Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (12): 2101-2113.doi: 10.3864/j.issn.0578-1752.2019.12.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Comparative Study on CH4Emission from Ratoon Rice and Double-Cropping Rice Fields

ZHANG Lang,XU HuaQin,LI LinLin,CHEN YuanWei,ZHENG HuaBing,TANG QiYuan(),TANG JianWu   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128
  • Received:2018-12-18 Accepted:2019-03-04 Online:2019-06-16 Published:2019-06-22
  • Contact: QiYuan TANG E-mail:cntqy@aliyun.com

Abstract:

【Objective】In order to explore the ecologically sustainable rice planting model, the yield potential and CH4 emission characteristics of traditional double-cropping rice and emerging ratoon rice in the middle and lower reaches of the Yangtze River were compared, so as to provide a scientific basis for selecting a green and ecologically sustainable rice farming model.【Method】In 2017-2018, relying on the research base of Hongshuo Eco-Agricultural Machinery Company in Datonghu District, Yiyang City, Hunan Province, two models of double-cropping rice and ratoon rice were set up, and the yield potential, CH4 emission dynamics and CH4 seasonal cumulative emission were compared and analyzed to evaluate unit yield CH4 emissions from paddy fields.【Result】During the experiment, from the aspect of yield, the yield of early rice was 7.37 t·hm -2, and the yield of main crop was 8.84 t·hm -2. Main crop yield increased by 19.95% compared with early rice; the late rice yield was 6.82 t·hm -2, and the ratoon crop was 3.39 t·hm -2. Compared with the late rice, the ratoon crop yield was reduced by 50.29%. In the two crops, the total yield of double-cropping rice was 14.19 t·hm -2, and the total yield of ratoon rice was 12.22 t·hm -2; in terms of CH4 emission dynamics, double-cropping rice was highly polluted in the tillering and full-heading. In addition to strong emissions in the tillering and full-heading, the ratoon rice also appeared small peak when applying budding fertilizer. However, the emission range of the overall double-cropping rice (-0.06 to 1.30 μmol·m -2·s -1) was higher than that of the ratoon rice (- 0.01 to 0.70 μmol·m -2·s -1); from the seasonal cumulative emission of CH4 in paddy fields, the cumulative emission of CH4 in double-cropping rice was higher than that in ratoon rice. The cumulative emission range of main crop was from 23.90 to 266.59 kg·hm -2, and the ratoon crop was from 0 to 4.61 kg·hm -2. The cumulative emission range of early rice was from 35.57 to 251.29 kg·hm -2, and the late rice was from10.74 to 321.59 kg·hm -2. CH4 seasonal cumulative emissions of double-cropping rice showed: A-B stage (two leaves-one heart to late-tillering) > B-C stage (late-tillering to full-heading) > C-D stage (full-heading to mature), and cumulative emissions of double-cropping rice during the whole growth period was up to 922.35 kg·hm -2. The cumulative emission of methane from ratoon rice was B-C stage>A-B stage>C-D stage, and the cumulative emission of methane during the whole growth period was 609.74 kg·hm -2. Compared with the double-cropping rice control, ratoon rice methane cumulative emissions decreased by 33.89%. Finally, by evaluating the unit yield methane emissions, the methane emission per unit yield of early rice was0.069 kg·kg -1, and the methane emission per unit yield of main crop was 0.062 kg·kg -1, which was 10.14% lower than that of early rice. The methane emission per unit yield of late rice was 0.061 kg·kg -1, the methane emission per unit of ratoon crop was0.018 kg·kg -1, and the ratoon crop was reduced by 70.49%, compared with the late rice. In the two crops, the methane emission per unit yield of double-cropping rice was 0.065 kg·kg -1, and the methane emission per unit yield of ratoon rice was 0.050 kg·kg -1, which was 23.08% lower than that of double-cropping rice.【Conclusion】Therefore, in terms of methane emissions per unit yield, expanding the cultivation of ratoon rice was a good strategy in the main producing areas of the double-cropping rice in the middle and lower reaches of the Yangtze River.

Key words: ratoon rice, double-cropping rice, CH4, rice yield

Table 1

Water management technology"

项目Item 双季稻Double-cropping rice 再生稻Ratoon rice
间歇灌溉
Intermittent
淹灌(移栽至分蘖盛期);晒田(分蘖盛期至抽穗期);干湿交替灌溉[28](抽穗至成熟期)
Flood irrigation (transplanting to tillering-bushiness); drainage field (tillering-bushiness to heading); alternate wetting-drying (heading to maturity)
田面无水(直播至一叶一心期);淹灌(一叶一心至分蘖盛期);晒田(分蘖盛期至抽穗期);干湿交替灌溉[28](抽穗至成熟期)
Waterless field(direct seeding to one leave-one heart); flood irrigation (one leave-one heart to tillering-bushiness); drainage field (tillering-bushiness to heading); alternate drying-wetting (heading to maturity)

Fig. 1

LGR rice field measuring device"

Fig. 2

Effects of different treatments on rice yield"

Fig. 3

Dynamic change of methane fluxes under different treatments in paddy field ecosystem"

Fig. 4

Cumulative emissions of CH4 in paddy field ecosystem under different treatmentsThe A-B is between the two leaves and one heart to the late tillering, the B-C is between the late tillering to the full-heading, and the C-D is between the full-heading to the mature"

Fig. 5

Methane emissions from double-cropping rice and ratoon rice per yield"

[1] Mitigation Contribution of Working Group I Climate Change 2013: The Physical Science Basis Technical Summary to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change 2013: The Physical Science Basis Technical Summary to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York: CambridgeUniversity Press, 2013.
[2] HOUGHTON J T, CALLANDER B A, VARNEY S K. The Supplementary Report to the IPCC Scientific Assessment. New York: CambridgeUniversity Press, 1992.
[3] 孔宪旺, 刘英烈, 熊正琴, 马煜春, 张啸林, 秦建权, 唐启源 . 湖南地区不同集约化栽培模式下双季稻稻田CH4和N2O的排放规律. 环境科学学报, 2013,33(9):2612-2618.
KONG X W, LIU Y L, XIONG Z Q, MA Y C, ZHANG X L, QIN J Q, TANG Q Y . CH4 and N2O emissions from double rice field under different intensified cultivation patterns in Hunan Province. Acta Scientiae Circumstantiae, 2013,33(9):2612-2618. (in Chinese)
[4] National Bureau of Statistics. Planting Area and Yield of Double Cropping Rice in Southern China from 2012 to 2016[EB/OL]. [2017-2018]. NBS National Data Network, the People’ s Republic of China.
[5] 张浪, 周玲红, 魏甲彬, 成小琳, 徐华勤, 肖志祥, 唐启源, 唐剑武 . 冬季种养结合对双季稻生长与土壤肥力的影响. 中国水稻科学, 2018,32(3):226-236.
ZHANG L, ZHOU L H, WEI J B, CHEN X L, XU H Q, XIAO Z X, TANG Q Y, TANG J W . Effects of rice planting combined with chicken raising in winter on double-cropping rice growth and soil fertility. Chinese Journal of Rice Science, 2018, 32(3):226-236. (in Chinese)
[6] 魏海苹, 孙文娟, 黄耀 . 中国稻田甲烷排放及其影响因素的统计分析. 中国农业科学, 2012,45(17):3531-3540.
doi: 10.3864/j.issn.0578-1752.2012.17.009
WEI H P, SUN W J, HUANG Y . Statistical analysis of methane emission from rice fields in China and the driving factors.Scientia Agricultura Sinica, 2012, 45(17):3531-3540. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.17.009
[7] LUO G J, KIESE R, WOLF B, BUTTERBACH-BAHI K . Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions. Biogeosciences, 2013,10:3205-3219.
doi: 10.5194/bg-10-3205-2013
[8] HOU A X, WANG Z P, CHEN G X, PATRICK W H . Effects of organic and N fertilizers on methane production potential in a Chinese rice soil and its microbiological aspect.Nutrient Cycling in Agroecosystems,2000, 58:333-338.
[9] 袁伟玲, 曹凑贵, 程建平, 谢宁宁 . 间歇灌溉模式下稻田CH4和N2O排放及温室效应评估. 中国农业科学, 2008,41(12):4294-4300.
YUAN W L, CAO C G, CHENG J P, XIE N N . CH4 and N2O Emissions and their GWPs assessment in intermittent irrigation rice paddy field. Scientia Agricultura Sinica, 2008,41(12):4294-4300. (in Chinese)
[10] 齐玉春, 郭树芳, 董云社, 彭琴, 贾军强, 曹丛丛, 孙良杰, 闫钟清, 贺云龙 . 灌溉对农田温室效应贡献及土壤碳储量影响研究进展. 中国农业科学, 2014,47(9):1764-1773.
doi: 10.3864/j.issn.0578-1752.2014.09.011
QI Y C, GUO S F, DONG Y S, PENG Q, JIA J Q, CAO C C, SUN L J, YAN Z Q, HE Y L . Advances in research on the effects of irrigation on the greenhouse gases emission and soil carbon sequestration in agro-ecosystem. Scientia Agricultura Sinica, 2014,47(9):1764-1773. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.09.011
[11] GHOSH A, SINGH O N . Determination of threshold regime of soil moisture tension for scheduling irrigation in tropical aerobic rice for optimum crop and water productivity. Experimental Agriculture, 2010,4(4):489-499.
[12] PENG S Z, HOU H J, XU J Z, MAO Z, ABUDU S, LUO Y F . Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy Water Environment, 2011,9(4):403-411.
doi: 10.1007/s10333-011-0275-1
[13] YANG S H, PENG S Z, XU J Z, LUO Y F, LI D X . Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys Chem.Physics and Chemistry of the Earth, Part A/B/C,2012, 53:30-37.
[14] QIAN L, CHEN L, JOSEPH S, PAN G X, LI L Q, ZHENG J W, ZHANG X H, ZHENG J F, YU X Y, WANG J F . Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management, 2014, 5(2):145-154.
[15] 程勇翔, 王秀珍, 郭建平, 赵艳霞, 黄敬峰 . 中国水稻生产的时空动态分析. 中国农业科学, 2012,45(17):3473-3485.
doi: 10.3864/j.issn.0578-1752.2012.17.003
CHENG Y X, WANG X Z, GUO J P, ZHAO Y X, HUANG J F . The temporal-spatial dynamic analysis of China rice production. Scientia Agricultura Sinica, 2012,45(17):3473-3485. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.17.003
[16] ZISKA L H, FLEISHER D H, LINSCOMBE S . Ratooning as an adaptive management tool for climatic change in rice systems along a north-south transect in the southern Mississippi valley. Agricultural and Forest Meteorology, 2018,263:409-416.
doi: 10.1016/j.agrformet.2018.09.010
[17] NGUYEN M D, KRISTIAN K B, JETTE J S, HUNG N N . Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biology and Biochemistry, 2012,47(4):166-174.
doi: 10.1016/j.soilbio.2011.12.028
[18] 徐小健, 陈其敏, 鲁金, 陈元伟, 王晓敏, 唐启源 . 直播方式对洞庭湖区早稻-再生稻产量和经济效益的影响. 作物研究, 2017,31(5):463-465, 469.
XU X J, CHEN Q M, LU J, CHEN Y W, WANG X M, TANG Q Y . Effects of direct-seeding modes on yield and economic benefit of early rice–ratooning rice in Dongting lake area. Crop Research, 2017,31(5):463-465, 469. (in Chinese)
[19] 吕水生 . 沅陵山区杂交中稻—再生稻一体化栽培技术. 杂交水稻, 2013,28(4):54-56.
LV S S . Integrative cultivation techniques for medium hybrid rice-ratoon rice planting pattern in mountainous area of Yuanling. Hybrid Rice, 2013, 28(4):54-56. (in Chinese)
[20] 周玲红, 魏甲彬, 成小琳, 唐启源, 肖志祥, 徐华勤, 唐剑武, 傅志强 . 南方冬季种养结合模式对双季稻田CH4和CO2排放的影响. 生态与农村环境学报, 2018,34(5):433-440.
ZHOU L H, WEI J B, CHENG X L, TANG Q Y, XIAO Z X, XU H Q, TANG J W, FU Z Q . Effects of winter green manure crops with and without chicken grazing on CH4 and CO2 emissions in a double-crop rice paddy field in south China. Journal of Ecology and Rural Environment, 2018,34(5):433-440. (in Chinese)
[21] AHMAD S, LI C, DAI G, ZHAN M, WANG J, PAN S, CAO C . Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil & Tillage Research, 2009,106:54-61.
[22] HANAKI M , TOYOAKI I & SAIGYSA M. Effect of no-tillage rice cultivation on methane emission in three paddy fields of different soil types with rice straw application. Japanese Society of Soil Science & Plant Nutrition, 2002,73:135-143.
[23] 李阔, 许吟隆 . 适应气候变化的中国农业种植结构调整研究. 中国农业科技导报, 2017,19(1):8-17.
LI K, XU Y L . Study on adjustment of agricultural planting structures in China for adapting to climate change. Journal of Agricultural Science and Technology, 2017,19(1):8-17. (in Chinese)
[24] 杨秋生, 孙小成, 朱志华, 朱贵祥, 杨永富, 吴晓峰, 李成业, 金晨钟 . 湘南中稻—再生稻全程机械化高产栽培模式及技术. 作物研究, 2017,31(4):446-447, 452.
YANG Q S, SUN X C, ZHU Z H, YANG Y G, WU X F, LI C Y, JING C Z . Mechanized high-yield cultivation mode and technology of ratoon rice in southern Hunan. Crop Research, 2017,31(4):446-447, 452. (in Chinese)
[25] 王春乙, 姚蓬娟, 张继权, 任义方 . 长江中下游地区双季早稻冷害、热害综合风险评价. 中国农业科学, 2016,49(13):2469-2483.
WANG C Y, YAO P J, ZHANG J Q, REN Y F . Risk assessment of cold and hot damages for double-cropping early rice (DCER) in lower-middle reaches of the YangtzeRiver basin. Scientia Agricultura Sinica, 2016,49(13):2469-2483. (in Chinese)
[26] 卞若玢, 王洪祥, 杨波 . 长江中下游双季晚稻低温冷害时空分布. 现代农业科技, 2016 ( 15):216-217, 221.
BIAN R B, WANG H X, YANG B . Spatial and temporal distribution of chilling injury of double cropping late rice in middle and lower reaches of Yangtze River. Modern Agricultural Science and Technology, 2016 ( 15):216-217, 221. (in Chinese)
[27] 知谷, 罗锡文 . 开启水稻机械化精量穴直播时代. 农业机械, 2018(2):57-58.
ZHI G, LUO X W . Opening the era of rice mechanized precision spotting live broadcast.Agricultural Machinery, 2018(2):57-58. DOI: 10.16 167/j.cnki.1000-9868.2018.02.013. (in Chinese)
[28] REJESUS R M, PALIS F G ,RODRIGUEZ D G P, LAMPAYAN R M, BOUMAN B A M. Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy, 2011,36:280-288.
doi: 10.1016/j.foodpol.2010.11.026
[29] 魏甲彬, 周玲红, 徐华勤, 唐启源, 傅志强, 成小琳, 肖志祥, 唐剑武 . 南方种养结合模式对冬季稻田净碳交换和不同土层活性碳氮转化的影响. 草业学报, 2017,26(7):138-146.
WEI J B, ZHOU L H, XU H Q, TANG Q Y, FU Z Q, CHEN X L, XIAO Z X, TANG J W . Effects of forage planting and chickens on net carbon exchange and transformation of soil action carbon and nitrogen at different layers in paddy fields in south China in winter. Acta Prataculturae Sinica, 2017, 26(7):138-146. (in Chinese)
[30] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯 . 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015,48(17):3404-3414.
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K . Innovation and Practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015,48(17):3404-3414. (in Chinese)
[31] 林文雄, 陈鸿飞, 张志兴, 徐倩华, 屠乃美, 方长旬, 任万军 . 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015,23(4):392-401.
LIN W X, CHEN H F, ZHANG Z X, XU Q H, TU N M, FANG C X, REN W J . Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chinese Journal of Eco-Agriculture, 2015,23(4):392-401. (in Chinese)
[32] 邹应斌 . 亚洲直播稻栽培的研究与应用. 作物研究, 2004,18(3):133-136.
ZOU Y B . Research and application of Asian direct seeding rice cultivation. Crop Research, 2004,18(3):133-136. (in Chinese)
[33] 陈健 . 水稻栽培方式的演变与发展研究. 沈阳农业大学学报, 2003,34(5):389-393.
CHEN J . Evolution and development of rice planting pattern. Journal of Shenyang Agricultural University, 2003, 34(5):389-393. (in Chinese)
[34] 胡志华, 李大明, 徐小林, 黄庆海, 柳开楼, 胡惠文, 叶会财, 周利军, 余喜初 . 再生稻轻简化种植技术研究进展. 中国稻米, 2017,23(3):13-17.
HU Z H, LI D M, XU X L, HUANG Q H, LIU K L, HU H W, YE H C, ZHOU L J, YU X C . Research progress of simplified cultivation technology of ratoon rice. China Rice, 2017, 23(3):13-17. (in Chinese)
[35] 张羽, 刘习中, 钱伟宏 . 不同收获方式和催芽肥施用时间对再生稻产量的影响. 中国稻米, 2015,21(6):83-84, 87.
doi: 10.3969/j.issn.1006-8082.2015.06.018
ZHANG Y, LIU X Z, QIAN W H . Effects of different harvesting methods and fertilization time on yield of ratooning rice. China Rice, 2015,21(6):83-84, 87. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2015.06.018
[36] 唐浩, 陈立云, 杨益善, 肖应辉, 李军民 . 水稻的再生率及其与产量性状的关系. 杂交水稻, 2003(3):58-61.
TANG H, CHEN L Y, YANG Y S, XIAO Y F, LI J M . Correlation of ratooning rate of rice to yield characters. Hybrid Rice, 2003 (3):58-61. (in Chinese)
[37] 姜照伟, 林文雄, 李义珍, 卓传营, 谢华安 . 不同氮肥施用量对再生稻干物质积累运转的影响. 福建农业学报, 2004(2):103-107.
JIANG Z W, LIN W X, LI Y Z, ZHUO C Y, XIE H A . Effects of nitrogen fertilizer rates on dry matter accumulation and transportation in ratoon rice. Fujian Journal of Agricultural Sciences, 2004 ( 2):103-107. (in Chinese)
[38] 刘国华, 邓化冰, 陈立云, 肖应辉, 唐文邦 . 中稻头季与再生稻的品质比较研究. 杂交水稻, 2002(1):47-49.
LIU G H, DENG H B, CHEN L Y, XIAO Y H, TANG W B . Comparison of grain quality between main and ratooning crops of middle - season rice.Hybrid Rice, 2002(1):47-49. (in Chinese)
[39] 杨坚, 陈恺林, 赵正洪, 刘洋, 周学其, 张玉烛 . 不同种植方式对再生稻产量和品质的影响. 湖南农业大学学报(自然科学版), 2017,43(3):234-237.
YANG J, CHEN K L, ZHAO Z H, LIU Y, ZHOU X Q, ZHANG Y Z . Effect of different planting methods on yield and quality of ratooning rice. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(3):234-237. (in Chinese)
[40] 罗玉坤, 朱智伟, 金连登, 闵捷, 陈能, 许立, 陈铭学, 章林平 . 从普查结果看我国水稻品种品质的现状. 中国稻米, 2002 ( 1):5-9.
LUO Y K, ZHU Z W, JING L D, MIN J, CHEN N, XU L, CHEN M X, ZHANG L P . Viewing the status quo of rice variety quality in china from the results of census.China Rice, 2002(1):5-9. (in Chinese)
[41] 陈基旺, 帅泽宇, 屠乃美, 易镇邪 . 湖南再生稻发展现状与对策分析. 中国稻米, 2018,24(5):68-72.
CHEN J W, SHUAI Z Y, TU N M, YI Z X . Analysis on development status and countermeasures of ratoon rice in Hunan. China Rice, 2018,24(5):68-72. (in Chinese)
[42] 朱校奇, 邓启长, 李杰, 邓启云 . 超级杂交稻Y两优1号“头季-再生稻”示范表现及关键技术. 中国稻米, 2007(4):53-55.
ZHU X Q, DEN Q C, LI J, DEN Q Y . Demonstration performance and key technology of super hybrid rice Y Liangyou1 "main crop -ratoon crop" .China Rice, 2007(4):53-55. (in Chinese)
[43] 刘建光, 张德遴 . 我国超级再生稻研究和生产获重大突破尤溪县超级再生稻头季单产创全国新纪录. 中国稻米, 2002(6):24-25.
LIU J G, ZHANG D L . China's super-regeneration rice research and production has made a major breakthrough in the county's new record of super-regeneration rice head season in YouxiCounty.China Rice, 2002(6):24-25. (in Chinese)
[44] WAGAN S, TEHMINA M D, NOONARI S, MEMON Q, WAGAN T . Performance of hybrid and conventional rice varieties in Sindh, Pakistan. Journal of Economics and Sustainable Development, 2015,6:114-118.
[45] NALLEY L, TACK J, BARKLEY A, JAGADISH K, BRYE K . Quantifying the agronomic and economic performance of hybrid and conventional rice varieties. Agronomy Journal, 2016,108:1514-1523.
doi: 10.2134/agronj2015.0526
[46] 赫兵, 张振宇, 杨祥波, 王帅, 楠谷彰人, 陈殿元 . 日本水稻直播技术的发展现状及特征. 中国稻米, 2018,24(6):30-36.
HE B, ZHANG D Y, YANG X B, WANG S, KUSUTANI A, CHEN D Y . Development status and characteristics of direct seeding cultivation in Japan. China Rice, 2018,24(6):30-36. (in Chinese)
[47] CAI Z C, SHAN Y H, XU H . Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Science and Plant Nutrition, 2007,53:353-361.
doi: 10.1111/j.1747-0765.2007.00153.x
[48] TANG J, WANG J J, LI Z Y, WANG S N, QU Y K . Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline-alkaline paddy fields in Northeast China. Sustainability, 2018,475:2-15.
[49] 梅昌艮, 贺玉龙, 苏凯, 熊春梅 , Paul Imhoff. 含水率和温度对生物覆盖层甲烷氧化的影响. 环境科学学报, 2014,34(10):2580-2585.
MEI C G, HE Y L, SU K, XIONG C M, PAUL I . Impact of moisture content and temperature on methane oxidation in biocover. Acta Scientiae Circumstantiae, 2014,34(10):2580-2585. (in Chinese)
[50] 傅志强, 黄璜, 朱华武, 陈灿 . 水稻CH4和N2O的排放及其与植株特性的相关性. 湖南农业大学学报(自然科学版), 2011,37(4):356-360.
FU Z Q, HUANG H, ZHU H W, CHEN C . Relativity between CH4 and N2O emission and rice plant characteristics. Journal of Hunan Agricultural University (Natural Sciences), 2011,37(4):356-360.(in Chinese)
[51] 葛会敏, 陈璐, 于一帆, 陈云, 刘立军 . 稻田甲烷排放与减排的研究进展. 中国农学通报, 2015,31(3):160-166.
GE H M, CHEN L, YU Y F, CHEN Y, LIU L J . Advances in methane emission and emission reduction in rice field. Chinese Agriculture Science Bulletin, 2015,31(3):160-166. (in Chinese)
[52] 缪子梅, 俞双恩, 卢斌, 丁继辉, 于智恒 . 基于结构方程模型的控水稻“需水量-光合量-产量”关系研究. 农业工程学报, 2013,29(6):91-98.
MIAO Z M, YU S E, LU B, DING J H, YU Z H . Relationships of ‘water requirement- photosynthesis- production’ for paddy rice using structural equation modeling. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(6):91-98. (in Chinese)
[1] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[2] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[3] LI Bo,YANG Fan,QIN Qin,ZHONG XiaoYuan,LI QiuPing,ZENG YuLing,LU Hui,CHEN Yong,WANG Li,TAO YouFeng,LI Juan,FENG BingLiang,REN WanJun,DENG Fei. Effects of Sowing Dates on Eating Quality of Different Indica Hybrid Rice in the Sub-Suitable Region of Ratoon Rice [J]. Scientia Agricultura Sinica, 2022, 55(1): 36-50.
[4] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[5] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
[6] YuXian CAO,JianQiang ZHU,Jun HOU. Yield Gap of Ratoon Rice and Their Influence Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(4): 707-719.
[7] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[8] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[9] LIU ShaoWen,YIN Min,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song. Effects of Various Paddy-Upland Crop Rotations and Nitrogen Fertilizer Levels on CH4 Emission in the Middle and Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499.
[10] HAN TianFu, MA ChangBao, HUANG Jing, LIU KaiLou, XUE YanDong, LI DongChu, LIU LiSheng, ZHANG Lu, LIU ShuJun, ZHANG HuiMin. Variation in Rice Yield Response to Fertilization in China: Meta-analysis [J]. Scientia Agricultura Sinica, 2019, 52(11): 1918-1929.
[11] WANG QiuJu, CHANG BenChao, ZHANG JinSong, HAN DongLai, SUI YuGang, CHEN HaiLong, YANG XingYu, WANG XueDong, JIAO Feng, CHANG BenChao, KEN Araya, LIU Feng. Effects of Albic Soil Physical Properties and Rice Yields After Long-Term Straw Incorporation [J]. Scientia Agricultura Sinica, 2017, 50(14): 2748-2757.
[12] HUA Jin, ZHOU Nian-bing, ZHANG Jun, ZHANG Hong-cheng, HUO Zhong-yang, ZHOU Pei-jian, CHENG Fei-hu, LI Guo-ye, HUANG Da-shan, CHEN Zhong-ping, CHEN Guo-liang, DAI Qi-gen, XU Ke, WEI Hai-yan, GAO Hui, G. The Structure and Formation Characteristics of Super-High Yield Population with Late Yongyou Series of Indica-Japonica Hybrid Rice in Double-Cropping Rice Area [J]. Scientia Agricultura Sinica, 2015, 48(5): 1023-1034.
[13] HUA Jin, ZHOU Nian-bing, ZHANG Jun, ZHANG Hong-cheng, HUO Zhong-yang, ZHOU Pei-jian, CHENG Fei-hu, LI Guo-ye, HUANG Da-shan, CHEN Zhong-ping, CHEN Guo-liang, DAI Qi-gen, XU Ke, WEI Hai-yan, GAO Hui, G. Selection of Late Rice Cultivars of Japonica Rice Switched from Indica Rice in Double Cropping Rice Area [J]. Scientia Agricultura Sinica, 2014, 47(23): 4582-4594.
[14] ZHANG Jun, ZHANG Hong-Cheng, HUO Zhong-Yang, LI Guo-Ye, DONG Xiao-Bo, HUA Jin, GUO Bao-Wei, ZHOU Pei-Jian, CHENG Fei-Hu, HUANG Da-Shan, CHEN Zhong-Ping, CHEN Guo-Liang, DAI Qi-Gen, XU Ke, WEI Hai-Yan, GAO Hui. Effects of Cultivation Methods on Yield and Utilization of Temperature and Light of Late Japonica Rice in Southern Double Cropping Rice Areas [J]. Scientia Agricultura Sinica, 2013, 46(10): 2130-2141.
[15] ZHANG Wei-Jian, CHEN Jin, XU Zhi-Yu, CHEN Chang-Qing, DENG Ai-Xing, QIAN Chun-Rong, DONG Wen-Jun. Actual Responses and Adaptations of Rice Cropping System to Global Warming in Northeast China [J]. Scientia Agricultura Sinica, 2012, 45(7): 1265-1273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!