Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4816-4834.doi: 10.3864/j.issn.0578-1752.2020.23.009

• SPECIAL FOCUS: FERTILIZER REDUCTIONISM IN WHEAT PRODUCTION • Previous Articles     Next Articles

Evaluation of Farmers’ Fertilizer Application and Fertilizer Reduction Potentials in Major Wheat Production Regions of China

HUANG QianNan1(),DANG HaiYan1(),HUANG TingMiao1,HOU SaiBin1,WANG ZhaoHui1,2()   

  1. 1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
    2Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
  • Received:2020-05-30 Accepted:2020-07-31 Online:2020-12-01 Published:2020-12-09
  • Contact: ZhaoHui WANG E-mail:qiannan9325@163.com;haiyan-d@nwsuaf.edu.cn;w-zhaohui@263.net

Abstract:

【Objective】It is of great significance to understand problems in farmers’ fertilizer application and the potential to reduce the fertilizer rates, with the purpose to realize scientific fertilizer recommendation and reasonable reduction of fertilizer input in major wheat production regions of China. 【Method】A three-year long in-farm fertilization survey and collection of soil and plant samples were carried out to analyze and evaluate the fertilization status and fertilizer reduction potentials based on the wheat yield levels, nutrient requirement and soil nutrient supply capacities in major wheat production regions of China. 【Result】The average wheat grain yields were significantly and linearly correlated with their biomass, with the average to be 6.0 and 13.2 t·hm -2 for farmers over all the major wheat regions in China, respectively. However, the yields showed no significant correlation with the fertilizer application rates and soil nutrients, and the average application rates for nitrogen (N), phosphorus (P2O5) and potassium (K2O) were 191.1, 112.8 and 53.4 kg·hm -2, respectively. In the spring wheat region, the averages were correspondingly 171.7, 108.9 and 10.6 kg·hm -2, 154.3, 111.8 and 32.6 kg·hm -2 in dryland wheat region, 236.4, 128.1 and 74.0 kg·hm -2 in wheat-maize region, and 177.5, 77.0 and 71.8 kg·hm -2 in rice-wheat region, respectively. For the N, there were less farmers, only 34% over applied fertilizers in the spring wheat region, and then it was 42% in wheat-maize region, 55% in rice-wheat region, and 63% in dryland wheat region, with the low-yielding farmers to be the focus of N fertilizer reduction, the reduction potential to be 43.6%, and the average N reduction of 2.3-135.5 kg·hm -2. The problems for over P fertilizer application were more obvious, with 63%, 87%, 68% and 57% of farmers to apply excessive P fertilizer respectively in the four regions. Even at the high-yielding levels, there were still more than 50% of farmers apply excessive P fertilizer, and all the farmers need to reduce their P fertilizer, with the average reduction to be 3.8-91.1 kg P2O5 ·hm -2, and dryland wheat region of the largest reduction potential, which was 55.6% of their current P rates. Situation for K application was variable with regions. In spring wheat region, 84% of famers applied insufficient K fertilizers, with an average of 22.8 kg·hm -2 extra K2O needed to be applied. While, in dryland wheat, wheat maize and rice wheat regions, 43.2%, 25.7% and 56.0% of their current K fertilizer application should be reduced, with the low yielding farmers to be the key in K fertilizer reduction and the average reduction of 31.7-45.9 kg K2O·hm -2. 【Conclusion】Fertilizer application and its reduction potential were found to vary with the yields and regions for wheat farmers in China. Situation of excessive fertilization was more serious for low- and medium-yielding farmers. Application of N and K fertilizers should be reduced according to the wheat yield levels, and all farmers should pay special attention to their over P fertilizer application, and reduce the P application rates to reasonable levels. Fertilizer reduction potential was the highest in the dryland wheat region for N and P fertilizers, and in rice wheat region for K fertilizer.

Key words: wheat, yield, nitrogen fertilizer, phosphate fertilizer, potassium fertilizer, fertilizer reduction, fertilizer reduction potential

Table 1

Precipitation and physical and chemical properties of 0-20 cm wheat field soil of the investigated farmers in main wheat production regions of China"

区域
Region
降雨量 Precipitation (mm) pH 有机质
Organic matter (g·kg-1)
全氮
Total N (g·kg-1)
硝态氮
Nitrate N (mg·kg-1)
铵态氮
Ammonium N (mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K (mg·kg-1)
全年
Annual
生育期
Growing season
春麦区SW 461—577 172—202 8.3±0.1 19.4±1.2 1.1±0.1 23.6±5.1 4.2±0.4 34.2±3.4 191.4±10.4
旱作区DW 487—525 236—256 8.3±0.01 12.6±0.2 0.8±0.01 14.1±1.3 2.4±0.1 13.7±0.5 133.4±2.6
麦玉区WM 580—614 263—287 7.9±0.05 19.7±0.3 1.1±0.02 25.6±1.6 4.6±0.3 31.3±1.2 171.9±4.6
稻麦区RW 1124—1164 431—463 7.0±0.1 23.8±0.8 1.3±0.04 12.9±1.6 7.7±0.7 22.6±1.3 130.5±4.9
全国ALL 718—764 290—308 8.0±0.02 17.5±0.3 1.0±0.01 19.1±0.9 4.2±0.2 23.3±0.7 151.7±2.4

Fig. 1

Grading standard and grade divisions for Famers’ fertilizer application"

Fig. 2

Relationships of farmers’ grain yield to biomass in major wheat production regions of China VL: Very low yield; L: Low yield; M: Medium yield; H: High yield; VH: Very high yield"

Fig. 3

Relationships of farmers’ grain yield to application rates of N, P and K fertilizers in major wheat production regions of China The full line represents mean value of wheat grain yield. The dotted line represents mean values of fertilizers rates used by farmers, respectively"

Fig. 4

Relationships of farmers’ grain yield to soil nutrients of 0-20 cm layer in major wheat production regions of China The full line represents mean value of wheat grain yield. The dotted line represents mean concentration of soil nutrient"

Fig. 5

Distributions of farmers with different N inputs at different grain yield levels in major wheat production regions of China The color from dark to light indicates the fertilizer rates from high to low. The same as below"

Table 2

Famers’ N application rates and recommend N rates at different yield levels in major wheat production regions of China"

区域
Region
产量等级
Yield level (t·hm-2)
硝态氮
Nitrate (mg·kg-1)
农户施肥量
FP (kg N·hm-2)
推荐施肥量
Rec (kg N·hm-2)
减肥量
Reduction (kg N·hm-2)
减肥潜力
Reduction potential (%)
春麦区
SW
低产VL(<4.3) 8.4±3.6a 109.4±30.6b 88.6±7.9d -20.8±28.4 -25.8±13.7
偏低L(4.3—5.5) 27.7±16.5a 163.1±32.5ab 160.8±7.5c -2.3±36.8 29.1±16.5
中产M(5.5—6.7) 32.5±11.2a 171.5±32ab 182.0±7.1c 10.5±30.0 17.3±17.2
偏高H(6.7—7.9) 25.3±10.9a 186.4±40.7ab 224.1±8.9b 37.7±39.2 1.1±18.2
高产VH(>7.9) 12.6±3.7a 233.7±38.3a 269.3±12.1a 35.6±41.7 53.4±30.3
均值 Mean 23.6±5.1A 171.7±16.1BC 183.3±7.8B 11.6±15.6 17.7±9.3
旱作区
DW
低产VL(<3.1) 10.3±3.1bc 141.1±6.1b 82.0±2.0d -59.1±6.2 -37.1±2.6
偏低L(3.1—4.0) 8.1±1.3c 144.5±5.2b 104.6±1.3c -37.9±5.5 -25.0±2.1
中产M(4.0—4.8) 17.4±3.4ab 150.2±6.6b 127.1±1.4b -20.8±7.1 -5.3±4.0
偏高H(4.8—5.7) 15.7±2.4abc 155.9±7.7b 127.5±1.7b -31.1±7.2 -10.7±4.8
高产VH(>5.7) 18.2±2.4a 179.3±8.7a 175.9±3.2a -3.5±9.1 11.8±4.6
均值Mean 14.1±1.3B 154.3±3.2C 122.6±1.9D -31.3±3.4 -12.8±1.9
麦玉区
WM
低产VL(<5.4) 37.9±5.4a 267.8±13.4a 129.7±6.2e -135.5±16.5 -43.6±5.6
偏低L(5.4—7.0) 29.9±4.9ab 221.4±8.8b 188.6±2.9d -31.9±10.0 3.6±6.3
中产M(7.0—8.6) 22.1±1.9b 229.8±6.4b 226.5±2.7c -2.1±7.3 6.8±3.7
偏高H(8.6—10.2) 21.4±2.4b 243.7±8.6ab 271.9±3.7b 29.7±10.1 24.7±5.4
高产VH(>10.2) 23.8±3.7b 240.5±13.8ab 311.0±7.4a 70.5±17.5 48.7±8.9
均值Mean 25.6±1.6A 236.4±4.1A 227.5±3.1A -7.7±5.5 10.0±2.8
稻麦区
RW
低产VL(<3.9) 9.0±2.9a 171.5±18.2a 84.3±3.6e -87.1±17.2 -39.4±7.0
偏低L(3.9—5.0) 10.8±3.1a 177.8±13.2a 117.4±2.8d -61.2±14.0 -27.6±6.2
中产M(5.0—6.1) 15.2±3.6a 171.9±11.1a 143.9±2.6c -26.5±11.4 -9.3±5.3
偏高H(6.1—7.2) 14.4±3.4a 191.6±14.8a 165.2±3.3b -26.4±15.5 -4.8±6.8
高产VH(>7.2) 13.9±4.1a 177.0±16.2a 202.0±4.5a 25.0±16.5 37.3±14.1
均值Mean 12.9±1.6B 177.5±6.3B 142.1±3.3C -35.1±7.0 -9.5±3.9

Fig. 6

Distributions of farmers with different P inputs at different grain yield levels in major wheat production regions of China"

Table 3

Famers’ P application rates and recommend P rates at different yield levels in major wheat production regions of China"

区域
Region
产量等级
Yield level (t·hm-2)
速效磷
Available P (mg·kg-1)
农户施肥量
FP (kg P2O5·hm-2)
推荐施肥量
Rec (kg P2O5·hm-2)
减肥量
Reduction (kg P2O5·hm-2)
减肥潜力
Reduction potential (%)
春麦区
SW
低产VL(<4.3) 28.7±10.6a 78.7±21.3b 33.0±4.2d -45.6±22.4 -46.9±18.2
偏低L(4.3—5.5) 41.7±10.1a 110.6±20.9a 67.7±8.2bc -42.9±19.7 -27.6±10.0
中产M(5.5—6.7) 34.5±4.2a 105.6±16.2a 67.1±6.8c -38.5±14.8 -39.9±6.7
偏高H(6.7—7.9) 37.5±9.5a 103.1±22.9a 92.6±12.6ab -10.4±17.7 -18.1±12.2
高产VH(>7.9) 25.3±5.2a 155.3±26.9a 118.9±16.8a -36.4±16.5 -15.7±7.7
均值Mean 34.2±3.4A 108.9±9.4A 73.7±5.3B -35.1±8.0 -31.0±4.7
旱作区
DW
低产VL(<3.1) 12.1±1.0b 103.3±6.2b 26.8±1.0d -76.6±6.2 -69.5±2.4
偏低L(3.1—4.0) 11.7±1.5b 128.9±8.4a 36.0±1.0c -91.1±8.6 -67.7±1.9
中产M(4.0—4.8) 13.8±1.0ab 103.9±6.6b 39.9±1.3c -64.8±7.1 -57.1±2.6
偏高H(4.8—5.7) 15.1±1.3ab 100.1±7.0b 45.9±1.7b -53.5±7.1 -42.6±4.9
高产VH(>5.7) 15.8±1.1a 124.8±8.3a 57.8±2.0a -67.0±8.6 -41.2±3.8
均值Mean 13.7±0.5C 111.8±3.3A 41.1±0.8D -70.5±3.4 -55.6±1.7
麦玉区
WM
低产VL(<5.4) 22.8±2.0b 121.8±12.1a 56.5±4.6d -59±11.3 -46.3±7.2
偏低L(5.4—7.0) 30.2±2.8ab 114.9±8.0a 79.6±3.5c -35.7±8.7 -33.8±5.4
中产M(7.0—8.6) 29.1±2.1b 129.0±6.9a 89.6±3.1bc -37.4±7.4 -20.7±4.1
偏高H(8.6—10.2) 35.9±2.7a 138.9±8.6a 95.9±4.4ab -40.2±9.8 -17.8±6.9
高产VH(>10.2) 38.2±3.9a 136.8±7.2a 107.1±8.0a -29.7±10.4 -17.0±7.2
均值Mean 31.3±1.2A 128.1±3.8A 87.2±2.1A -39.2±4.2 -25.0±2.7
稻麦区
RW
低产VL(<3.9) 16.1±2.3b 69.7±8.5a 46.1±3.6c -23.6±9.1 -33.2±9.3
偏低L(3.9—5.0) 20.2±2.2ab 73.3±6.0a 51.5±3.5c -23.1±6.9 -21.5±9.1
中产M(5.0—6.1) 24.5±2.6a 80.4±5.6a 64.5±3.9b -15.7±7.3 -13.3±8.6
偏高H(6.1—7.2) 22.8±2.9ab 74.4±5.2a 70.6±4.5ab -3.8±6.8 3.7±10.4
高产VH(>7.2) 28.9±4.7a 86.1±6.6a 81.8±7.3a -4.3±9.3 2.6±12.4
均值Mean 22.6±1.3B 77.0±2.9B 63±2.2C -14.2±3.6 -11.6±4.6

Fig. 7

Distributions of farmers with different K inputs at different grain yield levels in major wheat production regions of China"

Table 4

Famers’ K application rates and recommend K rates at different yield levels in major wheat production regions of China"

区域
Region
产量等级
Yield level (t·hm-2)
速效钾
Available K (mg·kg-1)
农户施肥量
FP (kg K2O·hm-2)
推荐施肥量
Rec (kg K2O·hm-2)
减钾量
Reduction (kg K2O·hm-2)
减肥潜力
Reduction potential (%)
春麦区 SW 低产VL(<4.3) 149.8±18.2b 3.6±3.6a 21.3±5.2b 17.7±6.8 -25.4±37.2
偏低L(4.3—5.5) 197.5±25.7a 11.6±4.7a 30±6.2ab 18.4±4.5 100.6±54
中产M(5.5—6.7) 192.9±18.2a 11.6±5.7a 34.8±5.1ab 23.2±6.8 -2.7±45.7
偏高H(6.7—7.9) 188.7±24.6a 17.6±9.1a 36.1±6.2ab 18.5±9.6 -14.5±12.7
高产VH(>7.9) 230.4±29.8a 6.0±4.2a 44.5±12.9a 38.5±14.4 17.9±34.6
均值 Mean 191.4±10.4A 10.6±2.7C 33.4±3.1B 22.8±3.8 24.6±22.2
旱作区 DW 低产VL(<3.1) 130.1±5.6a 44.8±3.7a 12.5±0.7d -32.2±3.7 -72.3±1.8
偏低L(3.1—4.0) 139.9±6.8a 48.7±5.3a 14.7±0.9d -33.3±5.3 -67.1±2.8
中产M(4.0—4.8) 133.1±5.8a 22.1±2.3b 21.2±1.0c -1.3±2.7 -47.9±3.3
偏高H(4.8—5.7) 131.4±6.3a 24.6±3.0b 26.2±1.4b 2.3±3.4 -2.2±17.8
高产VH(>5.7) 133.5±5.4a 25.3±2.8b 32.0±1.6a 6.7±3.3 -8.4±7.1
均值Mean 133.4±2.6C 32.6±1.6B 21.3±0.6C -11.2±1.9 -43.2±3.9
麦玉区 WM 低产VL(<5.4) 165.9±11.6a 69.8±6.6a 26.6±2.5d -44.1±6.6 -57.3±9.6
偏低L(5.4—7.0) 168.5±8.8a 69.4±6.2a 38.9±2.5c -31.7±6.4 -46.0±5.9
中产M(7.0—8.6) 167.4±8.6a 80.8±4.4a 50.8±2.6b -30.4±5 -32.1±4.8
偏高H(8.6—10.2) 186.1±10.0a 68.3±4.8a 57.6±3.9ab -11.1±6.1 -4.9±9.9
高产VH(>10.2) 169.0±15.3a 79.7±6.6a 65.2±5.4a -14.5±8.6 8.1±16.6
均值Mean 171.9±4.6B 74.0±2.5A 48.6±1.6A -26.0±2.9 -25.7±4.0
稻麦区 RW 低产VL(<3.9) 123.8±9.3a 65.2±9.0a 19.4±2.2b -45.9±9.5 -69.4±4.9
偏低L(3.9—5.0) 117.2±10.1a 67.9±6.8a 28.3±2.5a -42.9±8.1 -49.2±8.8
中产M(5.0—6.1) 133.9±10.1a 71.9±5.5a 28.3±2.4a -43.2±6.7 -54.8±6.6
偏高H(6.1—7.2) 129.0±11.8a 73.8±5.0a 32.2±3.2a -41.6±6.2 -55.3±5.0
高产VH(>7.2) 147.8±11.6a 81.1±6.7a 31.9±4.0a -49.2±8.4 -53.9±7.8
均值Mean 130.5±4.9C 71.8±2.9A 28.1±1.3B -44.2±3.4 -56.0±3.1
[1] 金继运, 李家康, 李书田 . 化肥与粮食安全. 植物营养与肥料学报, 2006,12(5):601-609.
doi: 10.11674/zwyf.2006.0501
JIN J J, LI J K, LI S T . Chemical fertilizer and food security. Journal of Plant Nutrition and Fertilizer, 2006,12(5):601-609. (in Chinese)
doi: 10.11674/zwyf.2006.0501
[2] ERISMAN J W, SUTTON M A, GALLOWAY J, KLIMONT Z, WINIWARTER W . How a century of ammonia synthesis changed the world. Nature Geoscience, 2008,1(10):636-639.
doi: 10.1038/ngeo325
[3] National Bureau of Statistics of China. China Statistical Yearbook. http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm.
[4] ZHANG W F, CAO G X, LI X L, ZHANG H Y, WANG C, LIU Q Q, CHEN X P, CUI Z L, SHEN J B, JIANG R F . Closing yield gaps in China by empowering smallholder farmers. Nature, 2016,537(7622):671-674.
doi: 10.1038/nature19368
[5] 同延安, Ove E, 张树兰, 梁东丽 . 陕西省氮肥过量施用现状评价. 中国农业科学. 2004,37(8):1239-1244.
TONG Y A, OVE E, ZHANG S L, LIANG D L . Evalution of over- application of nitrogen fertilizer in China's Shaanxi Province. Scientia Agricultura Sinica, 2004,37(8):1239-1244. (in Chinese)
[6] 闫湘, 金继运, 何萍, 梁鸣早 . 提高肥料利用率技术研究进展. 中国农业科学. 2008,41(2):450-459.
YAN X, JIN J Y, HE P, LIANG M Z . Recent advances in technology of increasing fertilizer use efficiency. Scientia Agricultura Sinica, 2008,41(2):450-459. (in Chinese)
[7] 赵护兵, 王朝辉, 高亚军, 张卫峰 . 西北典型区域旱地冬小麦农户施肥调查分析. 植物营养与肥料学报. 2013,19(4):840-848.
doi: 10.11674/zwyf.2013.0409
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F . Investigation and analysis of dryland winter wheat fertilizer application in northwest typical areas. Journal of Plant Nutrition and Fertilizer, 2013,19(4):840-848. (in Chinese)
doi: 10.11674/zwyf.2013.0409
[8] 赵护兵, 王朝辉, 高亚军, 张卫峰 . 陕西省农户小麦施肥调研评价. 植物营养与肥料学报. 2016,22(1):245-253.
doi: 10.11674/zwyf.14243
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F . Investigation and evaluation of household wheat fertilizer application in Shaanxi Province. Journal of Plant Nutrition and Fertilizer, 2016,22(1):245-253. (in Chinese)
doi: 10.11674/zwyf.14243
[9] SIMS J T, MA L, OENEMA O, DOU Z, ZHANG F S . Advances and challenges for nutrient management in China in the 21st century. Journal of Environmental Quality, 2013,42(4):947-950.
doi: 10.2134/jeq2013.05.0173 pmid: 24216346
[10] CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S . Producing more grain with lower environmental costs. Nature, 2014,514(7523):486-489.
doi: 10.1038/nature13609
[11] 崔振岭, 陈新平, 张福锁, 徐久飞, 石立委, 李俊良 . 华北平原小麦施肥现状及影响小麦产量的因素分析. 华北农学报. 2008(增刊):224-229.
doi: 10.7668/hbnxb.2008.S1.053
CUI Z L, CHEN X P, ZHANG F S, XU J F, SHI L W, LI J L . Analysis on fertilizer applied and the central factors influencing grain yield of wheat in the Northern China Plain. Acta Agriculturae Boreali-Sinica, 2008(S1):224-229. (in Chinese)
doi: 10.7668/hbnxb.2008.S1.053
[12] ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMAS P, SHEN Y . Managing nitrogen for sustainable development. Nature, 2015,528(7580):51.
doi: 10.1038/nature15743 pmid: 26595273
[13] ZHAO B Q, LI X Y, LIU H, WANG B R, ZHU P, HUANG S M, BAO D J, LI Y T, SO H B . Results from long-term fertilizer experiments in China: The risk of groundwater pollution by nitrate. NJAS-Wageningen Journal of Life Sciences. 2011,58(3/4):177-183.
doi: 10.1016/j.njas.2011.09.004
[14] 王旭, 李贞宇, 马文奇, 张福锁 . 中国主要生态区小麦施肥增产效应分析. 中国农业科学. 2010,43(12):2469-2476.
WANG X, LI Z Y, MA W Q, ZHANG F S . Effects of fertilization on yield increase of wheat in different agro-ecological regions of China. Scientia Agricultura Sinica, 2010,43(12):2469-2476. (in Chinese)
[15] 张卫峰, 马文奇, 王雁峰, 张福锁 . 中国农户小麦施肥水平和效应的评价. 土壤通报, 2008,39(5):1049-1055.
ZHANG W F, MA W Q, WANG Y F, ZHANG F S . Assessment on farmers' fertilization behavior for wheat production in China. Chinese Journal of Soil Science, 2008,39(5):1049-1055. (in Chinese)
[16] 马立珩 . 江苏省水稻、小麦施肥现状的分析与评价[D]. 南京: 南京农业大学, 2011.
MA L H . Analysis and evaluation of the current status of rice and wheat fertilization in Jiangsu Province[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[17] 柴如山 . 我国农田化学氮肥减量与替代的温室气体减排潜力估算[D]. 杭州: 浙江大学, 2015.
CHAI R S . Estimation of greenhouse gases mitigation potential under reduction and substitution of synthetic nitrogen fertilizer in the cropland of China[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[18] JU X T, XING G X, CHEN X P, ZHANG S L, ZHANG L J, LIU X J, CUI Z L, YIN B, CHRISTIE P, ZHU Z L . Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(9):3041-3046.
doi: 10.1073/pnas.0813417106 pmid: 19223587
[19] 牛新胜, 张宏彦 . 华北平原冬小麦-夏玉米生产肥料管理现状分析. 耕作与栽培, 2010(5):3-6, 10.
NIU X S, ZHANG H Y . Fertilizer management status analysis on winter wheat and summer maize in north central China. Tillage and Cultivation, 2010(5):3-6,10. (in Chinese)
[20] 赵亚南, 徐霞, 黄玉芳, 孙笑梅, 叶优良 . 河南省小麦、玉米氮肥需求及节氮潜力. 中国农业科学, 2018,51(14):2747-2757.
doi: 10.3864/j.issn.0578-1752.2018.14.012
ZHAO Y N, XU X, HUANG Y F, SUN X M, YE Y L . Nitrogen requirement and saving potential for wheat and maize in Henan province. Scientia Agricultura Sinica, 2018,51(14):2747-2757. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.012
[21] 彭显龙, 王伟, 周娜, 刘海洋, 李鹏飞, 刘智蕾 . 基于农户施肥和土壤肥力的黑龙江水稻减肥潜力分析. 中国农业科学, 2019,52(12):2092-2100.
doi: 10.3864/j.issn.0578-1752.2019.12.007
PENG X L, WANG W, ZHOU N, LIU H Y, LI P F, LIU Z L . Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province. Scientia Agricultura Sinica, 2019,52(12):2092-2100. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.12.007
[22] 张灿强, 王莉, 华春林, 金书秦, 刘鹏涛 . 中国主要粮食生产的化肥削减潜力及其碳减排效应. 资源科学, 2016,38(4):790-797.
doi: 10.18402/resci.2016.04.20
ZHANG C Q, WANG L, HUA C L, JIN S Q, LIU P T . Potentialities of fertilizer reduction for grain produce and effects on carbon emissions. Resources Science, 2016,38(4):790-797. (in Chinese)
doi: 10.18402/resci.2016.04.20
[23] CHUAN L M, HE P, JIN J Y, LI S T, GRANT C, XU X P, QIU S J, ZHAO S C, ZHOU W . Estimating nutrient uptake requirements for wheat in China. Field Crops Research, 2013,146:96-104.
doi: 10.1016/j.fcr.2013.02.015
[24] 黄德明 . 我国农田土壤养分肥力状况及丰缺指标. 华北农学报, 1988,3(2):46-53.
doi: 10.3321/j.issn:1000-7091.1988.02.008
HUANG D M . Soil fertility and fertility index for cropland soil in China. Acta Agriculturae Boreali-Sinica, 1988,3(2):46-53. (in Chinese)
doi: 10.3321/j.issn:1000-7091.1988.02.008
[25] 孙义祥, 郭跃升, 于舜章, 蒋庆功, 程琳琳, 崔振岭, 陈新平, 江荣风, 张福锁 . 应用“3414”试验建立冬小麦测土配方施肥指标体系. 植物营养与肥料学报, 2009,15(1):197-203.
doi: 10.11674/zwyf.2009.0129
SUN Y X, GUO Y S, YU S Z, JIANG Q G, CHENG L L, CUI Z L, CHEN X P, JIANG R F, ZHANG F S . Establishing phosphorus and potassium fertilization recommendation index based on the “3414” field experiments. Journal of Plant Nutrition and Fertilizer, 2009,15(1):197-203. (in Chinese)
doi: 10.11674/zwyf.2009.0129
[26] STANFORD G, HUNTER A S . Nitrogen requirements of winter wheat (Triticum aestivum L.) varieties ‘Blueboy’ and ‘Redcoat’. Agronomy Journal, 1973,65(3):442-447.
doi: 10.2134/agronj1973.00021962006500030026x
[27] 张福锁, 陈新平, 陈清 . 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009: 3-4.
ZHANG F S, CHEN X P, CHEN Q. China's Main Crop Fertilization Guidelines. Beijing: China Agricultural University Press, 2009: 3-4. (in Chinese)
[28] PAMPOLINO M F, WITT C, PASUQUIN J M, JOHNSTON A, FISHER M J . Development approach and evaluation of the nutrient expert software for nutrient management in cereal crops. Computers & Electronics in Agriculture, 2012,88:103-110.
[29] 何萍, 金继运 . 集约化农田节肥增效理论与实践. 北京: 科学出版社, 2012.
HE P, JIN J Y. Fertilizer Saving and Efficiency Improvement in Intensified Farmland. Beijing: Science Press, 2012. (in Chinese)
[30] 刘芬, 王小英, 赵业婷, 同延安 . 渭北旱塬土壤养分时空变异与养分平衡研究. 农业机械学报, 2015,46(2):110-119.
LIU F, WANG X Y, ZHAO Y T, TONG Y A . Spatial and temporal variation of soil nutrient and nutrient balance status in Weibei rainfed highland. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(2):110-119. (in Chinese)
[31] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣 . 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018,51(14):2722-2734.
doi: 10.3864/j.issn.0578-1752.2018.14.010
HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X . Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Scientia Agricultura Sinica, 2018,51(14):2722-2734. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.14.010
[32] 马小龙, 佘旭, 王朝辉, 曹寒冰, 何红霞, 何刚, 王森, 黄明, 刘璐 . 旱地小麦产量差异与栽培、施肥及主要土壤肥力因素的关系. 中国农业科学, 2016,49(24):4757-4771.
doi: 10.3864/j.issn.0578-1752.2016.24.008
MA X L, SHE X, WANG Z H, CAO H B, HE H X, HE G, WANG S, HUANG M, LIU L . Yield variation of winter wheat and its relation to cultivation, fertilization, and main soil fertility factors. Scientia Agricultura Sinica, 2016,49(24):4757-4771. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.24.008
[33] HE P, YANG L P, XU X P, ZHAO S C, CHEN F, LI S T, TU S H, JIN J Y, JOHNSTON A M . Temporal and spatial variation of soil available potassium in China (1990-2012). Field Crops Research, 2015,173:49-56.
doi: 10.1016/j.fcr.2015.01.003
[34] 车升国, 袁亮, 李燕婷, 林治安, 李燕青, 赵秉强, 沈兵 . 我国主要麦区小麦产量形成对磷素的需求. 植物营养与肥料学报, 2016,22(4):869-876.
CHE S G, YUAN L, LI Y T, LIN Z A, LI Y Q, ZHAO B Q, SHEN B . Phosphorous requirement for yield formation of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizer, 2016,22(4):869-876. (in Chinese)
[35] 车升国, 袁亮, 李燕婷, 林治安, 沈兵, 胡树文, 赵秉强 . 我国主要麦区小麦氮素吸收及其产量效应. 植物营养与肥料学报, 2016,22(2):287-295.
CHE S G, YUAN L, LI Y T, LIN Z A, SHEN B, HU S W, ZHAO B Q . N uptake and yield response of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizer, 2016,22(2):287-295. (in Chinese)
[36] YUE S C, MENG Q F, ZHAO R F, YE Y L, ZHANG F S, CUI Z L, CHEN X P . Change in nitrogen requirement with increasing grain yield for winter wheat. Agronomy Journal, 2012,104(6):1687-1693.
doi: 10.2134/agronj2012.0232
[37] 戴健 . 旱地冬小麦产量、养分利用及土壤硝态氮对长期施用氮磷肥和降水的响应[D]. 杨凌: 西北农林科技大学, 2016.
DAI J . Responses of winter wheat yield, nutrient utilization and nitrate in soil to long term nitrogen and phosphorus fertilization and precipitation on dryland[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[38] ZHAN A, CHEN X P, LI S Q, ZUI Z L . Changes in phosphorus requirement with increasing grain yield for winter wheat. Agronomy Journal, 2015,107(6):2003-2010.
doi: 10.2134/agronj15.0089
[39] ZHAN A, ZOU C Q, YE Y L, LIU Z H, CUI Z L, CHEN X P . Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crops Research, 2016,191:13-19.
doi: 10.1016/j.fcr.2016.04.001
[40] TENG W, DENG Y, CHEN X P, XU X F, CHEN R Y, LÜ Y, ZHAO Y Y, ZHAO X Q, HE X, LI B, TONG Y P, ZHANG F S, LI Z S . Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 2013,64(5):1403-1411.
doi: 10.1093/jxb/ert023 pmid: 23382547
[41] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁 . 中国氮肥发展、贡献和挑战. 中国农业科学, 2013,46(15):3161-3171.
doi: 10.3864/j.issn.0578-1752.2013.15.010
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S . The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013,46(15):3161-3171. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.15.010
[42] 曹寒冰 . 渭北旱地冬小麦监控施肥技术的优化[D]. 杨凌: 西北农林科技大学, 2016.
CAO H B . Optimization of fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[43] 钟茜, 巨晓棠, 张福锁 . 华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析. 植物营养与肥料学报, 2006,12(3):285-293.
doi: 10.11674/zwyf.2006.0301
ZHONG Q, JU X T, ZHANG F S . Analysis of environmental endurance of winter wheat / summer maize rotation system to nitrogen in North China Plain. Journal of Plant Nutrition and Fertilizer, 2006,12(3):285-293. (in Chinese)
doi: 10.11674/zwyf.2006.0301
[44] 崔振岭, 陈新平, 张福锁, 徐久飞, 石立委, 李俊良 . 华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量. 应用生态学报, 2007,18(10):2227-2232.
pmid: 18163302
CUI Z L, CHEN X P, ZHANG F S, XU J F, SHI L W, LI J L . Appropriate soil nitrate N content for a winter wheat /summer maize rotation system in North China Plain. Chinese Journal of Applied Ecology, 2007,18(10):2227-2232. (in Chinese)
pmid: 18163302
[45] VAN DER PLOEG R R, RINGE H, MACHULLA G, HERMSMEYER D . Postwar nitrogen use efficiency in West German agriculture and groundwater quality. Journal of Environmental Quality, 1997,26(5):1203-1212.
[46] MENGEL K, HÜTSCH B, KANE Y . Nitrogen fertilizer application rates on cereal crops according to available mineral and organic soil nitrogen. European Journal of Agronomy, 2006,24(4):343-348.
doi: 10.1016/j.eja.2005.12.001
[47] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶 . 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017,50(14):2758-2768.
doi: 10.3864/j.issn.0578-1752.2017.14.012
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, LÜ H, SHI Y C, DU M Y . Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production. Scientia Agricultura Sinica, 2017,50(14):2758-2768. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.012
[48] MALLARINO A P, M. B A . Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agronomy Journal, 1992,84(5):850-856.
doi: 10.2134/agronj1992.00021962008400050017x
[49] 郭斗斗, 黄绍敏, 张水清, 张珂珂, 宋晓 . 潮土小麦和玉米Olsen-P农学阈值及其差异分析. 植物营养与肥料学报, 2017,23(5):1184-1190.
GUO D D, HUANG S M, ZHANG S Q, ZHANG K K, SONG X . Threshold values of soil Olsen-P for maize and wheat in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizer, 2017,23(5):1184-1190. (in Chinese)
[50] XU T, MA Y B, HAO X Y, LI X Y, LI J M, HUANG S M, YANG X Y . Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 2009,323(1/2):143-151.
doi: 10.1007/s11104-009-9919-y
[51] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S . The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013,372:27-37.
doi: 10.1007/s11104-013-1696-y
[52] HOCHMUTH G, HANLON E . Principles of sound fertilizer recommendations. Florida Cooperative Extension Service Circular, 2016,SL315.
[53] 张福锁 . 测土配方施肥技术. 北京: 中国农业大学出版社, 2011.
ZHANG F S. Soil Testing and Fertilization Recommendation. Beijing: China Agricultural University Press, 2011.
[54] ZHANG X Y, CHEN S Y, SUN H Y, PEI D, WANG Y M . Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrigation Science, 2008,27(1):1-10.
doi: 10.1007/s00271-008-0131-2
[55] 薛澄, 王朝辉, 李富翠, 赵护兵, 周玲, 李小涵 . 渭北旱塬不同施肥与覆盖栽培对冬小麦产量形成及土壤水分利用的影响. 中国农业科学, 2011,44(21):4395-4405.
doi: 10.3864/j.issn.0578-1752.2011.21.008
XUE C, WANG Z H, LI F C, ZHAO H B, ZHOU L, LI X H . Effects of different fertilization and mulching cultivation methods on yield and soil water use of winter wheat on Weibei Dryland. Scientia Agricultura Sinica, 2011,44(21):4395-4405. (in Chinese).
doi: 10.3864/j.issn.0578-1752.2011.21.008
[56] SLAFER G A, ANDRADE F H, FEINGOLD S E . Genetic improvement of bread wheat (Triticum aestivum L.) in Argentina: Relationships between nitrogen and dry matter. Euphytica, 1990,50(1):63-71.
doi: 10.1007/BF00023162
[57] AUSTIN R B, BINGHAM J, BLACKWELL R D, EVANS L T, FORD M A, MORGAN C L, TAYLOR M . Genetic improvements in winter wheat yields since 1900 and associated physiological changes. The Journal of Agricultural Science, 1980,94(3):675-689.
doi: 10.1017/S0021859600028665
[58] FEIL B, GEISLER G . Untersuchungen zur bildung und verteilung der biomasse bei alten und neuen deutschen sommerweizensorten. Journal of Agronomy and Crop Science, 1988,161:148-156.
doi: 10.1111/j.1439-037X.1988.tb00648.x
[59] 刘兆晔, 于经川, 杨久凯, 江汝胜, 王晓君 . 小麦生物产量、收获指数与产量关系的研究. 中国农学通报, 2006,22(2):182-184.
LIU Z Y, YU J C, YANG J K, JIANG R S, WANG X J . Study on the relationship between biological yield, harvest index and economic yield in wheat. Chinese Agricultural Science Bulletin, 2006,22(2):182-184. (in Chinese)
[60] FOULKES M J, SNAPE J W, SHEARMAN V J, REYNOLDS M P, GAJU O, SYLVESTER-BRADLEY R . Genetic progress in yield potential in wheat: recent advances and future prospects. Journal of Agricultural Science, 2007,145:17-29.
[61] REYNOLDS M, BONNETT D, CHAPMAN S C, FURBANK R T, MANÈS Y, DIANE E M, PARRY M A J . Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. Journal of Experimental Botany, 2011,62(2):439-452.
doi: 10.1093/jxb/erq311
[62] YE Y L, WANG G L, HUANG Y F, ZHU Y J, MENG Q F, CHEN X P, ZHANG F S, CUI Z L . Understanding physiological processes associated with yield-trait relationships in modern wheat varieties. Field Crops Research, 2011,124(3):316-322.
doi: 10.1016/j.fcr.2011.06.023
[63] 李茹, 单燕, 李水利, 林文, 刘芬, 同延安 . 陕西麦田土壤肥力与施肥现状评估. 麦类作物学报, 2015,35(1):105-110.
LI R, SHAN Y, LI S L, LIN W, LIU F, TONG Y A . Analysis of soil fertility and fertilization of wheat field in Shaanxi. Journal of Triticeae Crops, 2015,35(1):105-110. (in Chinese)
[64] LIU H, WANG Z H, YU R, LI F C, LI K Y, CAO H B, YANG N, LI M H, DAI J, ZAN Y L . Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agriculture Ecosystems & Environment, 2016,224:1-11.
[65] 孙志梅, 武志杰, 陈利军, 刘永刚 . 农业生产中的氮肥施用现状及其环境效应研究进展. 土壤通报, 2006,37(4):782-786.
SUN Z M, WU Z J, CHEN L J, LIU Y G . Research advances in nitrogen fertilization and its environmental effects. Chinese Journal of Soil Science, 2006,37(4):782-786. (in Chinese)
[66] 张雷明, 杨君林, 上官周平 . 旱地小麦群体生理变量对氮素供应量的响应. 中国生态农业学报, 2003,11(3):69-71.
ZHANG L M, YANG J L, SHANGGUAN Z P . Effects of nitrogen nutrition on the physiological characteristics of wheat colony in dryland. Chinese Journal of Eco-Agriculture, 2003,11(3):69-71. (in Chinese)
[67] GUO S L, WU J S, DANG T H, LIU W Z, YONG L, WEI W X, SYERS J K . Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China. Plant and Soil, 2010,330(s1-2):1-13.
doi: 10.1007/s11104-009-0204-x
[68] SHEN R P, BO S, ZHAO Q G . Spatial and temporal variability of N, P and K balances for agroecosystems in China. Pedosphere, 2005,15(3):347-355.
[69] ZHU Z L, CHEN D L . Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002,63(2/3):117-127.
doi: 10.1023/A:1021107026067
[70] 李志坚, 林治安, 赵秉强, 袁亮, 李燕婷, 温延臣 . 增效磷肥对冬小麦产量和磷素利用率的影响. 植物营养与肥料学报, 2013,19(6):1329-1336.
doi: 10.11674/zwyf.2013.0606
LI Z J, LIN Z A, ZHAO B Q, YUAN L, LI Y T, WEN Y C . Effects of value-added phosphate fertilizers on yield and phosphorus utilization of winter wheat. Journal of Plant Nutrition and Fertilizer, 2013,19(6):1329-1336. (in Chinese)
doi: 10.11674/zwyf.2013.0606
[71] 白仟 . 中国钾盐产业发展环境分析与发展战略研究[D]. 北京: 中国地质大学(北京), 2015.
BAI Q . The analysis of development environment and study on development strategy of Potash industry in China[D]. Beijing: China University of Geosciences(Beijing), 2015. (in Chinese)
[72] 杨卢义 . 尿素价格继续看涨. 农资导报, 2020-03-03(A03).
YANG L Y . Urea price keeps rising. AgriGoods Herald, 2020-03-03(A03). (in Chinese)
[73] 王洋 . 钾肥下游交易有所回升. 农资导报, 2020-03-03(A03).
WANG Y . Potash downstream trading picked up. AgriGoods Herald, 2020-03-03(A03). (in Chinese)
[74] 周和平 . 磷酸二铵触底反弹. 农资导报, 2020-03-03(A03).
ZHOU H P . Bottom rebound of diammonium phosphate. AgriGoods Herald, 2020-03-03(A03). (in Chinese)
[75] 郭俊杰, 柴以潇, 李玲, 高丽敏, 谢凯柳, 凌宁, 郭世伟 . 江苏省水稻减肥增产的潜力与机制分析. 中国农业科学, 2019,52(5):849-859.
doi: 10.3864/j.issn.0578-1752.2019.05.007
GUO J J, CHAI Y X, LI L, GAO L M, XIE K L, LING N, GUO S W . The potential and related mechanisms of increasing rice yield by reducing chemical nitrogen application in Jiangsu Province. Scientia Agricultura Sinica, 2019,52(5):849-859. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.05.007
[76] 李青松, 韩燕来, 邓素君, 李光辉, 张中媛 . 豫北平原典型小麦-玉米轮作高产区节肥潜力分析. 麦类作物学报, 2018,38(10):1216-1221.
LI Q S, HAN Y L, DENG S J, LI G H, ZHANG Z Y . Analysis of fertilizer saving potential in typical high-yield Wheat-Maize Rotation Areas in Nothern Plain of Henan Province. Journal of Triticeae Crops, 2018,38(10):1216-1221. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[4] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[5] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[6] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[9] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[10] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[11] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[12] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[13] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[14] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[15] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!