in Beijing suburbs. Acta Ecologica Sinica, 2014,34(14):4088-4098. (in Chinese)
doi: 10.5846/stxb201306091534
[39] 陈慧, 侯会静, 蔡焕杰, 朱艳 . 加气灌溉温室番茄地土壤N2O排放特征. 农业工程学报, 2016,32(3):111-117.
CHEN H, HOU H J, CAI H J, ZHU Y . Soil N2O emission characteristics of greenhouse tomato fields under aerated irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):111-117. (in Chinese)
[40] 郑欠, 丁军军, 李玉中, 林伟, 徐春英, 李巧珍, 毛丽丽 . 土壤含水量对硝化和反硝化过程N2O排放及同位素特征值的影响. 中国农业科学, 2017,50(24):4747-4758.
doi: 10.3864/j.issn.0578-1752.2017.24.008
ZHENG Q, DING J J, LI Y Z, LIN W, XU C Y, LI Q Z, MAO L L . Effects of soil water content on N2O emission and isotope characteristics of nitrification and denitrification processes. Scientia Agricultura Sinica, 2017,50(24):4747-4758. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.24.008
[41] HOBEN J P, GEHL R J, MILLAR N, PETER G . Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology, 2011,17(2):1140-1152.
[42] 李燕青 . 不同类型有机肥与化肥配施的农学和环境效应研究[D]. 北京: 中国农业科学院, 2016.
LI Y Q . Study on agronomic and environmental effects of combined application of different organic manures with chemical fertilizer[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[43] 陈海燕, 李虎, 王立刚, 邱建军 . 京郊典型设施蔬菜地N2O排放规律及影响因素研究. 中国土壤与肥料, 2012(5):5-10.
CHEN H Y, LI H, WANG L G, QIU J J . Study on N2O emissions and influencing factors of typical vegetable areas in Beijing suburbs. Soil and Fertilizer Sciences in China, 2012(5):5-10. (in Chinese)
[44] DAMBREVILLE C, MORVAN T, GERMON J . N2O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany. Agriculture, Ecosystems & Environment, 2008,123(1/3):201-210.
[45] 杨苞梅, 李国良, 姚丽贤, 周昌敏, 何兆桓 . 有机肥施用模式对蔬菜产量、土壤化学性质及微生物的影响. 中国生态农业学报, 2010,18(4):716-723.
YANG B M, LI G L, YAO L X, ZHOU C M, HE Z H . Effect of organic fertilizer application pattern on vegetable yield, soil chemical property and micro-organism. Chinese Journal of Eco-Agriculture, 2010,18(4):716-723. (in Chinese)
[46] 郑循华, 王明星, 王跃思, 沈壬兴, 龚晏邦, 张文, 骆冬梅, 金继生, 李老土 . 华东稻麦轮作生态系统的N2O排放研究. 应用生态学报, 1997,8(5):495-499.
ZHENG X H, WANG M X, WANG Y S, SHEN R X, GONG Y C, ZHANG W, LUO D M, JIN J S, LI L T . N2O emission from the rice-wheat rotation ecosystem in East China. Journal of Applied Ecology, 1997,8(5):495-499. (in Chinese)
[47] 张树兰, 杨学云, 吕殿青, 同延安 . 温度、水分及不同氮源对土壤硝化作用的影响. 生态学报, 2002,22(12):2147-2153.
ZHANG S L, YANG X Y, LÜ D Q, TONG Y A . Effects of temperature, moisture and different nitrogen sources on soil nitrification. Acta Ecologica Sinica, 2002,22(12):2147-2153. (in Chinese)
[48] 王浩成 . 缓释氮肥对滨海盐碱地CH4和N2O排放的研究[D]. 南京: 南京农业大学, 2012.
WANG H C . Study on CH4 and N2O emissions from coastal saline-alkali land by slow-release nitrogen fertilizer[D]. Nanjing: Nanjing Agricultural University, 2012. ( in Chinese)
[1] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[4] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[5] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[6] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[7] LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002.
[8] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[9] WANG GuoLi,CHANG FangDi,ZHANG HongYuan,LU Chuang,SONG JiaShen,WANG Jing,PANG HuanCheng,LI YuYi. Effects of Straw Interlayer with Different Thickness on Saline-Alkali Soil Temperature, Water Content, and Sunflower Yield in Hetao Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(19): 4155-4168.
[10] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[11] XueKe PU,ChunHua WU,YouMing MIAN,FangFang MIAO,XianQing HOU,Rong LI. Effects of Different Mulching Patterns on Growth of Potato and Characteristics of Soil Water and Temperature in Dry Farmland [J]. Scientia Agricultura Sinica, 2020, 53(4): 734-747.
[12] JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865.
[13] ZHANG QiRu,XIE YingHe,LI TingLiang,LIU Kai,JIANG LiWei,CAO Jing,SHAO JingLin. Effects of Organic Fertilizers Replacing Chemical Fertilizers on Yield, Nutrient Use Efficiency, Economic and Environmental Benefits of Dryland Wheat [J]. Scientia Agricultura Sinica, 2020, 53(23): 4866-4878.
[14] LI YongHua,WU XuePing,HE Gang,WANG ZhaoHui. Benefits of Yield, Environment and Economy from Substituting Fertilizer by Manure for Wheat Production of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890.
[15] DENG HaoLiang,ZHANG HengJia,XIAO Rang,ZHANG YongLing,TIAN JianLiang,LI FuQiang,WANG YuCai,ZHOU Hong,LI Xuan. Effects of Different Covering Planting Patterns on Soil Moisture, Temperature Characteristics and Maize Yield in Semi-Arid Region of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(2): 273-287.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!