Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4918-4928.doi: 10.3864/j.issn.0578-1752.2020.23.016

• HORTICULTURE • Previous Articles     Next Articles

The Effects of Different Oxygen Concentration on Postharvest Physiology and Storage Quality of Yali Pear

DU YanMin(),WANG WenHui(),JIA XiaoHui,TONG Wei,WANG Yang,ZHANG XinNan   

  1. Institute of Pomology, Chinese Academy of Agricultureal Sciences/Key Laboratory of Fruit Storage and Processing of Liaoning Province, Xingcheng 125100, Liaoning
  • Received:2020-03-30 Accepted:2020-06-09 Online:2020-12-01 Published:2020-12-09
  • Contact: WenHui WANG E-mail:duyanmin@caas.cn;wangwenhui@caas.cn

Abstract:

【Objective】The aim of this study was to clarify the effects of environment oxygen concentration on postharvest physiology and storage quality, affording the theory basis to prevent the postharvest disorders and prolong the storage period of Yali fruit. 【Method】Pear samples were harvested from the commercial orchard in Shijiazhuang city, Hebei province. The fruits of uniform size and ripeness without insect pests or mechanical injury were selected as research materials. The selected fruits were put into controlled atmosphere chambers, and precooling at 8℃ for 48 h, and then declined by 1℃ for every 2 days, and finally storage at (0±0.5)℃ (RH>95%). Then the controlled atmosphere (CA) was established under different O2 concentrations (1.0%, 2.0%, 3.0%, 5.0% and 10.0%) plus 0.5% CO2, and taking air as control. Fruit firmness (FF), soluble solids content (SSC), titratable acidity (TA), ascorbic acid (AA), ethanol, respiration rate, ethylene production and the relative expression of ethylene biosynthesis genes PbACS and PbACO were determined after the fruits storage for 150 d, 210 d and 270 d, respectively. 【Result】The heart browning incidence and superficial scald incidence were both declined significantly under CA treatments during long period storage. More specifically, after storage for 270 d and shelf-life for 7 d, the disorder prevention efficiency were followed by the order of CK>10.0% O2>5.0% O2>1.0% O2>3.0% O2>2.0% O2. Besides that, the lower O2 treatments maintained TA and AA contents at a higher level in the early storage period, and delayed the yellow-turning of peel; ethanol was accumulated much more under the lower O2 concentration, which ranged from 150.89 mg?L -1 to 806.12 mg·L -1 after storage for 150 d; while with the increasing senescence browning of fruit in air, the ethanol content peaking at 1 500 mg·L -1 after storage for 270 d. 5.0% and lower O2 inhibited the ethylene biosynthesis and delayed the peaking time, and 1.0%-3.0% O2 could prohibit the relative expression of PbACO1, PbACO3 and PbACS1 genes in pericarp tissue significantly. 【Conclusion】1.0%—3.0% O2 prohibited the superficial scald occurrence significantly, and delayed the decrease of TA and AA, inhibited the biosynthesis of ethylene and delayed the peaking time, down-regulated the relative expression of PbACO1, PbACO3 and PbACS1 genes in pericarp tissue, prolonged the storage period of Yali pear significantly. However, 1.0% oxygen treatment increased the risk of heart browning to some extent. Therefore, the optimum oxygen concentration was proposed at 3.0%-5.0% in commercial practice.

Key words: Yali pear, oxygen, disorders, quality, ethylene

Table 1

Primer sequences"

基因名称 Gene name 基因ID Gene ID 正向引物 Forward primer sequence (5′-3′) 反向引物 Reverse primer sequence (5′-3′)
PbACO1 Pbr000093.1 GACGCTGGTGGTATCATCCT TTCCGTCCGACTGAGCTATC
PbACO2 Pbr005179.1 GCAGTGATGCGGTGATCTAC CCCAAACCAAAACTGGCCTT
PbACO3 Pbr031954.1 CAAGGATGGTGAATGGGTGGA TCATCGCCTGGGTTGTAGAAC
PbACS1 Pbr015575.1 CCTGGGGTTCAAAGGGATCA CCGCCGTTAAGACTACCCTA
PbACS2 Pbr019796.1 GTTGTGTCCGCAGCTACAAA TGAGCCCACAAACAAGCATC
PbACS3 Pbr029891.1 GAAGTTTGGCAGCGAGTTCA CAGATAGCATGGCGGAGAGA

Fig. 1

Effects of different oxygen concentrations on browning heart incidence and superficial scald incidence during storage and shelf-life period of Yali pear Different lowercase letters indicate significant difference at 5% level. The same as below"

Table 2

Changes in the main quality attributes in Yali pear during storage and shelf-life periods in different oxygen concentrations"

贮藏环境
Storage scenario
贮藏与
货架时间
Time
(d)
品质指标 Quality parameters
硬度
Firmness
(kg?cm-2)
可溶性固形物
Soluble solids contents (%)
可滴定酸
Titratable acidity
(%)
抗坏血酸
Ascorbic acid
(mg/100 g)
L* b*
基础值 At harvest 6.02±0.536 10.32±0.02 0.16±0.001 6.56±0.152 88.91±1.58 30.78±2.35
1.0% O2+0.5% CO2 150 5.48±0.335c 10.61±0.68cd 0.086±0.003a 4.62±0.178a 85.93±1.01a 23.86±1.15c
150+10 5.10±0.424ab 11.00±0.483ab 0.042±0.001d 5.98±0.082b 86.93±0.72ab 32.59±2.05ab
210 5.68±0.783a 10.54±0.505bc 0.081±0.001d 1.87±0.065a 88.15±1.24a 34.70±1.53bc
210+7 5.65±0.752a 10.91±0.604a 0.13±0.001c 3.11±0.056c 87.30±1.0a 37.50±2.89a
270 5.66±0.345a 11.07±0.892ab 0.085±0.002e 2.85±0.052a 86.32±1.55a 36.17±1.8ab
270+7 5.62±0.404ab 10.39±0.713b 0.11±0.006c 3.78±0.209e 85.77±1.36a 37.82±2.37a
2.0% O2+0.5% CO2 150 5.59±0.355bc 10.87±0. 525bc 0.082±0.001b 3.51±0.137b 85.27±1.0abc 24.27±1.15bc
150+10 5.24±0. 340ab 11.11±0.648a 0.043±0.001cd 5.04±0.004c 86.23±0.76bc 34.31±1.86a
210 5.49±0.397a 10.96±0.463a 0.096±0.005b 1.33±0.057e 87.77±1.09a 35.96±2.53a
210+7 5.26±0.295a 10.81±0.407a 0.15±0.001a 2.85±0.037e 87.11±0.70a 36.69±1.74a
270 5.36±0.395b 11.19±0.543ab 0.088±0.003de 2.41±0.049d 86.41±1.48a 35.97±1.8b
270+7 5.54±0.335c 10.86±0.661a 0.12±0.001a 2.90±0.053d 86.34±1.25a 37.26±2.33a
3.0% O2+0.5% CO2 150 5.70±0.529ab 11.38±0.466a 0.083±0.001b 2.74±0.911c 85.42±0.99c 25.32±1.18a
150+10 5.38±0.489a 10.74±0.64b 0.045±0.003bc 5.00±0.043c 85.88±1.03c 34.32±1.81a
210 5.48±0.482a 10.74±0.581ab 0.099±0.001b 1.49±0.033c 87.68±0.95a 35.76±1.23ab
210+7 5.46±0.496a 10.87±0.701a 0.13±0.002b 3.02±0.034a 87.03±0.90a 36.11±1.43a
270 5.82±0.565a 11.34±0.698a 0.10±0.001b 2.55±0.129bc 86.43±1.27a 37.21±1.71b
270+7 5.50±0.486bc 10.38±0.929b 0.098±0.002d 3.55±0.014c 85.83±1.16a 37.45±2.4a
5.0%O2+0.5%CO2 150 5.84±0.468a 11.04±0. 542b 0.073±0.001d 2.50±0.438d 85.02±1.08bc 24.92±1.59ab
150+10 5.32±0.64ab 10.88±0.527ab 0.047±0.001b 5.03±0.055c 87.14±1.16a 31.37±2.27b
210 5.55±0.410a 10.62±0.58bc 0.097±0.002b 1.65±0.039b 88.08±1.11a 34.92±1.52abc
210+7 5.68±0.725a 10.57±0.514ab 0.12±0.002d 2.87±0.044e 86.60±1.02b 37.79±2.31a
270 5.32±0.538b 10.72±0.931cd 0.12±0.002a 2.47±0.018cd 87.02±1.56a 35.50±1.89b
270+7 5.82±0.624a 10.48±0.939ab 0.11±0.002b 3.87±0.087bc 85.29±1.06a 37.82±2.59a
10.0% O2+0.5% CO2 150 5.46±0.343c 10.49±0.595d 0.077±0.003c 2.06±0.49e 85.60±1.36ab 24.03±1.19bc
150+10 5.04±0.343bc 10.93±0.481ab 0.054±0.001a 4.67±0.049d 85.94±0.946c 33.33±0.83a
210 5.49±0.403a 10.93±0.44a 0.11±0.001a 1.37±0.046d 87.79±1.22a 34.54±1.25c
210+7 5.22±0.482a 10.87±0.337a 0.13±0.001b 3.53±0.043b 85.79±1.91c 36.65±2.31a
270 5.26±0.422b 10.94±0.62bc 0.095±0.001c 1.64±0.025b 84.03±4.51b 35.82±1.55b
270+7 5.23±0.387d 10.35±0.685b 0.12±0.001a 4.07±0.161b 84.04±1.63ab 36.97±2.68a
空气
Air control
150 5.51±0.280bc 10.48±0.625d 0.069±0.001e 2.58±0.263cd 84.49±1.8c 24.22±1.03bc
150+10 4.81±0.263c 10.84±0.475ab 0.045±0.001b 6.14±0.115a 87.16±0.95a 31.38±1.77b
210 5.14±0.293b 10.49±0.451c 0.077±0.001c 1.43±0.031cd 87.28±1.97a 35.07±1.32abc
210+7 5.32±0.258b 10.43±0.611b 0.11±0.002e 3.85±0.005a 85.25±4.35d 36.65±2.47a
270 5.28±0.263b 10.38±0.692d 0.090±0.002d 1.88±0.032a 83.59±2.32b 35.26±1.34b
270+7 5.38±0.577cd 10.10±0.702b 0.10±0.002d 4.67±0.117a 81.83±1.77b 27.42±2.13a

Fig. 2

Effects of different oxygen concentrations on ethanol content during storage and shelf-life period of Yali pear"

Fig. 3

Effects of different oxygen concentrations on respiration rate and ethylene production during storage and shelf-life period of Yali pear"

Fig. 4

The relative expression of PbACO1, PbACO3 and PbACS1 under different oxygen concentrations during storage and shelf-life period of Yali pear"

[1] 王文辉, 贾晓辉, 杜艳民, 王志华 . 我国梨果生产与贮藏现状存在的问题与发展趋势. 保鲜与加工, 2013,13(5):1-8.
WANG W H, JIA X H, DU Y M, WANG Z H . Current situation, problems and development trend of production and storage of pear in China. Storage and Process, 2013,13(5):1-8. (in Chinese)
[2] CAO J K, JIANG W B . Induction of resistance in Yali pear (Pyrus bretschneideri Rehd.) fruit against postharvest diseases by acibenzolar-S-methyl sprays on trees during fruit growth. Scientia Horticulturae, 2006,110:181-186.
doi: 10.1016/j.scienta.2006.07.002
[3] CHENG Y D, LIU L Q, FENG Y X, DONG Y, GUAN J F . Effects of 1-MCP on fruit quality and core browning in ‘Yali’ pear during cold storage. Scientia Horticulturae, 2019,243:350-356.
doi: 10.1016/j.scienta.2018.08.041
[4] YAN S J, LI L, HE L H, LIANG L Y, LI X D . Maturity and cooling rate affects browning, polyphenol oxidase activity and gene expression of ‘Yali’ pears during storage. Postharvest Biology and Technology, 2013,85:39-44.
doi: 10.1016/j.postharvbio.2013.04.016
[5] 杜艳民, 王文辉, 贾晓辉, 乐文全, 魏建梅, 关军锋 . 河北省梨果贮藏产业发展现状及建议. 保鲜与加工, 2017,17(2):1-6.
DU Y M, WANG W H, JIA X H, LE W Q, WEI J M, GUAN J F . Development status and proposal of pear storage industry of Hebei province. Storage and Process, 2017,17(2):1-6. (in Chinese)
[6] DRAKE S R, MIELKE E A, ELFVING D C . Maturity and storage quality of ‘Concorde’ pears. Hort Technology, 2004,14(2):250-256.
[7] THOMPSON K . Controlled Atmosphere Storage of Fruits and Vegetables. 2nd ed. UK: Oxford shire, 2010: 272.
[8] ALMEIDA D P F, CARVALHO R, DUPILLE E . Efficacy of 1-methylcyclopropene on the mitigation of storage disorders of ‘Rocha’ pear under normal refrigerated and controlled atmospheres. Food Science and Technology Interview, 2016,22:399-409.
[9] SAQUET A A . Storage of pears. Scientia Horticulturae, 2019,246:1009-1016.
doi: 10.1016/j.scienta.2018.11.091
[10] CALVO G, SALVADOR M E, SANCHEZ E . Control of superficial scald in Beurré d’Anjou pears with low oxygen levels. Acta Horticulture, 2002,596:879-882.
[11] RIZZOLO A, GRASSI M, VANOLI M . 1-Methylcyclopropene application, storage temperature and atmosphere modulate sensory quality changes in shelf-life of ‘AbbéFétel’ pears. Postharvest Biology and Technology, 2014,92:87-97.
doi: 10.1016/j.postharvbio.2014.01.010
[12] RIZZOLO A, GRASSI M, VANOLI M . Influence of storage (time, temperature, atmosphere) on ripening, ethylene production and texture of 1-MCP treated ‘AbbéFétel’ pears. Postharvest Biology and Technology, 2015,109:20-29.
doi: 10.1016/j.postharvbio.2015.06.003
[13] VANOLI M, GRASSI M, RIZZOLO A . Ripening behavior and physiological disorders of ‘Abate Fetel’ pears treated at harvest with 1-MCP and stored at different temperatures and atmospheres. Postharvest Biology and Technology, 2016,111:274-285.
doi: 10.1016/j.postharvbio.2015.09.017
[14] SAQUET A A, STREIF J, ALMEIDA D P F . Responses of ‘Rocha’ pear to delayed controlled atmosphere storage depend on oxygen partial pressure. Scientia Horticulturae, 2017,222:17-21.
doi: 10.1016/j.scienta.2017.05.006
[15] NGUYEN T A, VERBOVEN P, SCHENK A, NICOLAI B M . Prediction of water loss from pears (Pyrus communis cv. Conference) during controlled atmosphere storage as affected by relative humidity. Journal of Food Engineering, 2007,83:149-155.
doi: 10.1016/j.jfoodeng.2007.02.015
[16] PEDRESCHI R, HERTOG M, ROBBEN J, NOBEN J P, NICOLAI B M . Physiological implications of controlled atmosphere storage of ‘Conference’ pears (Pyrus communis L.): A proteomic approach. Postharvest Biology and Technology, 2008,50:110-116.
doi: 10.1016/j.postharvbio.2008.04.004
[17] SAQUET A A . Storability of Conference pear under various controlled atmospheres. Erwerbs-Obstbau , 2018,60:1-6.
[18] 陈昆松, 于梁, 周山涛 . 鸭梨果实气调贮藏研究. 园艺学报, 1991,18(2):131-137.
CHEN K S, YU L, ZHOU S T . A study on controlled atmosphere storage of ‘YA-LI’ pears. Acta Horticulture Sinica, 1991,18(2):131-137. (in Chinese)
[19] 陈昆松, 于梁, 周山涛 . 鸭梨果实气调贮藏过程CO2伤害机理初探. 中国农业科学, 1991,24(5):83-88.
CHEN K S, YU L, ZHOU S T . A preliminary study on possible mechanism of CO2 injury of ‘YA-LI’ pear (Pyrus bretschneideri Rehd.) during CA storage. Scientia Agicultura Sinica, 1991,24(5):83-88. (in Chinese)
[20] 陈昆松, 于梁, 周山涛 . 雪花梨和鸭梨贮藏特性比较. 植物生理学通讯, 1992,28(6):428-430.
CHEN K S, YU L, ZHOU S T . Comparison of storage character of Xuehua pear and Ya pear. Plant Physiology Communication, 1992,28(6):428-430. (in Chinese)
[21] HOHN E, DATWYLER D, GASSER F, DE JAGER A, JOHNSON D, HOHN E . Maturity indices to predict optimum harvest date for the storage of ‘Conference’ pears in Switzerland//Determination and Prediction of Optimum Harvest Date of Apples and Pears. Brussels, 1996: 148-156. ECSC-EC-EAEC.
[22] VERLINDENBE, DE JAGER A, LAMMERTYN J, SHOTSMANS W, NICOLAI B . Effect of harvest and delaying controlled atmosphere storage conditions on core breakdown incidence in ‘Conference’ pears. Biosystems Engineering, 2002,83:339-347.
doi: 10.1006/bioe.2002.0127
[23] 杜艳民, 王文辉, 贾晓辉, 佟伟, 王志华 . 不同可溶性固形物含量鸭梨耐贮性差异比较. 果树学报, 2018,35(10):1262-1270.
DU Y M, WANG W H, JIA X H, TONG W, WANG Z H . The comparison of storage ability of‘Yali’pear in different soluble solids contents grades. Journal of Fruit Science, 2018,35(10):1262-1270. (in Chinese)
[24] 纪淑娟, 尹竞男, 李家政, 黄艳凤 . 静态顶空气相色谱法测定蜜柚中乙醇和乙醛含量. 保鲜与加工, 2010,10(4):17-20.
JI S J, YIN J N, LI J Z, HUANG Y F . Determination of alcohol and acetaldehyde in pomelo by static head space gas chromatography. Storage and Process, 2010,10(4):17-20. (in Chinese)
[25] 慕茜 . 五种水果作物果实成熟过程中乙烯合成及应答途径相关基因的功能分析[D]. 南京: 南京农业大学, 2015.
MU Q . Functional analysis of the ethylene biosynthesis and signaling pathway related genes during the ripening of five species of fruit crops[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[26] LURIE S, WATKINS C B . Superficial scald, its etiology and control. Postharvest Biology and Technology, 2012,65:44-60.
doi: 10.1016/j.postharvbio.2011.11.001
[27] SABBAN-AMIN R, FEYGENBERG O, BELAUSOV E, PESIS E . Low oxygen and 1-MCP pretreatments delay superficial scald development by reducing reactive oxygen species (ROS) accumulation in stored ‘Granny Smith’ apples. Postharvest Biology and Technology, 2011,62:295-304.
doi: 10.1016/j.postharvbio.2011.06.016
[28] BORDONABA J G, MATTHIEU-HURTIGER V, WESTERCAMP P, COUREAU C, DUPILLE E, LARRIGAUDIERE C . Dynamic changes in conjugated trienols during storage may be employed to predict superficial scald in ‘Granny Smith’ apples. LWT-Food Science and Technology, 2013,54:535-541.
doi: 10.1016/j.lwt.2013.06.025
[29] DELELEL M A, BESSEMANS N, GRUYTERS W, ROGGE S, JANSSEN S, VERLINDEN B E, SMEETS B . Spatial distribution of gas concentrations and RQ in a controlled atmosphere storage container with pear fruit in very low oxygen conditions. Postharvest Biology and Technology, 2019,156:110903.
doi: 10.1016/j.postharvbio.2019.05.004
[30] BRENTON C P, JAMES P M, DAVID R R . Extending ‘Granny Smith’ apple superficial scald control following long term ultra-low oxygen controlled atmosphere storage. Postharvest Biology and Technology, 2020,161:111062.
doi: 10.1016/j.postharvbio.2019.111062
[31] 鞠志国, 朱广廉, 曹宗巽 . 莱阳茌梨果实褐变与多酚氧化酶及酚类物质区域化分布的关系. 植物生理学报, 1988,14(4):356-361.
JU Z G, ZHU G L, CAO Z X . The compartmentation of polyphenol oxidase and its substrates in relation with fruit browning of Laiyang Chi Li (Pyrus bretschneideri Rehd). Acta Phytophysiologica Sicica, 1988,14(4):356-361. (in Chinese)
[32] CHENG Y D, LIU L Q, ZHAO G Q, SHENG G G, YAN H B, GUAN J F, YANG K . The effects of modified atmosphere packaging on core browning and the expression patterns of PPO and PAL genes in ‘Yali’ pears during cold storage. LWT-Food Science and Technology, 2015,60:1243-1248.
doi: 10.1016/j.lwt.2014.09.005
[33] LUM G B, DEELL J R, BOZZO G G . Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. Plant Science, 2016,245:143-152.
doi: 10.1016/j.plantsci.2016.02.005 pmid: 26940499
[34] LUM G B, DEELL J R, HOOVER G J, SUBEDI S, DEELL J R, BOZZO G G . 1-Methylcylopropene and controlled atmosphere modulate oxidative stress metabolism and reduce senescence-related disorders in stored pear fruit. Postharvest Biology and Technology, 2017,129:52-63.
doi: 10.1016/j.postharvbio.2017.03.008
[35] WRIGHT A H, DELONG J M, ARUL J, PRANGE R K . The trend toward lower oxygen levels during apple (Malus domestica Borkh) storage. Journal of Horticulture Science and Biotechnology, 2015,90(1):1-13.
[36] KUPFERMAN E . Controlled Atmosphere Storage of Apples and Pears. Postharvest Information Network, Washington State University, 2001: 1-8.
[37] WANG Z Y, DILLEY D R . Initial low oxygen stress controls superficial scald of apples. Postharvest Biology and Technology, 2000,18:201-213.
doi: 10.1016/S0925-5214(00)00067-3
[38] PESIS E, BEN-ARIE R, FEYGENBERG O, LICHTER A, GADIYEVA O, ANTILOFYEV I, URYUPINA T . A simple pretreatment with low O2 to alleviate superficial scald in Granny Smith apples. Journal of the Science of Food and Agriculture, 2007,87:1836-1844.
doi: 10.1002/(ISSN)1097-0010
[39] LARRIGAUDIERE C, CANDAN A P, GINE-BORDONABA J, CIVELLO M, CALVO G . Unravelling the physiological basis of superficial scald in pears based on cultivar differences. Scientia Horticulturae, 2016,213:340-345.
doi: 10.1016/j.scienta.2016.10.043
[40] LARRIGAUDIERE C, LINDO-GARCIA V, UBACH D, GINE- BORDONABA J . 1-Methylcyclopropene and extreme ULO inhibit superficial scald in a different way highlighting the physiological basis of this disorder in pear. Scientia Horticulturae, 2019,250:148-153.
doi: 10.1016/j.scienta.2019.02.049
[41] VELTMAN R H, KHO R M, VAN SCHAIK A C R, SANDERS M G, OOSTERHAVEN J . Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions. Postharvest Biology and Technology, 2000,19:129-137.
doi: 10.1016/S0925-5214(00)00095-8
[42] BARRY C S, GIOVANNONI J J . Ethylene and fruit ripening. Journal of Plant Growth Regulation, 2007,26:143-159.
doi: 10.1007/s00344-007-9002-y
[43] CHIRIBOGA M, SALADIE M, BORDONABA J, RECASENS I, GARCIA-MAS J, LARRIGAUDIERE C . Effect of cold storage and 1-MCP treatment on ethylene perception, signaling and synthesis: Influence on the development of the evergreen behavior in ‘Conference’ pears. Postharvest Biology and Technology, 2013,86:212-220.
doi: 10.1016/j.postharvbio.2013.07.003
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[4] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[5] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[6] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[7] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[8] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[9] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[10] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[11] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[12] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[13] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[14] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[15] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!