Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (21): 4399-4414.doi: 10.3864/j.issn.0578-1752.2020.21.009

• SPECIAL FOCUS: HIGH EFFICIENCY UTILIZATION OF WATER AND FERTILIZER OF WHEAT-MAIZE CROPPING SYSTEM • Previous Articles     Next Articles

Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat

DONG HeHe(),LUO YongLi,LI WenQian,WANG YuanYuan,ZHANG QiuXia,CHEN Jin,JIN Min,LI Yong,WANG ZhenLin   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2020-05-14 Accepted:2020-07-29 Online:2020-11-01 Published:2020-11-11

Abstract:

【Objective】The purpose of this experiment was to explore the effects of different spring nitrogen topdressing modes on stem lodging resistance, lignin accumulation, grain yield of winter wheat, and to identify the appropriate spring nitrogen topdressing modes under the condition of high nitrogen application, so as to provide technical support for high and stable yield and stress-resistant cultivation of winter wheat.【Method】In the two wheat growing seasons of 2017-2018 and 2018-2019, the lodging sensitive variety Shannong 16 and the lodging resistant variety Jimai 22 were used as test materials, and the application rate was 1/3 under high nitrogen application rate of 300 kg·hm-2. There were four types of spring topdressing modes, which were equal amount of secondary nitrogen topdressing and remaining one-time nitrogen topdressing, namely the rising stage﹕booting stage 1/3﹕1/3 (T1), jointing stage: flowering stage 1/3﹕1/3 (T2), the remaining 2/3 nitrogen was applied at the booting stage (T3) and the remaining 2/3 nitrogen was applied at the jointing stage (CK). The effects of different nitrogen topdressing modes on stem resistance, lignin accumulation, expressive abundance of the key genes involving in lignin biosynthesis pathway and grain yield of winter wheat were studied.【Result】The total lignin accumulation and lignin monomers content of the lodging resistance wheat were both higher than those of the lodging sensitive wheat. The breaking strength under T1, CK was higher than that under T2 and T3, the lignin accumulation and monomer content were T1>T3>CK>T2 in two types cultivar, and the breaking strength, lignin accumulation, monomer content under all treatments at grain filling stage and maturity stage were T1>T3>T2>CK in two types cultivar. The breaking strength of Shannong 16 and Jimai 22 under T1 treatment were increased by 24.69%, 19.97%, 13.15% and 26.92%, 15.36%, 5.87%, respectively, compared with CK, T2, T3 at grain filling stage. The average lignin accumulation of Shannong 16 and Jimai22 under T1 at each growth stage was 21.71%, 15.45% , 8.85% and 25.19%, 21.75%, 15.83% higher than CK, T2, and T3, respectively. The average content of S monomer was 18.82%, 18.48%, and 8.39% higher than CK, T2 and T3 at maturity stage, respectively. The expressive abundance of key genes involved in lignin biosynthesis pathway (phenylalanine ammonia-lyase: PAL, caffeic acid3-o-methytransferase: COMT, coumarate-3-hydroxyl oxidase: C3H, innamoyl Co A reductase: CCR, cinnamate 4-hydroxylase: C4H etc.) decreased with the growth process, that tended to T1>T3>T2>CK under different stage of growth. The 1000-grain weight of the nitrogen topdressing remaining one-time at booting stage was higher than other treatments. T1 treatment could increase the spike number, grain number and yield. The lignin accumulation and monomer content of stem in different internodes during the same stage were I1>I2>I3>I4>I5.【Conclusion】Under the condition of high nitrogen application rate of 300 kg·hm-2 and basal application rate of 1/3, the same amount of secondary nitrogen topdressing modes treatment at the rising stage and booting stages significantly improved the breaking strength, lignin accumulation, lignin monomer content, the expressive abundance of key genes involved in lignin biosynthesis pathway and yield after anthesis stage, compared with other spring nitrogen topdressing modes. Therefore, the same amount of secondary nitrogen topdressing mode at rising stage and booting stage could be used as an appropriate spring nitrogen topdressing mode under the condition of high nitrogen application rate of 300 kg·hm-2 and basal application rate of 1/3 in Huang-Huai-Hai plain.

Key words: nitrogen topdressing modes, lodging resistance, lignin accumulation, grain yield, winter wheat

Table 1

Primer sequences of key genes in lignin synthesis pathway"

名称 序列-F (5′-3′) 序列-R (5′-3′)
ACTIN GGGACCTCACGGATAATCTAATG CGTAAGCGAGCTTCTCCTTTAT
PAL CATCTTGGAGGGAAGCTCATAC GACTTGGTGGCAAATCGAATAAC
C4H GCCGAGAGCAAGATCCTCGT CGTGCTTCTCCTCCTCCAGG
HCT TGTCAGCATTGCTCCGTGGA CCAGGAGCCATGAACACCGG
C3H CCCATCCTCGGCATCACCAT CGCCCTTCTCAGTCGTGTCA
CCR CGTGATGGTGCTGAAGAAAC CGATCATCGAAGCCGATACA
CAD GAGGTCGTCAAGATGGAC CTAGCTCTTTCTCCCTCTG
4CL TGCACACTGGAGACATTGGC TTCGAGTTCCGCAGGAGGTA
F5H AGCTCCCCTCTCTCAAGTGC GACACAGTCCTCGGCGTTCT
COMT GATCCATGACAACGAGTCTACC CGAATCAATCGACGACACAAAC
CSE GCCAGCAAGGACAAGACCATCA GCTGAGCCAGGCGAGGATGT

Table 2

Effects of different spring nitrogen topdressing modes on the breaking strength among five internodes of different lodging resistant wheat cultivars"

年份
Year
节间
Internode
处理
Treatment
SN16 JM22
开花期
Anthesis stage
灌浆期
Filling stage
成熟期
Maturity stage
开花期
Anthesis stage
灌浆期
Filling stage
成熟期
Maturity stage
2017-2018 I1 CK 5.99ab 6.65c 3.82bcd 7.54a 7.79cd 4.36ef
T1 5.92bc 7.75a 4.76a 7.52a 9.38a 5.38a
T2 4.85ef 7.03bc 4.00bc 6.83b 8.05cd 4.74de
T3 5.24de 7.28ab 4.83a 5.89d 8.62b 4.83bcd
I2 CK 6.47a 5.59ef 3.64cd 7.17ab 6.39fg 4.20fg
T1 5.62bcd 6.97bc 4.80a 7.03b 8.11c 5.26ab
T2 4.97e 5.81de 3.95bc 6.29c 7.03e 4.77de
T3 5.48cd 6.16d 4.06b 5.78de 7.66d 4.78cd
I3 CK 5.19de 4.61g 3.15fg 5.47efg 5.83hi 4.04fgh
T1 4.42fg 5.72def 4.12b 5.75de 6.60f 4.61de
T2 4.40fg 4.68g 3.18fg 5.27fg 6.23fgh 3.82hij
T3 3.76ij 5.49ef 3.50def 4.22j 6.49f 5.22abc
I4 CK 4.08ghi 4.02ij 2.70hij 5.54def 4.55k 3.26kl
T1 4.35fgh 5.31f 3.55de 5.45efg 5.98ghi 4.82bcd
T2 3.89hi 4.52gh 2.93ghi 5.07gh 5.63ij 3.97gh
T3 3.35jk 5.30f 3.20efg 4.71hi 5.33j 3.92ghi
I5 CK 3.20kl 3.46k 1.84k 4.33ij 3.48l 2.68m
T1 3.40jk 4.47ghi 2.97gh 4.68hi 4.60k 3.53jk
T2 2.54m 3.74jk 2.47j 4.08jk 4.38k 3.04lm
T3 2.73lm 4.09hij 2.59ij 3.61k 4.35k 3.56ijk
2018-2019 I1 CK 6.46a 6.93cd 3.92cde 8.07a 7.70bc 4.25de
T1 6.48a 7.94a 4.99a 7.80a 8.54a 5.31a
T2 5.36bc 7.31bc 4.28bc 6.85b 8.07ab 4.89b
T3 5.76b 7.78ab 4.49ab 6.64bc 8.20ab 4.84b
I2 CK 5.05cd 5.62ef 3.36fgh 5.58e 6.65d 4.13de
T1 5.45bc 6.67d 4.74ab 5.69e 8.16ab 4.75bc
T2 4.80de 5.87e 3.93cde 5.04f 7.39c 3.86e
T3 4.29efghi 6.97cd 3.97cde 4.40gh 7.33c 4.33d
I3 CK 4.44efg 4.75gh 2.91hi 5.62e 5.45gh 3.88e
T1 4.64def 5.55ef 4.28bcd 5.55e 6.52de 4.76bc
T2 3.79ijk 5.15fg 3.60efg 4.48gh 6.07ef 3.94de
T3 4.11ghi 5.20fg 3.68ef 5.06f 6.12ef 4.36cd
I4 CK 4.06ghi 4.04ij 2.28j 5.82de 4.65ij 3.30gh
T1 4.35efgh 5.68ef 3.77def 6.22cd 6.19def 3.82ef
T2 3.55jk 4.35hi 3.15hi 5.66e 5.45gh 3.33fgh
T3 3.51k 5.45ef 2.93gh 4.75fg 5.89fg 3.86e
I5 CK 3.92hij 4.04ij 1.24k 4.63fg 4.07k 3.07gh
T1 4.22fghi 4.57h 3.13gh 4.71fg 5.13hi 3.33gh
T2 3.40k 3.62j 3.05h 3.59i 4.45jk 2.95h
T3 2.58l 4.49hi 2.39ij 4.09hi 5.05hi 3.41fg

Fig. 1

Effect of different spring nitrogen topdressing modes on lignin content of the five internodes SN16 and JM22 represent Shannong16 and Jimai22. J represent jointing stage, A represent anthesis stage, F represent filling stage, M represent maturity stage. The same as below"

Fig. 2

The content and accumulation regularity of lignin monomers in different internodes of two wheat cultivars under different spring nitrogen topdressing modes"

Table 3

Correlation analysis of breaking resistance and lignin accumulation"

年份
Year
生育时期
Growth stage
木质素积累量
Lignin accumulation
木质素单体含量 Lignin monomer content
S型 S型+G型
2017-2018 开花期Anthesis stage 0.82** 0.61** 0.68**
灌浆期Filling stage 0.93** 0.63** 0.61**
成熟期Maturity stage 0.90** 0.90** 0.84**
2018-2019 开花期Anthesis stage 0.75** 0.74** 0.71**
灌浆期Filling stage 0.91** 0.82** 0.70**
成熟期Maturity stage 0.85** 0.70** 0.66**

Fig. 3

Effects of lignin synthesis pathway related gene expression on lodging resistance of different wheat cultivars under different spring nitrogen topdressing modes May 3 is marked as 0 d after anthesis, 7 DAA, 14 DAA and 21 DAA respectively represent 7 d, 14 d and 21 d after anthesis."

Table 4

Effects of wheat grain yield of different lodging resistance cultivars under different spring nitrogen topdressing modes"

年份
Year
品种
Cultivar
处理
Treatment
穗数
Spike number (×104·hm-2)
穗粒数
Grain number per spikes
千粒重
1000-grain weight (g)
籽粒产量
Grain yield (kg·hm-2)
2017-2018 SN16 CK 662ab 37.11ab 40.89b 7833.4c
TI 688a 38.46a 42.08ab 8387.1a
T2 652ab 35.47b 41.26b 8066.3b
T3 628b 38.07ab 44.89a 7997.3bc
JM22 CK 691a 36.10a 41.78c 8336.8bc
TI 710a 37.79a 45.02ab 9136.4a
T2 678a 35.47a 43.82bc 8602.8b
T3 659a 35.88a 45.67a 8107.8c
2018-2019 SN16 CK 719b 39.35a 44.30b 8035.0c
TI 756a 39.60a 45.39a 8667.5a
T2 690bc 38.56a 44.60b 8273.9b
T3 671c 39.40a 45.55a 8168.4bc
JM22 CK 747b 42.45ab 45.91b 8630.6bc
TI 775a 42.73a 46.92a 9523.7a
T2 716c 37.79c 46.06b 8904.9b
T3 694c 40.26b 46.86a 8466.8c

Table 5

Correlation analysis of stem lodging resistance index and yield index (2018-2019)"

生育时期
Growth stage
抗折力
Breaking strength
木质素积累量
Lignin accumulation
木质素单体含量Lignin monomer content
S型 G型 S型+G型
籽粒产量
Yield
开花期Anthesis stage 0.66 0.86** 0.71* 0.69* 0.75*
灌浆期Filling stage 0.82** 0.92** 0.85** 0.82** 0.83**
成熟期Maturity stage 0.69** 0.91** 0.81** 0.75* 0.77*
[1] 李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005,31(5):662-666.
LI J C, YIN J, WEI F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agronomica Sinica, 2005,31(5):662-666. (in Chinese)
[2] 魏凤珍, 李金才, 王成雨, 屈会娟, 沈学善. 氮肥运筹模式对小麦茎秆抗倒性能的影响. 作物学报, 2008,34(6):1080-1085.
WEI F Z, LI J C, WANG C Y, QU H J, SHEN X S. Effects of nitrogenous fertilizer application model on culm lodging resistance in winter wheat. Acta Agronomica Sinica, 2008,34(6):1080-1085. (in Chinese)
[3] 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017,50(12):2294-2304.
BIAN D H, LIU M X, NIU H F, WEI Z B, DU X, CUI Y H. Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L.) in the Huang-Huai-Hai plain. Scientia Agricultura Sinica, 2017,50(12):2294-2304. (in Chinese)
[4] CHEN X G, WANG J, WANG Z L, LI W Q, WNAG C Y, YAN S H, LI H M, ZHANG A J, TANG Z H, WEI M. Optimized nitrogen fertilizer application mode increased culms lignin accumulation and lodging resistance in culms of winter wheat. Field Crops Research, 2018,228:31-38.
[5] 安志超, 黄玉芳, 赵亚南, 汪洋, 刘小宁, 叶优良. 植株氮营养状况与冬小麦倒伏的关系. 植物营养与肥料学报, 2018,24(3):751-757.
AN Z C, HUANG Y F, ZHAO Y N, WANG Y, LIU X N, YE Y L. Relationship between plant nitrogen nutrition and lodging of winter wheat. Journal of Plant Nutrition and Fertilizers, 2018,24(3):751-757. (in Chinese)
[6] 张明伟, 马泉, 丁锦峰, 李春燕, 朱新开, 封超年, 郭文善. 密度与肥料运筹对迟播小麦产量和茎秆抗倒能力的影响. 麦类作物学报, 2018,38(5):584-592.
ZHANG M W, MA Q, DING J F, LI C Y, ZHU X K, FENG C N, GUO W S. Effect of density and nitrogen applicationon clum lodging resistance and yield of late sowing wheat. Journal of Triticeae Crops, 2018,38(5):584-592. (in Chinese)
[7] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)
[8] 赵风华, 马军花, 欧阳竹. 过量施氮对冬小麦生产力的影响. 植物生态学报, 2012,36(10):1075-1081.
ZHAO F H, MA J H, OUYANG Z. Effects of excessive nitrogen supply on productivity of winter wheat. Chinese Journal of Plant Ecology, 2012,36(10):1075-1081. (in Chinese)
[9] 周洁, 王旭, 朱玉磊, 刘惠惠, 陈翔, 魏凤珍, 孙建强, 宋有洪, 李金才. 氮肥运筹模式对小麦茎秆抗倒性能与产量的影响. 麦类作物学报, 2019,39(8):979-987.
ZHOU J, WANG X, ZHU Y L, LIU H H, CHEN X, WEI F Z, SUN J Q, SONG Y H, LI J C. Effects of nitrogen fertilizer management on stem lodging resistance and yield of wheat. Journal of Triticeae Crops, 2019,39(8):979-987. (in Chinese)
[10] 卢昆丽, 尹燕枰, 王振林, 李勇, 彭佃亮, 杨卫兵, 崔正勇, 杨东清, 江文文. 施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制. 作物学报, 2014,40(9):1686-1694.
LU K L, YIN Y P, WANG Z L, LI Y, PENG D L, YANG W B, CUI Z Y, YANG D Q, JIANG W W. Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat. Acta Agronomica Sinica, 2014,40(9):1686-1694. (in Chinese)
[11] 张明伟, 易媛, 董召娣, 柯裴蓓, 朱新开, 封超年, 郭文善, 彭永欣. 氮肥对扬麦20茎秆性状和抗倒性能的影响. 麦类作物学报, 2014,34(9):1260-1266.
ZHANG M W, YI Y, DONG Z D, KE P P, ZHU X K, FENG C N, GUO W S, PENG Y X. Effects of nitrogen on internode traits and lodging resistance of wheat variety Yangmai 20. Journal of Triticeae Crops, 2014,34(9):1260-1266. (in Chinese)
[12] 周羊梅, 顾正中, 王安邦, 杨子博, 冷苏凤. 播期、密度和不同施氮时期对高产品种‘淮麦33’产量和品质的调控. 中国农学通报, 2019,35(19):1-5.
ZHOU Y M, GU Z Z, WANG A B, YANG Z B, LENG S F. Effect of sowing date, density and nitrogen management on grain yield and quality of high yield ‘Huaimai 33’. Chinese Agricultural Science Bulletin, 2019,35(19):1-5. (in Chinese)
[13] ZHENG M J, CHEN J, SHI Y H, LI Y X, YIN Y P, YANG D Q, LUO Y L, PANG D W, XU X, LI W Q, NI J, WANG Y Y, WANG Z L, LI Y. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Scientific Reports, 2017,7(1):41805.
[14] XU C L, GAO Y B, TIAN B J, REN J H, MENG Q F, WANG P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 2017,200:71-79.
[15] LUO Y L, NI J, PANG D W, JIN M, CHEN J, KONG X, LI W Q, CHANG Y L, LI Y, WANG Z L. Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Research, 2019 , 241:107572.
[16] KAMRAN M, AHMAD I, WANG H Q, WU X R, XU J, LIU T N, DING R X, HAN Q F. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Research, 2018,224:148-159.
[17] ZHENG M J, GU S B, CHEN J, LUO Y L, LI W Q, NI J, LI Y, WANG Z L. Development and validation of a sensitive UPLC-MS/MS instrumentation and alkaline nitrobenzene oxidation method for the determination of lignin monomers in wheat straw. Journal of Chromatography B, 2017, 1055-1056:178-184.
[18] PENG D L, CHEN X G, YIN Y P, LU K L, YANG W B, TANG Y H, WANG Z L. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 2014,157:1-7.
[19] 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011,37(9):1616-1622 .
CHEN X G, SHI C Y, YIN Y P, WANG Z L, SHI Y H, PENG D L, NI Y L, CAI T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 2011,37(9):1616-1622. (in Chinese)
[20] 董琦, 王爱萍, 梁素明. 小麦基部茎节形态结构特征与抗倒性的研究. 山西农业大学学报, 2003,23(3):188-191.
DONG Q, WANG A P, LIANG S M. Study on the architectural characteristics of wheat stalks. Journal of Shanxi Agricultural University, 2003,23(3):188-191. (in Chinese)
[21] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, CHANDRA R, Chen F, DAVIS M F, DAVISON B H, DIXON R A, GILNA P, KELLER M, LANGAN P, NASKAR A K, SADDLER J N, TSCHAPLINSKI T J, TUSKAN G A, WYMAN C E. Lignin valorization: Improving lignin processing in the biorefinery. Science, 2014,344(6185):1246843.
doi: 10.1126/science.1246843 pmid: 24833396
[22] 蒋明金, 王海月, 何艳, 王春雨, 李娜, 杨志远, 孙永健, 马均. 氮肥管理对直播杂交水稻抗倒伏能力的影响. 核农学报, 2020,34(1):157-168.
JIANG M J, WANG H Y, HE Y, WANG C Y, LI N, YANG Z Y, SUN Y J, MA J. Effect of nitrogen fertilizer management on lodging resistance of direct-seeding hybrid rice. Journal of Nuclear Agricultural Sciences, 2020,34(1):157-168. (in Chinese)
[23] ZHANG W J, WU L M, WU X R, DING Y F, LI G H, LI J Y, WENG F, LIU Z H, TANG S, DING C Q, WANG S H. Lodging resistance of japonica rice (Oryza Sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 2016,9(1):31.
doi: 10.1186/s12284-016-0103-8 pmid: 27369289
[24] MIAO Y C, LIU C J. ATP-binding cassette-like transporters are involved in the transport of lignin percursors across plasma and vacuolar membranes. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(52):22728-22733.
pmid: 21149736
[25] ALEJANDRO S, LEE Y, TOHGE T, SUDRE D, OSORIO S, PARK J, BOVET L, LEE Y, GELDNER N, FERNIE A R, MARTINOIA E. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Current Biology, 2012,22(13):1207-1212.
pmid: 22704988
[26] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016,42(12):1864-1872.
REN B Z, LI L L, DONG S T, LIU P, ZHAO B, YANG J S, WANG D B, ZHANG J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agronomica Sinica, 2016,42(12):1864-1872. (in Chinese)
[27] SYROS T, YUPSANIS T, ZAFIRIADIS H, ECONOMOU A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings ofEbenus cretica L. Journal of Plant Physiology, 2004,161(1):69-77.
pmid: 15002666
[28] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54(1):519-546.
[29] VANHOLME R, DEMEDTS B, MORREEL K, RALPH J, BOERJAN W. Lignin biosynthesis and structure. Plant Physiology, 2010,153(3):895-905.
pmid: 20472751
[30] 章霄云, 郭安平, 贺立卡, 孔祥. 木质素生物合成及其基因调控的研究进展. 分子植物种, 2006,4(3):431-437.
ZHANG X Y, GUO A P, HE L K, KONG X. Advances in study of lignin biosynthesis and its genetic manipulation. Molecular Plant Breeding, 2006,4(3):431-437. (in Chinese)
[31] ANDERSON N A, TOBIMATSU Y, CIESIELSKI P N, XIMENES E, RALPH J, DONORHOE B S, LADISCH M, CHAPPLE C. Manipulation of guaiacyl and syring monomer biosynthesis in an Arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modifed cell wall structure. The Plant Cell, 2015,27(8):2195-2209.
pmid: 26265762
[32] 刘希强, 张涵, 龚攀, 宫文龙, 王赞. 紫花苜蓿不同发育时期次生壁合成调控的转录组分析. 中国农业科学, 2018,51(11):2049-2059.
LI X Q, ZHANG H, GONG P, GONG W L, WANG Z. Transcriptome analysis of secondary cell wall synthesis regulation at different developmental stages in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2018,51(11):2049-2059. (in Chinese)
[33] VOELKER S L, LACHENBRUCH B, MEINZER F C, STRAUSS H S. Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytologist, 2011,189(4):1096-1109.
doi: 10.1111/j.1469-8137.2010.03572.x pmid: 21158867
[34] TAKEDA Y, KOSHIBA T, TOBIMATSU Y, SUZUKI S, MURAKAMI S, YAMAMURA M, RAHMAN M M, TAKANO T, HATTORI T, SAKAMOTOO M, UMEZAWA T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 2017,246(2):337-349.
doi: 10.1007/s00425-017-2692-x pmid: 28421330
[35] WU Z Y, WANG N F, CAO Y P, LIU W W, BAO Y, FU C X. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnology Journal, 2019,17(4):836-845.
pmid: 30267599
[36] SHAFRIN F, DAS S S, SANAN M N, KHAN H. Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Molecular Biology, 2015,89(4-5):511-527.
doi: 10.1007/s11103-015-0385-z pmid: 26453352
[37] SYKES R W, GJERSING E L, FOUTZ K, ROTTMANN W H. KUHN S A, FOSTER C E, ZIEBELL A, TURNER G B. DECKER S R, HINCHEE M A W, DAVIS M F. Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3’H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla×E. grandis leads to improved sugar release. Biotechnology for Biofuels, 2015,8(1):128-137.
[38] 黄杰恒, 李威, 曲存民, 刘列钊, 徐新福, 王瑞, 李加纳. 甘蓝型油菜不同抗倒性材料中木质素代谢途径关键基因表达特点. 作物学报, 2013,39(8):1339-1344.
HUANG J H, LI W, QU C M, LIU L Z, XU X F, WANG R, LI J N. Expression characteristics of key genes in lignin pathway among different lodging resistance lines of Brassica napus L. Acta Agronomica Sinica, 2013,39(8):1339-1344. (in Chinese)
[39] SHI R, YANG C M, LU S F, SEDEROFF R, CHIANG V L. Specific downregulation of PAL genes by artificial micro RNAs in Populustrichocarpa. Planta, 2010,232(6):1281-1288.
doi: 10.1007/s00425-010-1253-3 pmid: 20725738
[40] BAXTER H L, MAZAREI M, LABBE N, KLINE L M, CHENG Q, WINDHAM M T, MANN D G, FU C X, ZIEBELL A, SYKES R W, RODRIGUEZ M, DAVIS M F, MIELENZ J R, DIXON R A, WANG Z Y, STEWART C N. Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnology, 2015,12(7):914-924.
[41] CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 2007,25(7):759-761.
doi: 10.1038/nbt1316
[42] ISHIMARU K, TOGAWA E, OOKAWA T, KASHIWAGI T, MADOKA Y, HIROTSU N. New target for rice lodging resistant and its effect in a typhoon. Planta, 2008,227(3):601-609.
doi: 10.1007/s00425-007-0642-8 pmid: 17960419
[43] BERRY P M, SPINK J. Predicting yield losses caused by lodging in wheat. Field Crops Research, 2012,137(3):19-26.
doi: 10.1016/j.fcr.2012.07.019
[44] 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 2011,44(17):3529-3536.
CHEN X G, SHI Y H, WANG C Y, YIN Y P, NING T Y, SHI C Y, LI Y, WANG Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011,44(17):3529-3536. (in Chinese)
[45] 杨世民, 谢力, 郑顺林, 李静, 袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响. 作物学报, 2009,35(1):93-103.
doi: 10.3724/SP.J.1006.2009.00093
YANG S M, XIE L, ZHENG S L, LI J, YUAN J C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agronomica Sinica, 2009,35(1):93-103. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00093
[46] AHMAD I, MENG X P, KAMRAN M, ALI S, AHMAD S, LIU T N, CAI T, HAN Q F. Effects of uniconazole with or without micronutrient on the lignin biosynthesis, lodging resistance, and winter wheat production in semiarid regions. Journal of Integrative Agriculture, 2020,19(1):62-77.
doi: 10.1016/S2095-3119(19)62632-8
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[4] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[5] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[6] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[7] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[8] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[11] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[12] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[13] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[14] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[15] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!