Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1419-1431.doi: 10.3864/j.issn.0578-1752.2020.07.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristics and Influencing Factors of Phosphorus Flows in the Crop-Livestock System of Fujian Province from 1985 to 2015

DongHui LIU1,2,ShiChang ZHANG3,Jing YANG1,2,MengYuan HUANG1,2,LiangQuan WU1,2   

  1. 1.College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002
    2.International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou 350002
    3.Farmland Construction and Soil Fertilizer Technology Station of Fujian Province, Fuzhou 350003
  • Received:2019-09-05 Accepted:2019-10-15 Online:2020-04-01 Published:2020-04-14

Abstract: 【Objective】The objective of this study is to determine the temporal changes and influencing factors of phosphorus (P) flows in the crop-livestock system of Fujian Province, and to provide a scientific reference for integrated nutrient management and green development of agriculture.【Method】Using a coupled NUFER (nutrient flows in food chain, environment and resources use) model, data were collected and sorted from statistical yearbooks, literatures, and field investigations from 1985 to 2015 to quantitatively estimate the balance, use efficiency and loss characteristics of P flow in the crop-livestock system of Fujian Province. 【Result】The total P input in crop-livestock production system increased from 63.1 to 196.2 Gg in Fujian Province from 1985 to 2015. The main P format inputs were fertilizer and feed import. The amount of per unit area of P fertilizer input in crop system increased gradually from 27.8 to 60.4 kg·hm-2. Due to the influence of scale and structure change of crop-livestock system in Fujian Province, local feed supply decreased from 3.33 to 1.65 Gg, while the feed import increased from 20.7 to 70.2 Gg. From the output perspective, total P increased from 45.0 to 90.9 Gg, mainly including crop main product and animal manure loss. P uptake of crop main products changed slightly (only from 24.3 to 26.7 Gg), while the P loss in animal manure increased significantly from 1.44 to 25.8 Gg. Soil accumulation is the main loss pathway of P in crop-livestock system, which increased year by year from 18.1 to 106 Gg. P use efficiency in crop production system (PUEc) decreased from 36.1% to 16.6%, and the change trend of P use efficiency in crop-livestock system (PUEc+a) was similar to that of PUEc, which gradually decreased and eventually remained at 15.0%. In the same time, the unit P loss of crop-livestock products increased gradually from 0.3 to 1.3 kg P·kg-1. In terms of economic development and planting structure, there was a significant positive correlation between per capita GDP and fertilizer input when the per capita GDP was less than 11 000 yuan. When per capita GDP was less than 15 000 yuan, there was a significant positive correlation between per capita GDP and unit P loss of crop-livestock products, but there was a significantly negative correlation between per capita GDP and PUEc when per capita GDP was less than 13 000 yuan. The proportion of cash crops planting area was significantly and positively correlated with the unit P loss of crop-livestock products and P input of fertilizer, and it was significantly negatively correlated with PUEc.【Conclusion】At present, the cash crops planting area is relatively high, which is one of the structural characteristics of crop system in Fujian Province. At the same time, the unit area quantity of P input by fertilizer is large, circulation of animal manure is inadequate, which probably lead to more unit P loss in crop-livestock products, and low P use efficiency. Therefore, controlling the application amount of phosphate fertilizer and enhancing the utilization level in crop-livestock waste resources will be the guarantee in improving P use efficiency and promoting agriculture sustainable green development in Fujian Province.

Key words: phosphorus, NUFER model, phosphorus use efficiency, crop-livestock system, proportion of cash crops

Fig. 1

Schematic diagram of phosphorus flows model in crop-livestock production system"

Table 1

Proportion of edible part and non-edible part of different crops and their phosphorus content"

作物种类<break/>Crop收获可(食)用部分Harvest edible parts收获不可(食)用部分Harvest non-edible parts
百分比Percent (%)磷含量P content (%)百分比Percent (%)磷含量P content (%)
(干)稻谷Rice530.300470.130
(干)小麦Wheat480.370520.080
(干)油料Oil plant560.305440.163
(鲜)薯类Tuber crop670.020330.045
(鲜)甘蔗Sugarcane770.014230.046
(干)烟叶Tobacco380.184620.169
(干)茶Tea1000.222
(鲜)水果Fruit1000.020
(鲜)蔬菜Vegetable1000.039
(鲜)青饲料Forage1000.080
(鲜)绿肥Green manure1000.057

Table 2

Livestock feeding period, daily excrement/urine and P content (based on fresh)"

畜禽种类<break/>Livestock饲养周期<break/>Feeding period (d)粪便日排泄量及其磷含量Daily excrement and P content尿液日排泄量及磷含量Daily urine and P content
排泄量Excretion (kg·d-1)磷含量P content (%)排泄量Excretion (kg·d-1)磷含量P content (%)
肉牛Beef>36518.000.0959.00.017
奶牛Cattle>36518.000.0959.00.017
羊Sheep2431.500.2160.50.021
猪Pig1982.000.2453.00.022
兔Rabbit1800.080.296
肉鸡Broiler550.090.413
蛋鸡Layer>3650.150.413
鸭、鹅<break/>Duck, Goose600.170.289

Table 3

P content of production in animal body"

鲜重<break/>Fresh weight<break/>(kg)畜禽身体划分Partitioning of animal body (%)磷含量P content (%)
可食用部分 Edible part骨头<break/>Bone其他部分<break/>Other parts可食用部分<break/>Edible part骨头<break/>Bone其他部分<break/>Other parts
猪Pig90.005013370.183.30.07
牛Cattle477.304520350.174.20.01
羊Sheep35.005524210.175.60.15
禽Poultry2.046520150.162.00.01
兔Rabbit1.75507.542.50.174.00.21
蛋Egg90100.210.20
奶Milk1000.09

Table 4

Basic parameters of environment loss"

项目Item参数Parameter (%)
淋洗参数Leaching parameter0.6
径流参数Runoff parameter1.5
侵蚀参数Erosion parameter7.2

Fig. 2

Phosphorus flow in crop (A) and livestock (B) production systems in Fujian Province"

Fig. 3

Changes of phosphorus flows of crop-livestock system of 1985 (A) and 2015 (B) in Fujian Province"

Fig. 4

Changes in phosphorus use efficiency and unit phosphorus loss of crop-livestock products in Fujian Province"

Fig. 5

Relationship between per capita GDP of Fujian Province and input of fertilizer P (A), unit phosphorus loss of crop-livestock products (B) and PUEc (C) **: P<0.01"

Fig. 6

Relationship between the proportion of sown area of cash crops and input of fertilizer P (A), unit phosphorus loss of crop-livestock products (B) and PUEc (C)"

[1] SCHACHTMAN D P, REID R J, AYLING S M.Phosphorus uptake by plants: From soil to cell.Plant Physiology, 1998, 116(2): 447-453.
[2] CORDELL D, NESET T S S. Phosphorus vulnerability: A qualitative
framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity.Global Environmental Change, 2014, 24(1): 108-122.
[3] KOPPELAAR R H E M, WEIKARD H P. Assessing phosphate rock depletion and phosphorus recycling options.Global Environmental Change, 2013, 23(6): 1454-1466.
[4] BOUWMAN L, GOLDEWIJK K K, VAN DER HOEK K W, BEUSEN A H W, VAN VUUREN D P, WILLEMS J, RUFINO M C, STEHFEST E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period.Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20882-20887.
[5] SUH S, YEE S.Phosphorus use-efficiency of agriculture and food system in the US.Chemosphere, 2011, 84(6): 806-813.
[6] OTT C, RECHBERGER H.The European phosphorus balance.Resources, Conservation and Recycling, 2012, 60(3): 159-172.
[7] 张晓萌. 东北地区食物链氮磷养分流动特征研究[D]. 长春: 吉林农业大学, 2017: 22-34.
ZHANG X M.Study on characteristics of nitrogen and phosphorus nutrient flow in food chain in northeast China[D]. Changchun: Jilin Agricultural University, 2017: 22-34. (in Chinese)
[8] 张华芳. 河北省农牧生产体系氮磷养分流动特征及调控途径[D]. 保定: 河北农业大学, 2013: 15-30.
ZHANG H F.Nitrogen and phosphorus flow in agro-livestock system and strategies of optimization in Hebei Province[D]. Baoding: Hebei Agricultural University, 2013: 15-30. (in Chinese)
[9] 张建杰, 郭彩霞, 张一弓, 张强. 山西省农牧生产体系磷流动空间变异特征. 中国生态农业学报, 2016, 24(5): 553-562.
ZHANG J J, GUO C X, ZHANG Y G, ZHANG Q.Spatial characteristics of phosphorus flow in crop-livestock production systems in Shanxi, China.Chinese Journal of Eco-Agriculture, 2016, 24(5): 553-562. (in Chinese)
[10] SMIL V.Phosphorus in the environment: Natural flows and human interferences.Annual Review of Energy and the Environment, 2000, 25: 53-88.
[11] SENTHILKUMAR K, MOLLIER A, PELLERIN S.Regional-scale phosphorus flows and budgets within France: The importance of agricultural production systems.Nutrient Cycling in Agroecosystems, 2012, 92(2): 145-159.
[12] MA L, MA W Q, VELTHOF G L, WANG F H, QIN W, ZHANG F S, OENEMA O.Modeling nutrient flows in the food chain of China.Journal of Environmental Quality, 2010, 39(4): 1279-1289.
[13] 魏莎, 柏兆海, 吴迪梅, 夏立江, 江荣风, 马林. 都市圈“土壤-饲料-动物”系统养分流动与环境效应——以北京市为例. 中国农业科学, 2018, 51(3): 430-441.
WEI S, BAI Z H, WU D M, XIA L J, JIANG R F, MA L.Nutrient flow and environmental effects of “soil-feed-livestock” system in metropolis: A case study in Beijing.Scientia Agricultura Sinica, 2018, 51(3): 430-441. (in Chinese)
[14] BAI Z H, MA L, MA W Q, QIN W, VELTHOF G L, OENEMA O, ZHANG F S.Changes in phosphorus use and losses in the food chain of China during 1950-2010 and forecasts for 2030.Nutrient Cycling in Agroecosystems, 2016, 104(3): 361-372.
[15] 龙军, 张黎明, 沈金泉, 周碧青, 毛艳玲, 邱龙霞, 邢世和. 复杂地貌类型区耕地土壤有机质空间插值方法研究. 土壤学报, 2014, 51(6): 1270-1281.
LONG J, ZHANG L M, SHEN J Q, ZHOU B Q, MAO Y L, QIU L X, XING S H.Spatial interpolation of soil organic matter in farmlands in areas complex in landform.Acta Pedologica Sinica, 2014, 51(6): 1270-1281. (in Chinese)
[16] 福建省统计局. 福建统计年鉴. 北京: 中国统计出版社, 1986-2016.
Statistical Bureau of Fujian Province. Fujian Statistical Yearbook. Beijing: China Statistics Press, 1986-2016. (in Chinese)
[17] 马怡斐, 柏兆海, 马林, 聂永强, 江荣风. 栾城城郊型农牧系统养分流动与环境排放时空特征. 中国农业科学, 2018, 51(3): 493-506.
MA Y F, BAI Z H, MA L, NIE Y Q, JIANG R F.Temporal and spatial changes of nutrient flows and losses in the peri-urban crop-livestock system in Luancheng.Scientia Agricultura Sinica, 2018, 51(3): 493-506. (in Chinese)
[18] BAI Z H, MA W Q, MA L, VELTHOF G L, WEI Z B, HAVLIK P, OENEMA O, LEE M R F, ZHANG F S. China’s livestock transition: Driving forces, impacts, consequences. Science Advances, 2018, 4 (7): eaar8534.
[19] 福建省统计局. 福建经济与社会统计年鉴. 福州: 福建人民出版社, 1986-2016.
Statistical Bureau of Fujian Province. Fujian Economic and Social Statistical Yearbook. Fuzhou: Fujian People’s Publishing House, 1986-2016. (in Chinese)
[20] 国家统计局环境保护部. 中国环境统计年鉴. 北京: 中国统计出版社, 1986-2016.
Ministry of Environmental Protection of the National Bureau of Statistics. China Environmental Statistics Yearbook. Beijing: China Statistics Press, 1986-2016. (in Chinese)
[21] 陈代文. 动物营养与饲料学. 2版. 北京: 中国农业出版社, 2015: 107-304.
CHEN D W.Animal Nutrition and Feed Science. 2nd ed. Beijing: China Agriculture Press, 2015: 107-304. (in Chinese)
[22] 杨扎根. 主要农作物施肥技术. 北京: 中国农业出版社, 2012: 360-365.
YANG Z G.Main Crop Fertilization Technology. Beijing: China Agriculture Press, 2012: 360-365. (in Chinese)
[23] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20): 4207-4229.
LI S T, JIN J Y.Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011, 44(20): 4207-4229. (in Chinese)
[24] 全国农业技术推广服务中心. 中国有机肥料养分志. 北京: 中国农业出版社, 1999: 5-142
National Agricultural Technology Extension Service Center. China Organic Fertilizer Nutrient. Beijing: China Agriculture Press, 1999: 5-142. (in Chinese)
[25] 林栤清, 陈亢川. 福建省食物营养成分表. 福州: 福建科学技术出版社, 1991: 4-40.
LIN B Q, CHEN K C.Fujian Food Nutrition Composition Table. Fuzhou: Fujian Science and Technology Publishing House, 1991: 4-40. (in Chinese)
[26] 罗文华, 周勤飞, 杨金龙. 适度规模肉兔场高效生产技术. 北京: 中国农业科学技术出版社, 2015: 12-21.
LUO W H, ZHOU Q F, YANG J L.Efficient Production Technology of Moderate-scale Meat Rabbit Farm. Beijing: China Agricultural Science and Technology Press, 2015: 12-21. (in Chinese)
[27] 黄炎坤, 姜东凤. 肉鸡场标准化示范技术. 郑州: 河南科学技术出版社, 2014: 88-112.
HUANG Y K, JIANG D F.Broiler Farm Standardization Demonstration Technology. Zhengzhou: Henan Science and Technology Press, 2014: 88-112. (in Chinese)
[28] 贾佳. 鸭鹅最佳出栏时间. 农村养殖技术, 2011(19): 49.
JIA J.Best time for ducks and geese out of the bar.Rural Breeding Technology, 2011(19): 49. (in Chinese)
[29] 中国农业大学. 家畜粪便学. 上海: 上海交通大学出版社, 1997: 265-272.
China Agricultural University. Livestock Manure.Shanghai: Shanghai Jiaotong University Press, 1997: 265-272. (in Chinese)
[30] 朱金凤, 张丁华, 庞歌, 秦彩玲. 黄河湿地野鸭孵化期蛋壳钙、磷含量变化规律的研究. 中国家禽, 2008, 30(6): 24-26.
ZHU J F, ZHANG D H, PANG G, QIN C L.Change of calcium, phosphorus and potassium contents inside the mallard eggshell in the marsh of the Yellow River during different periods of hatching.China Poultry, 2008, 30(6): 24-26. (in Chinese)
[31] 彭克美. 畜禽解剖学. 2版. 北京: 高等教育出版社, 2009: 11-277.
PENG K M.Livestock and Poultry Anatomy. 2nd ed. Beijing: Higher Education Press, 2009: 11-277. (in Chinese)
[32] MA L, VELTHOF G L, WANG F H, QIN W, ZHANG W F, LIU Z, ZHANG Y, WEI J, LESSCHEN J P, MA W Q, OENEMA O, ZHANG F S.Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005.Science of the Total Environment, 2012, 434(18): 51-61.
[33] 林瑞坤, 许修柱, 郑朝元, 叶德练, 张世昌, 颜晓军, 刘东晖, 吴良泉. 福建省平和县蜜柚园磷肥使用现状及土壤磷素平衡研究. 福建热作科技, 2018, 43(3): 5-12.
LIN R K, XU X Z, ZHENG C Y, YE D L, ZHANG S C, YAN X J, LIU D H, WU L Q.Present situation of phosphate fertilizer use and soil phosphorus balance in Pinhe County, Fujian Province.Fujian Science and Technology of Tropical Crops, 2018, 43(3): 5-12. (in Chinese)
[34] 林海柱. 永定县水稻施肥现状、问题与对策. 福建农业科技, 2006(3): 56-57.
LIN H Z.Present situation, problems and countermeasures of rice fertilization in Yongding County.Fujian Agricultural Science and Technology, 2006(3): 56-57. (in Chinese)
[35] LI H, HUANG G, MENG Q, MA L, YUAN L, WANG F, ZHANG W, CUI Z, SHEN J, CHEN X, JIANG R, ZHANG F.Integrated soil and plant phosphorus management for crop and environment in China. A review.Plant and Soil, 2011, 349(1/2): 157-167.
[36] 张晓萌, 王寅, 焉莉, 冯国忠, 高强. 东北地区农牧系统氮、磷养分流动特征. 中国农业科学, 2018, 51(3): 417-429.
ZHANG X M, WANG Y, YAN L, FENG G Z, GAO Q.Characteristics of nitrogen and phosphorus nutrient flow in farming and animal husbandry system in northeast China.Scientia Agricultura Sinica, 2018, 51(3): 417-429. (in Chinese)
[37] MA L, WANG F H, ZHANG W F, MA W Q, VELTHOF G, QIN W, OENEMA O, ZHANG F S.Environmental assessment of management options for nutrient flows in the food chain in China.Environmental Science and Technology, 2013, 47(13): 7260-7268.
[38] ZHANG F S, CUI Z L, FAN M S, ZHANG W F, CHEN X P, JIANG R F.Integrated soil-crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China.Journal of Environmental Quality, 2011, 40(4): 1051-1057.
[39] 许修柱. 琯溪蜜柚生产中的碳排放及优化施肥的综合效应评价[D]. 福州: 福建农林大学, 2019: 32-46.
XU X Z.Comprehensive evaluation of carbon emission and optimum fertilization in Guanxi pomelo production[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019: 32-46. (in Chinese)
[40] 刘源. 东部沿海地区: 福建省福清市畜禽粪污资源化利用整县推进情况. 中国畜牧业, 2018(20): 24-26.
LIU Y.Eastern coastal area: The promotion of the utilization of livestock and poultry manure resources in Fuqing City, Fujian Province.China Animal Industry, 2018(20): 24-26. (in Chinese)
[41] 张福锁. 最佳养分管理技术列单. 北京: 中国农业大学出版社, 2010: 92-102.
ZHANG F S.List of Best Nutrient Management Technologies. Beijing: China Agricultural University Press, 2010: 92-102. (in Chinese)
[42] BOSI P.Feeding strategies to produce high quality pork.Asian Australasian Journal of Animal Sciences, 1999, 12(2): 271-281.
[43] 贾伟. 我国粪肥养分资源现状及其合理利用分析[D]. 北京: 中国农业大学, 2014: 99-111.
JIA W.Studies on the evaluation of nutrient resources derived from manure and optimized utilization in arable land of China[D]. Beijing: China Agricultural University, 2014: 99-111. (in Chinese)
[44] 王宝英, 邓同炜, 黄炎坤, 向瑞平, 王扬伟. 新编禽病诊疗手册. 郑州: 中原农民出版社, 2006: 21-58.
WANG B Y, DENG T W, HUANG Y K, XIANG R P, WANG Y W.New Poultry Diseases Handbook. Zhengzhou: Zhongyuan Peasant Press, 2006: 21-58. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[5] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[6] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[7] DONG ZeKuan,ZHANG ShuiQin,LI YanTing,GAO Qiang,ZHAO BingQiang,YUAN Liang. Effects of Chelating Agent on Dissolution, Fixation and Fertisphere Transformation of Diammonium Phosphate [J]. Scientia Agricultura Sinica, 2022, 55(21): 4225-4236.
[8] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[9] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[10] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[11] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[12] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[13] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[14] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[15] XIANG XiaoLing,CHEN SongHe,YANG HongKun,YANG YongHeng,FAN GaoQiong. Effects of Straw Mulching and Phosphorus Application on Wheat Yield, Phosphorus Absorption and Utilization in Hilly Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5194-5205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!