Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (6): 1126-1139.doi: 10.3864/j.issn.0578-1752.2020.06.005


Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato

HaiYan ZHANG1,BeiTao XIE1,BaoQing WANG1,ShunXu DONG1,WenXue DUAN1(),LiMing ZHANG2()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observation and Experimental Station of Tubers and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs/Shandong Engineering Laboratory of Featured Crops, Jinan 250100
    2 Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2019-08-19 Accepted:2019-09-19 Online:2020-03-16 Published:2020-04-09
  • Contact: WenXue DUAN,LiMing ZHANG;


【Objective】 The aim of this study was to investigate the mechanism of yield reduction of sweetpotato (Ipomoea batatas (L.) Lam) caused by drought stress at different growth stages, so as to provide theoretical basis and technical support for production of sweetpotato in dryland areas. 【Method】 Field experiments were conducted under a rain exclusion shelter to investigate the effects of drought treatments at different growth stages on growth and the activity of antioxidant enzymes in sweetpotato. Two sweetpotato cultivars (JS 21, a drought-tolerant cultivar, and JZ 1, a drought-sensitive cultivar) were subjected to four drought stress treatments respectively, including WW (well watered during the whole growth period, constructed as a control), DS1 (drought stress during the establishment stage), DS2 (drought stress during the intermediate stage), and DS3 (drought stress during the final stage). 【Result】 Drought stress resulted in significant decrease of dry weight in sweetpotato, and which declined most under the earliest drought stress. Compared with the control, the dry weight of storage roots of DS1, DS2 and DS3 in drought-tolerant cultivar (JS 21) were 32.24%, 30.68% and 13.76%, respectively, while 44.02%, 39.54% and 17.87% in drought-sensitive cultivar (JZ 1), respectively. The activity of antioxidant enzymes of functional leaves, fibrous roots and storage roots increased after drought stress. Similarly, the earlier of the drought stress, the greater influence on the activity of antioxidant enzymes was observed in sweetpotato. The enzyme activity in the fibrous roots in each stage was higher than that in the storage roots and the functional leaves. Our results indicated that the fibrous roots were the most sensitive to drought stress. Drought stress could lead to the increase of the relative electrical conductivity of functional leaves, and the MDA content in functional leaves, fibrous roots and storage roots of sweetpotato. The earlier the application of the drought stress in sweetpotato, the greater the increase of the MDA content was observed. 【Conclusion】 The earlier of the drought stress, the greater influence on the activity of antioxidant enzymes was observed in sweetpotato, and could not be renovated. Therefore, the normal growth of leaves and roots were inhibited, and the formation and bulking of storage roots were limited. Establishment stage of sweetpotato was the most sensitive to drought stress.

Key words: sweetpotato, drought stress, yield, activity of antioxidant enzymes

Table 1

Relative soil water contents of different treatments"

Establishment stage (Planting-30 d)
Intermediate stage (30-60 d)
Final stage (60-90 d)
WW 75%±5% 75%±5% 75%±5%
DS1 35%±5% 75%±5% 75%±5%
DS2 75%±5% 35%±5% 75%±5%
DS3 75%±5% 75%±5% 35%±5%

Table 2

Effects of drought stress at different stages on dry weight of storage roots in sweetpotato"

济薯21 JS 21 济紫薯1号 JZ 1
Dry weight (kg·hm-2)
Compared with CK (%)
Dry weight (kg·hm-2
Compared with CK (%)
WW 3210.02±149.60a 4192.22±117.21a
DS1 2175.14±104.54c 32.24 2346.95±94.03c 44.02
DS2 2225.24±134.03c 30.68 2534.54±95.57c 39.54
DS3 2768.43±143.75b 13.76 3443.27±111.90b 17.87

Table 3

Effects of drought stress at different stages on dry biomass of aboveground and underground part in sweetpotato (g/plant)"

栽植后天数 Days after planting (d)
济薯21 JS 21 济紫薯1号 JZ 1
40 60 80 100 40 60 80 100
Biomass of
aboveground part
WW 18.93±1.65a 58.56±2.45a 79.76±2.15a 87.24±2.77a 19.52±1.84a 62.79±2.04a 75.72±2.14a 85.13±2.63a
DS1 13.49±1.4b 40.43±1.31c 46.43±1.87d 61.79±3.48d 13.38±0.69b 36.20±2.64c 42.24±3.56d 53.27±1.73d
DS2 18.21±1.74a 46.49±2.26b 60.52±2.74c 73.31±3.14c 23.65±1.37a 43.56±3.15b 56.34±2.46c 68.87±3.04c
DS3 19.56±1.88a 59.54±2.04a 70.24±2.34b 79.73±1.65b 21.61±1.04a 59.74±3.05a 66.75±3.12b 77.28±3.18b
Biomass of
underground part
WW 1.43±0.58a 5.39±0.36a 17.89±0.59a 31.13±0.69a 1.65±0.25a 6.82±0.79a 15.36±1.08a 30.96±1.05a
DS1 0.83±0.35b 3.95±0.90c 11.21±0.69d 20.96±1.16d 0.81±0.25bc 3.43±0.25c 7.83±0.48d 16.26±1.12d
DS2 1.27±0.19a 4.71±0.68b 13.72±0.66c 24.65±1.19c 1.26±0.24ab 4.41±0.57b 10.66±0.17c 22.23±0.98c
DS3 1.36±0.77a 5.72±1.02a 16.18±0.39b 28.44±1.48b 1.73±0.38a 6.28±0.47a 13.75±1.07b 26.97±1.06b

Table 4

Effects of drought stress at different stages on leaf area index in sweetpotato"

栽植后天数 Days after planting (d)
济薯21 JS 21 济紫薯1号 JZ 1
40 60 80 100 40 60 80 100
WW 1.73±0.03a 4.01±0.45a 5.63±0.25a 5.21±0.38a 1.65±0.34a 4.25±0.45a 6.43±0.31a 5.85±0.34a
DS1 1.25±0.24b 2.15±0.31c 2.78±0.18d 2.08±0.05d 1.14±0.15b 2.61±0.15c 2.77±0.37d 2.33±0.21d
DS2 1.72±0.02a 3.22±0.27b 3.88±0.25c 3.27±0.04c 1.63±0.43a 3.45±0.26b 3.82±0.26c 3.46±0.25c
DS3 1.77±0.16a 3.99±0.19a 4.97±0.45b 4.54±0.25b 1.69±0.47a 4.36±0.36a 5.12±0.13b 4.63±0.19b

Fig. 1

Effects of drought stress at different stages on chlorophyll content of functional leaves in sweetpotato"

Fig. 2

Effects of drought stress at different stages on relative electrical conductivity of functional leaves in sweetpotato"

Fig. 3

Effects of drought stress at different stages on MDA content of functional leaves in sweetpotato"

Table 5

Effects of drought stress at different stages on activities of SOD, POD, CAT, and APX of functional leaves in sweetpotato (U·g-1 FW)"

栽植后天数 Days after planting(d)
济薯21 JS 21 济紫薯1号 JZ 1
40 60 80 100 40 60 80 100
SOD activity
250.56±27.15b 406.31±26.62b 385.77±26.75b 306.22±27.15c 183.21±28.01b 289.29±27.43b 256.07±27.57b 181.75±26.15c
DS1 320.43±25.39a 361.52±25.93c 328.00±25.40c 286.58±25.39d 214.00±26.12a 249.21±26.70c 214.13±26.13c 142.27±26.12d
DS2 255.91±26.80b 445.00±27.23a 393.03±26.49b 325.25±26.80b 171.68±27.63b 299.81±28.09a 259.81±22.23b 214.27±21.63b
DS3 254.23±25.21b 410.24±26.31b 420.97±25.14a 369.18±25.21a 178.41±25.93b 281.66±27.11b 291.86±21.85a 235.48±20.93a
POD activity
305.25±27.07b 396.21±17.14b 362.00±27.19c 290.50±27.08a 280.55±17.15b 349.75±15.30b 318.50±20.25b 277.50±17.31b
DS1 405.90±27.23a 373.28±11.07c 296.49±21.21d 169.25±17.24c 352.69±21.29a 334.50±17.89c 231.75±22.12c 162.25±10.18c
DS2 317.74±17.25b 421.76±17.16a 382.25±27.27b 267.25±27.05b 276.81±22.30b 388.73±16.13a 323.00±23.01b 308.75±17.24a
DS3 315.25±27.17b 406.50±17.28b 395.75±17.09a 299.25±17.32a 252.80±25.06b 348.69±15.24b 367.00±17.25a 318.50±17.68a
CAT activity
19.45±3.15b 35.76±1.62b 29.37±2.75b 24.46±3.15b 17.91±3.94b 29.87±1.43b 23.55±2.57b 19.32±3.25a
DS1 30.67±1.80a 28.25±1.93c 25.45±1.40c 20.89±3.39c 23.24±2.12a 19.89±1.70c 14.33±3.13c 10.45±3.12b
DS2 20.38±1.58b 40.42±3.23a 33.67±1.49a 27.20±2.80a 17.84±1.63b 35.67±1.09a 25.52±2.29b 20.56±1.63a
DS3 19.78±0.63b 33.21±2.31b 35.21±2.14a 29.53±3.21a 18.35±2.93b 30.41±2.11b 29.56±1.85a 21.87±2.93a
APX activity
9.73±1.20b 18.88±0.81b 16.69±1.38a 14.23±1.58a 8.95±2.01b 16.94±0.72a 13.78±1.79ab 11.66±1.02a
DS1 15.34±0.61a 14.12±0.97c 12.73±0.70b 10.45±1.70bc 11.62±1.06a 9.95±0.85b 7.17±0.56c 5.23±1.09c
DS2 10.19±1.21b 20.21±1.62a 15.84±0.75a 11.60±1.40b 8.92±0.81b 17.84±0.54a 12.76±0.45b 9.28±0.81b
DS3 9.89±1.06b 16.61±1.16bc 17.61±1.07a 12.77±1.61ab 9.18±1.46b 16.21±1.06a 14.78±0.93a 10.94±1.96ab

Fig. 4

Effects of drought stress at different stages on root activity in sweetpotato"

Fig. 5

Effects of drought stress at different stages on MDA content of fibrous roots in sweetpotato"

Table 6

Effects of drought stress at different stages on activities of SOD, POD, CAT, and APX of fibrous roots in sweetpotato (U·g-1 FW)"

Enzymatic activity
栽植后天数 Days after planting (d)
济薯21 JS 21 济紫薯1号 JZ 1
40 60 80 100 40 60 80 100
SOD activity
1429.78±289.17b 3253.62±216.59b 3079.03±219.65c 2402.85±209.17b 957.32±209.41b 2658.95±251.61b 2376.57±290.23b 1944.87±209.41c
DS1 2223.62±247.28a 2372.93±230.24c 2088.02±193.45d 1835.93±247.28d 1218.98±264.59a 1318.31±248.45c 1120.07±264.85c 1009.31±264.59d
DS2 1475.21±280.84b 3582.50±201.07a 3140.79±247.52b 2564.61±280.84c 859.25±245.56b 2848.40±244.89a 2408.41±229.61b 2121.29±245.63b
DS3 1460.97±243.04b 3287.04±219.26b 3378.28±273.46a 2938.00±243.04a 916.50±260.21b 2694.14±211.45b 2580.82±258.27a 2201.61±260.05a
POD activity
1115.75±101.22b 1388.63±61.41b 1286.00±241.38b 1071.50±81.24c 1041.64±71.44b 1249.25±91.89b 1155.5±81.76b 1092.5±71.89a
DS1 1417.70±90.68a 1319.84±83.21bc 1089.47±84.45c 707.75±71.73d 1258.07±72.15a 1103.50±81.77c 795.25±93.35c 586.75±50.54b
DS2 1153.207±71.76b 1565.29±77.47a 1446.75±83.62a 1201.75±89.16a 1030.42±98.69b 1366.19±71.39a 1169.00±65.89b 1126.25±71.73a
DS3 1145.75±89.54b 1419.50±65.85b 1387.25±75.81a 1107.75±71.97b 958.40±45.62b 1186.06±71.73bc 1301.00±75.76a 1155.5±84.56a
CAT activity
90.35±12.45b 149.27±7.86b 130.11±71.28b 125.38±12.45a 85.72±11.52b 131.61±7.30b 122.65±10.05b 109.96±11.23a
DS1 134.69±9.17a 125.00±8.80c 113.80±8.13c 95.56±11.17b 104.95±9.35a 91.56±8.11c 69.32±7.38c 53.80±9.35b
DS2 93.51±8.40b 173.68±12.69a 146.68±7.20a 128.80±10.40a 83.37±7.88b 145.68±6.26a 124.08±9.88b 114.24±7.88a
DS3 91.12±6.64b 144.86±9.94b 152.84±7.47a 130.12±9.64a 85.42±8.78b 133.64±5.32b 130.24±8.56a 119.48±6.78a
APX activity
35.12±4.15b 64.76±2.62b 59.37±8.43a 54.79±4.15a 33.57±4.21b 49.87±2.43b 47.88±3.57b 44.65±3.06a
DS1 49.90±3.39a 46.67±2.93c 42.93±2.71c 36.85±3.38b 39.98±3.05a 35.52±2.15c 28.11±4.13c 22.93±4.12c
DS2 36.17±2.80b 72.89±4.23a 53.89±2.40b 47.93±2.45a 32.79±2.63b 53.56±2.75a 44.36±3.29b 39.08±2.63b
DS3 35.37±2.21b 63.29±3.31b 60.95±2.49a 49.37±3.21a 33.47±3.11b 49.55±4.15b 50.41±2.85a 40.83±4.59b

Fig. 6

Effects of drought stress at different stages on MDA content of storage roots in sweetpotato"

Table 7

Effects of drought stress at different stages on activities of SOD, POD, CAT, and APX of storage roots in sweetpotato (U·g-1 FW)"

Enzymatic activity
栽植后天数 Days after planting (d)
济薯21 JS 21 济紫薯1号 JZ 1
60 80 100 120 60 80 100 120
SOD activity
1578.09±187.11b 2234.70±158.95b 2021.72±150.98 c 1684.19±123.11a 707.68±40.21b 1591.09±131.47b 1208.37±133.62b 799.62±78.21b
DS1 1962.34±145.01a 1888.36±168.39c 1604.01±160.16d 1276.19±120.01c 1176.99±71.21a 970.67±120.18c 877.69±121.37c 582.49±51.21c
DS2 1507.49±141.72b 2547.50±148.34a 2161.69±179.62b 1488.86±131.72b 744.22±97.88b 1648.97±141.53a 1328.97±125.66b 878.48±44.23b
DS3 1598.28±157.26b 2256.32±174.22b 2315.36±156.19a 1530.47±117.26b 781.26±78.27b 1549.15±126.42b 1605.24±135.68a 995.16±38.27a
POD activity
557.88±85.46b 694.32±74.28b 643.00±54.38c 535.75±44.16b 520.82±44.31b 624.63±54.59b 577.75±41.54b 516.25±34.59a
DS1 708.85±94.54a 659.92±82.14c 544.73±82.42d 353.88±34.48c 629.03±55.57a 601.75±34.51c 447.63±54.69c 343.38±30.36b
DS2 576.60±74.51b 752.65±94.31a 673.38±74.54b 588.88±44.10a 515.21±56.78b 673.10±64.26a 584.50±35.68b 523.13±44.49a
DS3 572.88±84.33b 709.75±95.13b 693.63±74.18a 568.88±34.65a 479.20±58.91b 593.03±81.01c 640.50±70.15a 537.75±34.21a
CAT activity
56.90±4.45b 89.52±2.86b 76.74±4.25b 66.92±2.45b 53.81±5.98b 75.74±2.30a 63.10±4.72a 58.64±2.45a
DS1 79.35±4.17a 74.50±3.87c 68.90±2.20c 59.78±4.17c 64.47±4.35a 57.78±3.12b 46.66±5.48b 38.90±2.35b
DS2 58.76±3.45b 98.84±4.69a 85.34±2.47a 70.40±2.46a 53.69±2.88b 79.34±1.26a 68.04±3.88a 52.12±2.88a
DS3 57.56±2.61b 84.43±4.94b 88.42±4.43a 72.06±4.65a 54.71±2.78b 74.82±6.45a 70.12±2.56a 55.74±4.78a
APX activity
17.08±1.09b 30.17±1.21b 28.91±1.17a 24.86±0.97a 16.05±1.67b 26.25±1.53a 24.26±1.81a 21.44±1.67a
DS1 26.93±1.45a 24.78±2.54c 22.29±1.47b 18.24±1.45b 20.32±1.95a 19.35±1.07b 15.40±0.92b 12.96±1.35b
DS2 17.78±1.89b 33.60±1.19a 27.60±1.65a 22.62±2.27a 15.53±0.82b 29.37±0.84a 21.57±3.26a 18.39±1.92a
DS3 17.25±1.56b 29.19±2.39b 30.96±2.85a 23.92±2.09a 15.98±1.52b 26.70±1.88a 25.94±2.37a 19.55±1.55a
[1] 李长志, 李欢, 刘庆, 史衍玺 . 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016,22(2):511-517.
LI C Z, LI H, LIU Q, SHI Y X . Comparison of root development and fluorescent physiological characteristics of sweet potato exposure to drought stress in different growth stages. Journal of Plant Nutrition and Fertilizer, 2016,22(2):511-517. (in Chinese)
[2] 张海燕, 段文学, 解备涛, 董顺旭, 汪宝卿, 史春余, 张立明 . 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018,44(1):126-136.
ZHANG H Y, DUAN W X, XIE B T, DONG S X, WANG B Q, SHI C Y, ZHANG L M . Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato. Acta Agronomica Sinica, 2018,44(1):126-136. (in Chinese)
[3] VILLORDON A Q . Characterization of lateral root development at the onset of storage root initiation in ‘Beauregard’ sweetpotato adventitious roots. Hortscience, 2012,47(7):961-968.
[4] CHOWDHORY S R, SINGH R, KUNDU D K, ANTONY E, THAKUR A K, VERMA H N . Growth, dry matter partitioning and yield of sweet potato ( Ipomoea batatas L.) as influence by soil mechanical impedance and mineral nutrition under different irrigation regimes. Advances in Horticultural Science, 2000,16(1):25-29.
[5] FANG Y J, XIONG L Z . General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015,72(4):673-689.
[6] REDDY A R, CHAITANYA K V, VIVEKANANDAN M . Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 2004,161(11):1189-1202.
[7] KIM Y H, JEONG J C, LEE H S, KWAK S S . Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions. Molecular Biology Reports, 2013,40(4):2887-2896.
[8] SRIVALLI B, SHARMA G, KHANNA CHOPRA R . Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum, 2003,119(4):503-512.
[9] GUO Z F, OU W, LU S L, ZHONG Q . Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology Biochemistry, 2006,44(11/12):828-836.
[10] LI Z, ZHOU H, PENG Y, ZHANG X, MA X, HUANG L, YAN Y . Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regulation, 2015,76(1):71-82.
[11] 陈京 . 抗旱性不同的甘薯品种对渗透胁迫的生理响应. 作物学报, 1999,25(2):232-236.
CHEN J . Physiological response for different drought resistance of sweet potato under osmotic stress. Acta Agronomica Sinica, 1999,25(2):232-236. (in Chinese)
[12] GILL S S, TUTEJA N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry, 2010,48(12):909-930.
[13] 李文卿, 潘廷国, 柯玉琴, 陈凤翔 . 土壤水分胁迫对甘薯苗期活性氧代谢的影响. 福建农业学报, 2000,15(4):45-50.
LI W Q, PAN T G, KE Y Q, CHEN F X . Effects of soil water stress on metabolism of active oxygen in leaves of sweet potato seedling. Fujian Journal of Agricultural Sciences, 2000,15(4):45-50. (in Chinese)
[14] 何冰, 许鸿原, 陈京 . 干旱胁迫对甘薯叶片质膜透性及抗氧化酶类的影响. 广西农业大学学报, 1997,16(4):287-290.
HE B, XU H Y, CHEN J . Effects of drought stress on the permeability of plasma membrane and antioxidation enzymes of the leaves of sweet potato, Journal of Guangxi Agricultural University, 1997,16(4):287-290. (in Chinese)
[15] 张明生, 谈锋, 张启堂 . 快速鉴定甘薯品种抗旱性的生理指标及方法的筛选. 中国农业科学, 2001,34(3):260-265.
ZHANG M S, TAN F, ZHANG Q T . Physiological indices for rapid identification of sweet potato drought resistance and selection of methods. Scientia Agricultura Sinica, 2001,34(3):260-265. (in Chinese)
[16] 陈京, 王支槐, 周启贵 . PEG处理对甘薯叶肉细胞超微结构的影响. 西南师范大学学报(自然科学版), 1997,22(4):398-404.
CHEN J, WANG Z H, ZHOU Q G . Effects of PEG treatment on ultrastructure in mesophyll cells of sweet potato. Journal of Southwest China Normal University (Natural Science), 1997,22(4):398-404. (in Chinese)
[17] 李锦树, 王洪春, 王文英, 朱亚芳 . 干旱对玉米叶片细胞透性及膜脂的影响. 植物生理学报, 1983,9(3):223-230.
LI J S, WANG H C, WANG W Y, ZHU Y F . Effect of drought on the permeability and membrane lipid composition from maize leaves. Acta Phytophysiologia Sinica, 1983,9(3):223-230. (in Chinese)
[18] DHINDSA R S, MATOWE W . Drought tolerance in two mosses: Correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 1981,32(1):79-91.
[19] 山仑, 康绍忠, 吴普特 . 中国节水农业. 北京:中国农业出版社, 2004: 229-230.
SHAN L, KANG S Z, WU P T . Water Saving Agriculture in China. Beijing: China Agriculture Press, 2004: 229-230. (in Chinese).
[20] 王留梅, 毛守民, 潘明华, 周利霞 . 甘薯叶面积系数田间速测方法初探. 中国农学通报, 2001, 17(6):82-90.
WANG L M, MAO S M, PAN M H, ZHOU L X . Field measurement method of leaf area index of sweet potato. Chinese Agricultural Science Bulletin, 2001,17(6):82-90. ( in Chinese).
[21] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社 2000: 184-185.
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000: 184-185. (in Chinese)
[22] 张丹, 刘国顺, 章建新, 徐敏 . 打顶时期对烤烟根系活力及烟碱积累规律的影响. 中国烟草科学, 2006,27(1):38-41.
ZHANG D, LIU G S, ZHANG J X, XU M . Effect of different topping time on activity of root system and accumulation of nicotine in tobacco plants. Chinese Tobacco Science, 2006,27(1):38-41. (in Chinese)
[23] 陈建勋, 王晓峰 . 植物生理学实验指导(第二版). 广州:华南理工大学出版社, 2006: 64-66.
CHEN J X, WANG X F . Guidance of Plant Physiological Experiment(2nd edition). Guangzhou: South China University of Technology Publishers, 2006: 64-66. (in Chinese)
[24] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波 . 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012,23(3):724-730.
MA F J, LI D D, CAI J, JIANG D, CAO W X, DAI T B . Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chinese Journal of Applied Ecology, 2012,23(3):724-730. (in Chinese)
[25] PINHEIRO C, CHAVES M M . Photosynthesis and drought: Can we make metabolic connections from available data. Journal of Experimental Botany, 2011,62:869-882.
[26] 井大炜, 邢尚军, 杜振宇, 刘方春 . 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响. 应用生态学报, 2013,24(7) : 1809-1816.
JING D W, XING S J, DU Z Y, LIU F C, . Effects of drought stress on the growth,photosynthetic characteristics,and active oxygen metabolism of poplar seedlings. Chinese Journal of Applied Ecology, 2013,24(7) : 1809-1816. ( in Chinese)
[27] 张明生, 谢波, 戚金亮, 谈锋, 张启堂, 杨永华 . 甘薯植株形态、生长势和产量与品种抗旱性的关系. 热带作物学报, 2006,27(1):39-43.
ZHANG M S, XIE B, QI J L, TAN F, ZHANG Q T, YANG Y H . Relationship of drought resistance of sweet potato with its plant type, growth vigour and yield under water stress. Chinese Journal of Tropical Crops, 2006,27(1):39-43. (in Chinese)
[28] 谈锋, 张启堂, 陈京, 李坤培 . 甘薯品种抗旱适应性的数量分析. 作物学报, 1991,17(5):394-398.
TAN F, ZHANG Q T, CHEN J, LI K P . Quantitative analysis of adaptability of drought resistance in sweet potato cultivars. Acta Agronomica Sinica, 1991,17(5):394-398. (in Chinese)
[29] 张海燕, 解备涛, 汪宝卿, 董顺旭, 段文学, 张立明 . 不同甘薯品种抗旱性评价及耐旱指标筛选. 作物学报, 2019,45(3):419-430.
ZHANG H Y, XIE B T, WANG B Q, DONG S X, DUAN W X, ZHANG L M . Evaluation of drought tolerance and screening for drought-tolerant indicators in sweetpotato cultivars. Acta Agronomica Sinica, 2019,45(3):419-430. (in Chinese)
[30] 许育彬, 程雯蔚, 陈越, 华千勇 . 不同施肥条件下干旱对甘薯生长发育和光合作用的影响. 西北农业学报, 2007,16(2):59-64.
XU Y B, CHENG W W, CHEN Y, HUANG Q Y . Effect of drought on growth and development and photosynthesis of sweet potato under different fertilization conditions. Acta Agriculturae Boreali-Occidentalis Sinica, 2007,16(2):59-64. (in Chinese)
[31] 孙哲, 史春余, 刘桂玲, 高俊杰, 柳洪鹃, 郑建利, 张鹏 . 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异. 植物营养与肥料学报, 2016,22(4):1071-1078.
SUN Z, SHI C Y, LIU G L, GAO J J, LIU H J, ZHENG J L, ZHANG P . Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1071-1078. (in Chinese)
[32] 张海燕, 解备涛, 段文学, 董顺旭, 汪宝卿, 张立明, 史春余 . 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018,29(6):1943-1950.
ZHANG H Y, XIE B T, DUAN W X, DONG S X, WANG B Q, ZHANG L M, SHI C Y . Effects of drought stress at different growth stages on photosynthetic efficiency and water consumption characteristics in sweet potato. Chinese Journal of Applied Ecology, 2018,29(6):1943-1950. (in Chinese)
[33] 李璇, 岳红, 王升, 黄璐琦, 马炯, 郭兰萍 . 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013,38(7):973-978.
LI X, YUE H, WANG S, HUANG L Q, MA J, GUO L P . Research of different effects on activity of plant antioxidant enzymes. China Journal of Chinese Materia Medica, 2013,38(7):973-978. (in Chinese)
[34] NELSON D M, HU F S, TIAN J, STEFANOVA I, BROWN T A . Response of C3 and C4 plants to middle-holocene climatic variation near the prairie-forest ecotone of Minnesota. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(2):562-567.
[35] UZILDAY B, TURKAN I, SEKMEN A H, OZGUR R, KARAKAYA H C . Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Science, 2012,182:59-70.
[36] NAYYAR H, GUPTA D . Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stressand antioxidants. Environmental and Experimental Botany, 2006,58(1):106-113.
[37] HU L X, LI H Y, PANG H C, FU J . Responses of antioxidant gene,protein and enzymes to salinity stress in two genotypes of perennial ryegrass ( Lolium perenne) differing in salt tolerance. Journal of Plant Physiology, 2012,169(2):146-156.
[38] MISRA N, GUPTA A K . Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 2006,163(1):11-18.
[39] JIANG L, YANG H . Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicology and Environmental Safety, 2009,72(6):1687-1693.
[40] ALMESELMANI M, DESHMUKH P S, SAIRAM R K, KUSHWAHA S R, SINGH T P . Protective role of antioxidant enzymes under high temperature stress. Plant Science, 2006,171(3):382-388.
[41] OHE M, RAPOLU M, MIEDA T, MIYAGAWA Y . Decline in leaf photooxidative-stress tolerance with age in tobacco. Plant Science, 2005,168(6):1487-1493.
[42] 汪宝卿, 姜瑶, 解备涛, 董顺旭, 张海燕, 王庆美, 张立明 . 2个不同耐旱性甘薯品种的苗期根系蛋白组差异分析. 核农学报, 2017,31(2):232-240.
WANG B Q, JIANG Y, XIE B T, DONG S X, ZHANG H Y, WANG Q M, ZHANG L M . Proteomic analysis of roots in seedling stage of two sweetpotato varieties with different drought tolerance. Journal of Nuclear Agricultural Sciences, 2017,31(2):232-240. (in Chinese)
[43] 汪宝卿, 解备涛, 张海燕, 董顺旭, 段文学, 王庆美, 张立明 . 基于iTRAQ技术的不同耐旱性甘薯苗期根系差异蛋白分析. 核农学报, 2017,31(10):1904-1912.
WANG B Q, XIE B T, ZHANG H Y, DONG S X, DUAN W X, WANG Q M, ZHANG L M . Analysis of differential proteome in roots during seedling stage of sweetpotato with different drought tolerance based on iTRAQ method. Journal of Nuclear Agricultural Sciences, 2017,31(10):1904-1912. (in Chinese)
[44] KIM Y H, PARK S C, JI C Y, LEE J J, JEONG J C, LEE H S, KWAK S S . Diverse antioxidant enzyme levels in different sweetpotato root types during storage root formation. Plant Growth Regulation, 2015,75(1):155-164.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[7] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Full text



No Suggested Reading articles found!