Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4177-4188.doi: 10.3864/j.issn.0578-1752.2020.20.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effect of Panicle Neck Blast on Grain Yield and Stem Node Metabolites at the Rice Filling Stage

PAN ZhengYan1,2(),LIU Bo1,JIANG HongBo1,YAO JiPan1,BAI YuanJun1(),XU ZhengJin2()   

  1. 1Liaoning Rice Research Institute, Shenyang 110101
    2College of Agriculture, Shenyang Agricultural University, Shenyang 110161
  • Received:2020-03-11 Accepted:2020-05-08 Online:2020-10-16 Published:2020-10-26
  • Contact: YuanJun BAI,ZhengJin XU E-mail:pzhyma@126.com;cycbyj@126.com;xuzhengjin@126.com

Abstract:

【Objective】The objective of this study is to detect the stem node metabolite of susceptible cultivars which suffered the rice blast under the natural condition, analyze the reason for rice cultivars susceptibility and yield reduction, and to provide a theoretical basis for the susceptible mechanism study of japonica rice and ecological control.【Method】With susceptible cultivar which suffered the rice blast Liaoxing1 and japonica rice restorer C418 as the materials, the yield and quality character including seed setting rate, 1000-grain weight, length, brown rice were measured at the maturation stage. The incidence of panicle neck blast was investigated at the filling stage, and GC-MS was carried out to analyze the metabolites of diseased stem nodes and normal stem nodes, the metabolite composition between diseased stem nodes and normal stem nodes was analyzed by principal components analyses (PCA), the variable weights (VIP>1.0) of partial least-squares discriminant analysis (PLS-DA) were used to screen the species of differential metabolites, the difference of carbohydrate and amino acid metabolites was compared, and the reasons for the decrease of rice yield were analyzed from the metabolites.【Result】The incidence of panicle neck blast of Liaoxing1 and C418 was 57.23% and 82.94%, respectively. The panicle neck blast significantly reduced the head rice rate of the primary branch, the seed set rate, 1000-grain weight, length-width ratio and head rice rate of the secondary branch, there was no significant difference in other characters. 358 metabolites were identified in the two cultivars, the metabolites of diseased stem node increased by 73.46% and 67.88%, respectively. The PCA and PLS-DA analysis could clearly identify the metabolites of diseased stem node and normal stem node. The metabolite phenotypes of Liaoxing 1 and C418 were obviously different between the diseased stem node and normal stem node. Compared with normal stem node, the relative content of 61 metabolites induced by Liaoxing 1 diseased stem nodes changed significantly, and the relative content of 47 metabolites induced by C418 diseased stem nodes changed significantly, there were 30 metabolites in same of the diseased stem nodes of these two cultivars. The relative content of secondary metabolites of vanillic acid, alpha tocopherol, dehydroascorbic acid, triacontanol, daidzein and N-acetyl-d-mannosamine significantly decreased by 87.03%, 96.29%, 77.95%, 74.56%, 86.48% and 82.68% in Liaoxing1, respectively. In C418, it decreased by 99.92%, 99.68%, 97.26%, 86.67%, 94.96% and 76.74%, respectively. The relative content of the above six types of secondary metabolites in normal stem node of Liaoxing1 was 2.64, 2.39, 2.39, 2.27, 3.09 and 2.56 times of that in C418, respectively. The panicle neck blast increased 63.33% of carbohydrate metabolites and 68.42% of amino acid metabolites in stem node, the carbohydrate and amino acid metabolites increased by 1.02-17.92 and 1.05-13.12 times, respectively. Among them, the enhanced amplitude of carbohydrate metabolites in C418 was more significant.【Conclusion】The occurrence of panicle neck blast significantly changed the metabolite composition of susceptible cultivars Liaoxing 1 and C418 stem node, the susceptible cultivar may adjust its defensive reaction to the rice blast following the relative amount change of vanillic acid, alpha tocopherol, dehydroascorbic acid, triacontanol, daidzein and N-acetyl-d-mannosamine. By accumulating a large amount of the carbohydrate and amino acid metabolites, the diseased stem nodes reduce their transport to grains and restrain the formation of yield.

Key words: Oryza sativa, panicle neck blast, metabolite, carbohydrate, amino acid, yield

Table 1

Effect of panicle neck blast on Liaoxing 1 and C418 yield components"

品种
Cultivar
处理
Treatment
一次枝梗 Primary branch 二次枝梗 Secondary branch
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
辽星1号
Liaoxing1
LX1-CK 95.05±4.05 25.39±0.74 89.59±8.91 22.35±0.79
LX1-disease 92.28±7.45 24.64±4.05 84.42±17.52 21.15±3.81
PP-value 0.0016** 0.11 0.0004** 0.0218*
C418 C418-CK 87.11±5.11 27.54±0.88 81.03±7.04 23.68±1.53
C418-disease 85.00±10.81 25.91±1.78 75.00±34.95 21.74±3.83
PP-value 0.0899 0.0037** 0.0116* 0.0136*

Table 2

Effect of panicle neck blast on appearance quality of Liaoxing 1 and C418"

品种
Cultivar
部位
Part
处理
Treatment
粒长
Length (mm)
粒宽
Width (mm)
长宽比
Length-width ratio
垩白率
Chalky rice rate (%)
辽星1号Liaoxing1 一次枝梗
Primary branch
LX1-CK 7.30±0.03 3.16±0.01 2.31±0.01 5.03±0.30
LX1-disease 7.19±0.02 3.18±0.01 2.27±0.01 7.75±1.10
PP-value 0.0116* 0.6178 0.0525 0.0136*
二次枝梗
Secondary branch
C418-CK 7.15±0.04 3.04±0.02 2.19±0.01 19.23±1.60
C418-disease 7.04±0.05 3.08±0.04 2.00±0.05 15.36±10.61
PP-value 0.0413* 0.4243 0.0002** 0.0976
C418 一次枝梗
Primary branch
LX1-CK 8.50±0.02 3.12±0.01 2.73±0.01 18.92±0.77
LX1-disease 8.42±0.16 3.01±0.02 2.80±0.03 15.59±2.56
PP-value 0.2781 0.0016** 0.0513 0.1284
二次枝梗
Secondary branch
C418-CK 8.31±0.03 3.06±0.01 2.07±0.01 29.05±1.22
C418-disease 8.25±0.14 2.96±0.03 1.97±0.03 25.35±4.43
PP-value 0.4419 0.0104* 0.0115* 0.1404

Table 3

Effect of panicle neck blast on milling quality of Liaoxing 1 and C418 (%)"

品种
Cultivar
处理
Treatment
一次枝梗 Primary branch 二次枝梗 Secondary branch
糙米率
Brown rice
精米率
Milled rice
整精米率
Head milled rice
糙米率
Brown rice
精米率
Milled rice
整精米率
Head milled rice
辽星1号Liaoxing1 LX1-CK 81.26±0.30 71.19±2.25 69.99±2.21 80.55±3.00 69.81±1.84 67.22±2.25
LX1-disease 80.03±4.54 69.07±2.08 64.44±12.41 79.16±1.63 68.38±6.05 63.76±4.21
PP-value 0.1964 0.0688 0.0179* 0.1797 0.5054 0.0061**
C418 C418-CK 78.44±0.95 66.47±9.88 62.96±13.91 76.75±3.02 64.88±1.68 63.06±6.15
C418-disease 74.98±13.96 62.41±9.48 57.43±14.50 72.47±4.42 60.93±6.90 56.92±8.05
PP-value 0.1517 0.0741 0.0081** 0.0956 0.0941 0.0444*

Fig. 1

PCA and PLS-DA analysis of the metabolites between diseased stem nodes and normal stem nodes"

Fig. 2

Hierarchical cluster analysis of differential metabolites resulting in thermal energy maps Centroid method and euclidean distance method are used for cluster analysis. The red rectangle indicates that the metabolite content is significantly up-regulated and the blue rectangle indicates the significant down-regulation of the metabolite content. The same as Fig. 3"

Fig. 3

Thermal energy maps of hierarchical cluster analysis of carbohydrate metabolites and amino acid metabolites"

[1] 刘国权, 孟昭河, 任艳军, 李春光, 刘永巍, 孟巧霞. 水稻抗稻瘟病研究进展与对策. 中国农学通报, 2004,20(1):211-214.
LIU G Q, MENG Z H, REN Y J, LI C G, LIU Y W, MENG Q X. Study advances and countermeasures on blast resistance of rice. Chinese Agricultural Science Bulletin, 2004,20(1):211-214. (in Chinese)
[2] DWAN R A, TALBOT N J, EBBOLE D J, FARMAN M L, MITCHELL T K, ORBACH M J, THON M, KULKARNI R, XU J R, PAN H Q, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005,434(7036):980-986.
doi: 10.1038/nature03449 pmid: 15846337
[3] 王加峰, 刘浩, 王慧, 陈志强. 水稻NBS-LRR类抗稻瘟病蛋白Pik-h的互作蛋白筛选. 中国农业科学, 2016,49(3):482-490.
doi: 10.3864/j.issn.0578-1752.2016.03.007
WANG J F, LIU H, WANG H, CHEN Z Q. Screening of putative proteins that are interacted with NBS-LRR protein Pik-h by the yeast two-hybrid system. Scientia Agricultura Sinica, 2016,49(3):482-490. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.007
[4] ZHUANG J Y, MA W B, WU J L, CHAI R Y, LU J, FAN Y Y, JIN M Z, LEUNG H, ZHENG K L. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica, 2002,128:363-370.
doi: 10.1023/A:1021272710294
[5] FIEHN O. Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 2002,48:155-171.
doi: 10.1023/A:1013713905833
[6] 罗杰, 漆小泉. 水稻产量、抗逆性状代谢组研究. 科技创新导报, 2016(1):166.
LUO J, QI X Q. Metabolome-based analysis of yield and stress resistant traits in rice.Science and Technology Innovation Herald, 2016(1):166. (in Chinese)
[7] ISHIKAWA T, TAKAHARA K, HIRABAYASHI T, MATSUMURA H, FUJISAWA S, TERAUCHI R, UCHIMIYA H, KAWAI- YAMADA M. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor bax inhibitor-1. Plant and Cell Physiology, 2010,51(1):9-20.
doi: 10.1093/pcp/pcp162 pmid: 19919949
[8] SANA T R, FISCHER S, WOHLGEMUTH G, KATREKAR A, JUNG K H, RONALD P C, FIEHN O. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics, 2010,6(3):451-465.
doi: 10.1007/s11306-010-0218-7
[9] PENG L, ZHAO Y, WANG H Y, ZHANG J J, SONG C P, SHANGGUAN X X, ZHU L L, HE G C. Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics, 2016,12(8):132.
doi: 10.1007/s11306-016-1077-7
[10] 王芳权, 陈智慧, 许扬, 王军, 李文奇, 范方军, 陈丽琴, 陶亚军, 仲维功, 杨杰. 水稻广谱抗稻瘟病基因PigmR功能标记的开发及应用. 中国农业科学, 2019,52(6):955-967.
doi: 10.3864/j.issn.0578-1752.2019.06.001
WANG F Q, CHEN Z H, XU Y, WANG J, LI W Q, FANG F J, CHEN L Q, TAO Y J, ZHONG W G, YANG J. Development and application of the functional marker for the broad-spectrum blast resistance gene PigmR in rice. Scientia Agricultura Sinica, 2019,52(6):955-967. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.06.001
[11] JONES O A H, MAGUIRE M L, GRIFFIN J L, JUNG Y H, SHIBATO J, RAKEAL R, AGRAWAL G K, JWA N S. Using metabolic profiling to assess plantpathogen interactions: An example using rice (Oryza sativa) and the blast pathogen Magnaporthe grisea. European Journal of Plant Pathology, 2010,129(4):539-554.
[12] 潘俊峰, 王博, 崔克辉, 黄见良, 聂立孝. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响. 中国水稻科学, 2016,30(3):273-282.
PAN J F, WANG B, CUI K H, HUANG J L, NIE L X. Effects of nitrogen application on accumulation and translocation of nonstructural carbohydrates in internodes and sheaths of rice. Chinese Journal of Rice Science, 2016,30(3):273-282. (in Chinese)
[13] 殷春渊, 赵全志, 刘贺梅, 王书玉, 薛应征, 杨海霞, 张华珍. 水稻籽粒非结构性碳水化合物及充实的氮素调控. 中国农学通报, 2011,27(30):6-11.
YIN C Y, ZHAO Q Z, LIU H M, WANG S Y, XUE Y Z, YANG H X, ZHANG H Z. The nitrogen regulation on the non-carbohydrate and grain-plumpness in rice grain. Chinese Agricultural Science Bulletin, 2011,27(30):6-11. (in Chinese)
[14] YANG J, PENG S, ZHANG Z, WANG Z, VISPERAS R M, ZHU Q. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Science, 2002,42(3):766-772.
[15] 魏凤桐, 陶洪斌, 王璞. 旱稻297非结构性碳水化合物的生产与产量构成因子的关系. 作物学报, 2010,36(12):2135-2142.
WEI F T, TAO H B, WANG P. Relationship of non-structure carbohydrate production and yield components of aerobic rice, Handao 297. Acta Agronomica Sinica, 2010,36(12):2135-2142. (in Chinese)
[16] SHIM H S, HONG S J, YEH W H, HAN S S, SUNG J M. Damage analysis of rice panicle blast on disease occurrence time and severity. The Plant Pathology Journal, 2005,21(2):87-92.
[17] KATSANTONIS D, KOUTROUBAS S D, NTANOS D A, LUPOTTO E. Effect of blast disease on nitrogen accumulation and remobilization to rice grain. Journal of Plant Pathology, 2008,90(2):263-272.
[18] LIU Q, YANG J Y, ZHANG S H, ZHAO J L, FENG A Q, YANG T F, WANG X F, MAO X X, DONG J F, ZHU X Y, LENG H, LEACH J E, LIU B. OsGF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice. Molecular Plant-Microbe Interactions, 2016,29(1):46-56.
[19] 雷刚, 黄英金. 代谢组学在水稻研究中的应用进展. 中国农业科技导报, 2017,19(7):27-35.
LEI G, HUANG Y J. Application progress of metabolomics in rice research. Journal of Agricultural Science and Technology, 2017,19(7):27-35. (in Chinese)
[20] 阎秀峰, 王洋, 李一蒙. 植物次生代谢及其与环境的关系. 生态学报, 2007,27(6):2554-2562.
YAN X F, WANG Y, LI Y M. Plant secondary metabolism and its response to environment. Acta Ecologica Sinica, 2007,27(6):2554-2562. (in Chinese)
[21] SADIQ M, AKRAM N A, ASHRAF M, AL-QURAINY F, AHMAD P. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. Journal of Plant Growth Regulation, 2019,38:1325-1340.
[22] 李芳芳, 杨娜, 钱猛, 甘立军. 生长素参与三十烷醇诱导的拟南芥侧根发育. 南京农业大学学报, 2018,41(3):473-480.
LI F F, YANG N, QIAN M, GAN L J. Auxin is involved in triacontanol-induced lateral root development in Arabidopsis thaliana. Journal of Nanjing Agricultural University, 2018,41(3):473-480. (in Chinese)
[23] NAEEM M, KHAN M M A, MOINUDDIN . Triacontanol: A potent plant growth regulator in agriculture. Journal of Plant Interactions, 2012,7(2):129-142.
[24] 崔睿, 刘喆, 阚侃, 田媛, 崔宝玉. 三十烷醇的生理作用及研究进展. 黑龙江科学, 2011,2(6):33-36.
CUI R, LIU Z, KAN K, TIAN Y, CUI B Y. Research development of triacontanol physiological effects. Heilongjiang Science, 2011,2(6):33-36. (in Chinese)
[25] 张卓, 刘振库, 黄卓, 马建, 姚丹, 曲静, 王丕武. 大豆查尔酮还原酶基因(Gmchr4) 的克隆与功能鉴定. 中国油料作物学报, 2014,36(6):720-727.
ZHANG Z, LIU Z K, HUANG Z, MA J, YAO D, QU J, WANG P W. Isolation and functional characterization of soybean chalcone reductase gene Gmchr4. Chinese Journal of Oil Crop Sciences, 2014,36(6):720-727. (in Chinese)
[26] 孙小霞, 王海斌, 何海斌, 陆锦池, 林文雄. 田间旱育条件下不同化感潜力水稻根际土壤酚酸类和萜类物质分析. 中国生态农业学报, 2014,22(7):806-812.
SUN X X, WANG H B, HE H B, LU J C, LIN W X. Analysis of phenolic acids and terpenoids in rhizosphere soils of different allelopathic rice varieties under dry field conditions. Chinese Journal of Eco-Agriculture, 2014,22(7):806-812. (in Chinese)
[27] 李青, 张名位, 张瑞芬, 魏振承, 邓媛元, 唐小俊, 张业辉, 李武, 马永轩. 5种籼稻品种谷壳中游离态和结合态酚类物质含量及其抗氧化活性比较. 中国农业科学, 2012,45(6):1150-1158.
LI Q, ZHANG M W, ZHANG R F, WEI Z C, DENG Y Y, TANG X J, ZHANG Y H, LI W, MA Y X. Free and bound phenolic contents and antioxidant activity of five varieties of indica rice husk. Scientia Agricultura Sinica, 2012,45(6):1150-1158. (in Chinese)
[28] LIU G L, MEI H W, YU X Q, ZOU G H, LIU H Y, HU S P, LI M S, WU J H, CHEN L, LUO L J. QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Science, 2008,174(1):71-77.
[29] PAN J F, CUI K H, WEI D, HUANG J L, XIANG J, NIE L X. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiologia Plantarum, 2011,141(4):321-331.
doi: 10.1111/j.1399-3054.2010.01441.x pmid: 21175644
[30] 潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014,28(4):335-342.
PAN J F, LI G H, CUI K H. Re-partitioning of non-structural carbohydrates in rice stems and their roles in yield stability and stress tolerance. Chinese Journal of Rice Science, 2014,28(4):335-342. (in Chinese)
[31] LINGLE S E. Sugar metabolism during growth and development in sugarcane internode. Crop Science, 1999,39(2):480-486.
[32] 沈成国. 植物衰老生理与分子生物学. 北京: 中国农业出版社, 2001.
SHEN C G. Plant Senescence Physiology and Molecular Biology. Beijing: China Agriculture Press, 2001. (in Chinese)
[33] 张木, 唐拴虎, 张发宝, 黄旭, 黄巧义, 逄玉万, 易琼. 硒对水稻碳氮代谢及产量的影响. 中国土壤与肥料, 2016(5):79-84.
ZHANG M, TANG S H, ZHANG F B, HUANG X, HUANG Q Y, PANG Y W, YI Q. Effects of selenium on carbon-nitrogen metabolism and yield of rice.Soil and Fertilizer Sciences in China, 2016(5):79-84. (in Chinese)
[34] ZHANG P, FU J, HU L. Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Ecotoxicology, 2012,21:1911-1918.
doi: 10.1007/s10646-012-0924-1
[35] YANG J C, ZHANG J H. Grain-filling problem in ‘super’ rice. Journal of Experimental Botany, 2010,61(1):1-5.
doi: 10.1093/jxb/erp348 pmid: 19959608
[36] 胡钧铭, 江立庚. 籼型稻米整精米率影响因子研究进展. 粮食食品科技, 2007,15(3):4-6.
HU J M, JIANG L G. The progress of analysis of the influence factors on the head rice rate of Indica rice. Science and Technology of Cereals, Oils and Foods, 2007,15(3):4-6. (in Chinese)
[37] 徐富贤, 熊洪, 朱永川, 谢戎, 王贵雄. 川东南高温伏旱区杂交中稻超稀栽培对稻米整精米率的影响与组合间库源结构的关系. 植物生态学报, 2005,29(5):829-835.
XU F X, XIONG H, ZHU Y C, XIE R, WANG G X. The effects of cultivation density on the percent of head milled rice and source to sink ratios of mid-season hybrid rice in eastern and southern Sichuan Province. Acta Phytoecologica Sinica, 2005,29(5):829-835. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!