Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (5): 890-903.doi: 10.3864/j.issn.0578-1752.2020.05.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Differences in Yield and Growth Traits of Different Japonica Varieties in the Double Cropping Late Season in the Lower Reaches of the Yangtze River

YIN Min,LIU ShaoWen,CHU Guang,XU ChunMei,WANG DanYing,ZHANG XiuFu,CHEN Song()   

  1. China National Rice Research Institute, Hangzhou 311400
  • Received:2019-08-05 Accepted:2019-10-08 Online:2020-03-01 Published:2020-03-14
  • Contact: Song CHEN E-mail:chensong02@caas.cn

Abstract:

【Objective】The aim of the study was to evaluate the yield and growth traits of different types of japonica rice in the late season in the lower reaches of the Yangtze River, so as to provide a theoretical basis for selecting the proper varieties in the double cropping late season in this area. 【Method】 Field experiment was carried out at the China National Rice Research Institute in Hangzhou, Zhejiang province from 2017 to 2018, with four rice types, including the late indica rice (IR) as a control, inbred japonica (IJR), hybrid japonica (HJR) and indica/japonica hybrid rice (IJHR). 【Result】(1) The yield of IJHR (8.3-10.0 t·hm -2) was significantly higher than that of other rice types, increasing by 2.9%-29.3%, 30.9%-35.3% , and 13.4%-14.0% than IR, IJR, and HJR, respectively; The average yield of IJR was the lowest, which was 24.0% (2017) and 1.2% (2018) lower than control (IR), while the yield difference between HJR and IR was varied within years. The IJHR had higher spikelets per panicle and greater sink, and similar panicles per unit area, grain weight, and grain setting as compared to IR. In contrast, the IJR/HJR had higher grain weight and lower spikelets per panicle than IR. The growth duration was ranked in the order of IJHR>HJR>IJR>IR. Compared with IR, the japonica rice (IJR, HJR, and IJHR) had similar vegetative stage (about 56-59 d), slightly reduced reproductive stage (1-6 d), and prolonged the grain filling stage (12-22 d), which leading to an improved accumulation of temperature and solar radiation of the growth duration. (2) The yield component and phenological traits were dimensional reduced by principal component analysis (PCA) as principal component one (panicle size factor, 37.7%) and the principal component two (the growth factor, 24.7%), of which the IJHR was classified as variety with few panicles, large grains, and long grain filling stage, and the IR was medium panicles numbers and size, and short grain filling stage. There was no difference between IJR and HJR based on PCA, being multiple panicles, small panicle size, and long grain filling stage. (3) Correlation analysis showed that the yields of late japonica rice were significantly positively correlated with spikelets per panicle (R 2=0.607,P<0.001), sink size (R 2=0.779,P<0.001) and grain filling stage (R 2=0.505,P<0.001). Compared with the late indica rice, the yield of the double cropping late japonica rice was obvious sensitive to the change of environment, which was characterized by large coefficient of variation between varieties and years. Therefore, it was necessary to localize the variety and cultivate it by species. 【Conclusion】 Applying japonica variety in the late season would prolong the grain filling stage, and increase the temperature and solar radiation accumulation for the late-season rice as compared with IR. The IJHR with large panicle size, high sink size and long grain filling stage maintained the great yield superiors and being suitable for growing the late season in the lower reaches of the Yangtze River, which would help to improve the yield, temperature and light resources utilization and safety of the late-season rice.

Key words: double cropping late rice, yield, growth traits, late indica rice, inbred japonica rice, hybrid japonica rice, indica/japonica hybrid rice

Table 1

Varieties information from 2017 to 2018"

年份
Year
品种类型 Cultivar type
IR IJR HJR IJHR
2017—2018 黄华占 Huanghuazhan
天优华占 Tianyouhuazhan
C两优华占 C Liangyouhuazhan
嘉58 Jia 58
嘉禾218 Jiahe 218
南粳46 Nangeng 46
南粳9108 Nangeng 9108
秀水134 Xiushui 134
常优5号 Changyou 5
嘉优5号 Jiayou 5
春优84 Chunyou 84(2017)
春优927 Chunyou 927(2018)
甬优1540 Yongyou 1540
甬优538 Yongyou 538

Fig. 1

Changes in the climate resources in the late season from 2017 to 2018"

Table 2

Differences in yields of different types of late rice from 2017 to 2018 (t·hm-2)"

类型 Type 品种 Variety 2017 2018
IR 黄华占 Huanghuazhan 7.9±0.4c 7.5±0.2gh
天优华占 Tianyouhuazhan 7.6±0.2cd 7.8±0.2fg
C两优华占 C Liangyouhuazhan 8.9±0.2a 7.9±0.3efg
IJR 嘉58 Jia 58 5.9±0.1fg 8.5±0.2cd
嘉禾218 Jiahe 218 6.1±0.3f 6.1±0.1i
南粳46 Nangeng 46 5.6±0.1g 8.3±0.3de
南粳9108 Nangeng 9108 6.6±0.1e 7.2±0.1h
秀水134 Xiushui 134 6.6±0.3e 8.0±0.1ef
HJR 常优5号 Changyou 5 7.4±0.3d 8.7±0.2c
嘉优5号 Jiayou 5 7.3±0.1d 8.8±0.3c
IJHR 春优84 Chunyou 84 8.3±0.2b
春优927 Chunyou 927 10.6±0.4a
甬优1540 Yongyou 1540 8.4±0.2b 9.9±0.4b
甬优538 Yongyou 538 8.3±0.3b 9.5±0.2b
平均值 Average IR 8.1±0.6a 7.7±0.3c
IJR 6.2±0.4c 7.6±0.9c
HJR 7.4±0.2b 8.8±0.3b
IJHR 8.3±0.2a 10.0±0.5a
ANOVA
品种类型 Type (T) 65.60**
年份 Year (Y) 62.52**
T×Y 13.95**

Table 3

Differences in yield components of different types of late rice from 2017 to 2018"

年份
Year
类型
Type
有效穗数
(panicles/m2)
每穗粒数
Grains per panicle
结实率
Grain setting (%)
千粒重
1000-grain weight (g)
库容
Sink (×103·m-2)
2017 IR 303.8±16.7a 169.4±23.3b 60.7±10.6b 22.5±1.2b 51.2±5.4b
IJR 269.5±30.8b 121.4±18.2c 77.2±5.1a 26.9±1.6a 32.7±6.3d
HJR 282.6±30.6ab 137.4±7.8c 72.1±8.2a 27.5±2.5a 38.7±2.4c
IJHR 224.4±15.0c 263.0±32.5a 63.7±6.6b 22.9±1.3b 58.6±4.2a
2018 IR 306.3±39.7a 181.7±29.1b 67.0±5.7b 23.0±0.8c 55.0±6.9b
IJR 310.3±20.4a 133.3±15.5c 75.0±5.8a 26.0±1.3b 41.2±3.4d
HJR 299.2±15.4a 166.4±8.1b 65.7±8.3b 27.9±2.3a 49.7±0.9c
IJHR 218.2±14.6b 316.0±32.8a 65.2±7.0b 22.9±0.9c 68.6±3.4a
ANOVA
品种类型 Type (T) 41.65** 195.52** 15.97** 49.54** 126.37**
年份 Year (Y) 5.15* 23.52** 0.02ns 0.00ns 52.96**
T×Y 4.10** 3,54* 2.36ns 1.11ns 1.82ns

Table 4

Differences in growth period of different types of late rice from 2017 to 2018 (d)"

年份
Year
类型
Type
营养生长期
Vegetative stage
穗发育期
Reproductive stage
灌浆期
Grain filling stage
全生育期
Growth period
2017 IR 58a 24a 35c 117c
IJR 58a 21a 47b 126b
HJR 58a 22a 48b 128ab
IJHR 58a 23a 50a 131a
2018 IR 58a 25a 42b 125c
IJR 57b 22ab 58a 136b
HJR 59a 19b 62a 140ab
IJHR 56b 24a 64a 143a
ANOVA
品种类型 Type (T) 12.81** 4.93** 64.32** 41.02**
年份 Years (Y) 11.18** 0.00ns 115.18** 94.65**
T×Y 12.81** 1.18ns 2.16ns 0.80ns

Table 5

Differences in the allocation of temperature and light resources among different growth stages of different types of late rice from 2017 to 2018"

年份
Year
类型
Type
营养生长期 Vegetative stage 穗发育期 Reproductive stage 灌浆期 Grain filling stage 全生育期 Growth period
EAT
(℃)
LH
(h)
Rs (MJ·m-2) EAT
(℃)
LH
(h)
Rs (MJ·m-2) EAT
(℃)
LH
(h)
Rs (MJ·m-2) EAT
(℃)
LH
(h)
Rs (MJ·m-2)
2017 IR 1187.7b 449.5a 1097.8a 433.5a 126.6a 360.3a 419.3b 88.8d 426.2c 2040.5c 664.9c 1872.2c
IJR 1187.7a 449.5a 1097.8b 380.1a 110.5ab 312.7a 532.4a 168.5c 580.6b 2100.2b 728.5b 1979.1b
HJR 1187.7b 449.5a 1097.8a 402.6a 107.3b 327.4a 522.9a 185.7b 589.8ab 2113.2ab 742.5ab 2003.0ab
IJHR 1187.7b 449.5a 1097.8a 412.9a 113.7ab 338.4a 530.6a 198.7a 613.6a 2131.2a 762.0a 2037.7a
2018 IR 1157.0a 432.3a 1066.3a 434.1a 140.9a 386.6a 456.5b 225.7b 540.6b 2047.6b 786.8b 1973.3c
IJR 1130.3b 425.7b 1045.1b 387.8a 128.5ab 340.3ab 595.4a 273.1a 703.5a 2113.5a 815.1a 2068.6b
HJR 1176.1a 437.1a 1081.5a 334.1b 117.9b 299.3b 627.9a 288.3a 745.3a 2138.1a 831.2a 2105.8ab
IJHR 1118.8b 422.8b 1035.9b 418.4a 138.3a 368.9a 609.7a 287.5a 744.1a 2146.8a 836.5a 2128.7a
ANOVA
品种类型 Type (T) 12.81** 12.81** 12.81** 4.85** 5.67** 5.01** 29.40** 69.42** 56.94** 40.14** 36.39** 40.32**
年份Year (Y) 151.25** 547.95** 222.51** 1.07ns 21.78** 1.40ns 33.19** 529.12** 116.76** 5.31* 306.87** 76.48**
T×Y 12.81** 12.81** 12.81** 1.51ns 0.60ns 1.08ns 1.13ns 4.80** 0.43ns 0.25ns 3.81* 0.10ns

Table 6

Eigenvectors and contribution rate of main agronomic traits of late rice"

主成分
Principal component
特征值
Eigenvectors
贡献率
Contribution rate (%)
累积贡献率
Cumulative contribution rate (%)
1 3.4 37.7 37.7
2 2.2 24.7 62.4
3 1.0 11.2 73.6
4 0.9 10.4 84.0
5 0.7 8.3 92.2
6 0.6 6.6 98.8
7 0.1 1.1 99.9
8 0.0 0.1 100.0
9 0.0 0.0 100.0

Fig. 2

Principal component factors distribution"

Fig. 3

Distribution of principal component one and principal component two of different types of varieties"

Fig. 4

Relationship between yield and main agronomic traits of different types of cultivars Significance test of correlation coefficients between yield and panicles (A), spikelets (B), grain setting (C), 1000-grain weight (D), sink size (E), and grain filling stage (F) (P<0.05, Pearson), ** means P<0.01; * means 0.01≤P<0.05; ns means P≥0.05"

[1] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯 . 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015,48(17):3404-3414.
ZHU D F, ZHANG Y P, CHEN H Z, XIANG J, ZHANG Y K . Innovation and practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015,48(17):3404-3414. (in Chinese)
[2] 方福平, 程式华 . 水稻科技与产业发展. 农学学报, 2018,8(1):92-98.
FANG F P, CHENG S H . The development of rice science, technology and industry in China. Journal of Agriculture, 2018,8(1):92-98. (in Chinese)
[3] 曹黎明, 程灿, 周继华, 储黄伟, 牛付安, 袁勤 . 上海杂交粳稻产业发展与展望. 中国种业, 2018(9):19-22.
CAO L M, CHENG C, ZHOU J H, CHU H W, NIU F A, YUAN Q . Development and prospect of japonica hybrid rice industry in Shanghai. China Seed Industry, 2018(9):19-22. (in Chinese)
[4] 中稻宣 . 2015年全国及各省(市、区)粮食及水稻播种面积和产量. 中国稻米, 2017,23(6):110.
ZHONG Dao Xuan . National and provincial (city, district) grain and rice planting area and production in 2015. China Rice, 2017,23(6):110. (in Chinese)
[5] 陈波, 周年兵, 郭保卫, 黄大山, 陈忠平, 花劲, 霍中洋, 张洪程 . 南方稻区“籼改粳”研究进展. 扬州大学学报(农业与生命科学版), 2017,38(1):67-72,88.
CHEN B, ZHOU N B, GUO B W, HUANG D S, CHEN Z P, HUA J, HUO Z Y, ZHANG H C . Progress of “indica rice to japonica rice” in southern China. Journal of Yangzhou University(Agricultural and Life Science Edition), 2017,38(1):67-72, 88. (in Chinese)
[6] 张文竹 . 长江中下游不同气候区民居类型及绿色营建经验研究[D]. 陕西: 西安建筑科技大学, 2014.
ZHANG W Z . Study on the house type and green construction experience in different climate zones of Yangtze River’s middle and lower reaches[D]. Shaanxi: Xi`an University of Architecture and Technology, 2014. ( in Chinese)
[7] 赵小道, 詹黎耕, 俞翠轩 . 浙江省农业志. 北京: 中华书局, 2004: 609-611.
ZHAO X D, ZHAN L G, YU C X . Agricultural Chronicle of Zhejiang Province. Beijing: Zhonghua Book Company, 2004: 609-611. (in Chinese)
[8] 谢远玉, 黄淑娥, 田俊, 王钰, 叶清 . 长江中下游热量资源时空演变特征及其对双季稻种植的影响. 应用生态学报, 2016,27(9), 2950-2958.
XIE Y Y, HUANG S E, TIAN J, WANG Y, YE Q . Spatial-temporal characteristics of thermal resources and its influence on the growth of double cropping rice in the middle and lower reaches of the Yangtze River, China. Chinese Journal of Applied Ecology, 2016,27(9), 2950-2958. (in Chinese)
[9] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀, 曾研华 . 近30年江西双季稻安全生产期及温光资源变化. 中国水稻科学, 2016,30(3):323-334.
LÜ W S, ZENG Y J, SHI Q H, PAN X H, HUANG S, SHANG Q Y, TAN X M, LI M Y, HU S X, ZENG Y H . Changes in safe production dates and heat-light resources of double cropping rice in Jiangxi province in recent 30 years. Chinese Journal of Rice Science, 2016,30(3):323-334. (in Chinese)
[10] PRASAD P V V, BOOTE K J, ALLEN L H, SHEEHY J E, THOMAS J M G . Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2005,95(2/3) : 398-411.
[11] 曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌 . 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008,34(12):2134-2142.
CAO Y Y, DUAN H, YANG L N, WANG Z Q, ZHOU S C, YANG J C . Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agronomica Sinica, 2008,34(12):2134-2142. (in Chinese)
[12] 王静, 张成军, 陈国祥, 王萍, 施大伟, 吕川根 . 低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响. 中国水稻科学, 2006,20(2):177-182.
WANG J, ZHANG C J, CHEN G X, WANG P, SHI D W, LÜ C G . Effect of low temperature on photosynthetic pigments and thylakoid membrane fatty acid in flag leaves of rice at the milky stage. Chinese Journal of Rice Science, 2006,20(2):177-182. (in Chinese)
[13] 李霞, 戴传超, 程睿, 陈婷, 焦德茂 . 不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制. 作物学报, 2006,32(1):76-83.
LI X, DAI C C, CHENG R, CHEN T, JIAO D M . Identification for cold tolerance at different growth stages in rice (Oryza sativa L.) and physiological mechanism of differential cold tolerance. Acta Agronomica Sinica, 2006,32(1):76-83. (in Chinese)
[14] YOSHIDA S . Fundamentals of Rice Crop Science. International Rice Research Institute (IRRI), Los Banos, Philippines, 1981: 69-84.
[15] 陈波, 周年兵, 郭保卫, 舒鹏, 张洪程, 霍中洋, 程飞虎, 花劲, 黄大山, 陈忠平, 陈恒, 刘云发, 廖世亮 . 江西双季晚稻不同纬度产量、生育期及温光资源利用的差异. 中国农业科学, 2017,50(8):1403-1415.
CHEN B, ZHOU N B, GUO B W, SHU P, ZHANG H C, HUO Z Y, CHENG F H, HUA J, HUANG D S, CHEN Z P, CHEN H, LIU Y F, LIAO S L . Differences of double-cropping late rice in yield, growth stage and utilization of temperature and illumination in different latitudes of Jiangxi province. Scientia Agricultura Sinica, 2017,50(8), 1403-1415. (in Chinese)
[16] BALL R A, PURCELL L C, CAREY S K . Evaluation of solar radiation prediction models in north America. Agronomy Journal, 2004,96(2):391.
[17] 杨超, 张洪树 . 甬优系列不同组合在江苏省淮北地区试种表现初报. 安徽农学通报, 2017,23(24):18-20, 48.
YANG C, ZHANG H S . Preliminary report on the trial performance of different combinations of Yongyou series in Huaibei area of Jiangsu province. Anhui Agricultural Science Bulletin, 2017,23(24), 18-20, 48. (in Chinese)
[18] 刘雪芬, 林杏, 赵成东, 刘小玲 . 甬优538在浙江文成的种植表现及其高产栽培技术. 杂交水稻, 2019,34(1):49-50.
LIU X F, LIN X, ZHAO C D, LIU X L . Planting performance and high-yielding cultivation techniques of Yongyou 538 at Wencheng, Zhejiang. Hybrid Rice, 2019,34(1):49-50. (in Chinese)
[19] 柯海平, 熊之羲 . 杂交粳稻甬优4949在大别山区的种植表现及栽培技术. 湖北农业科学, 2017,56(22):4256-4257, 4359.
KE H P, XIONG Z X . Performance and high-yield cultural techniques of japonica hybrid rice Yongyou 949 in Dabie mountain area. Hubei Agricultural Sciences, 2017,56(22):4256-4257, 4359. (in Chinese)
[20] 彭瑞祥, 罗本裕, 赖仁友, 黄润华, 夏紫高 . 南方双季稻区晚粳稻品种生产力试验报告. 农业与技术, 2016,36(15):49-50, 60.
PENG R X, LUO B Y, LAI R Y, HUANG R H, XIA Z G . Test report on productivity of late japonica varieties in southern double-cropping area. Agriculture and Technology, 2016,36(15):49-50, 60. (in Chinese)
[21] 陈晓阳, 蒋梅巧, 钱秋平, 于海富 . 施氮水平和栽插密度对晚粳稻秀水134生长及产量的影响. 福建稻麦科技, 2010,28(1):8-10.
CHEN X Y, JIANG M Q, QIAN Q P, YU H F . Effects of nitrogen and plant density on the yield of rice cultivar Xiushui 134. Fujian Science and Technology of Rice and Wheat, 2010,28(1):8-10. (in Chinese)
[22] 毛小伟, 占才水 . 连作籼粳杂交晚稻甬优1540示范效果及高产栽培技术. 基层农技推广, 2018,6(2):117-118.
MAO X W, ZHAN C S . Demonstration effect and high-yield cultivation techniques of indica-japonica late rice Youyou 1540. Primary Agricultural Technology Extension, 2018,6(2):117-118. (in Chinese)
[23] 陈春, 赖上坤, 王磊, 陈卫军 . 大穗优质粳稻新品种泗稻16号的选育与应用. 江西农业学报, 2019,31(3):30-34.
CHEN C, LAI S K, WANG L, CHEN W J . Breeding and application of big-panicle and good-quality japonica rice new variety “Sidao 16”. Acta Agriculturae Jiangxi, 2019,31(3):30-34. (in Chinese)
[24] 顾俊荣, 韩立宇, 董明辉, 陈培峰, 乔中英 . 不同穗型粳稻干物质运转与颖花形成及籽粒灌浆结实的差异研究. 扬州大学学报(农业与生命科学版), 2017,38(4):68-73, 88.
GU J R, HAN L Y, DONG M H, CHEN P F, QIAO Z Y . Studies on the difference of dry matter accumulation and transportation, spikelets formation and the grain filling of japonica rice varieties with different panicle types. Journal of Yangzhou University (Agricultural and Life Science Edition), 2017,38(4):68-73, 88. (in Chinese)
[25] 黄山, 何虎, 张卫星, 王志刚, 章秀福, 廖西元, 潘晓华 . 不同粳稻品种在江西不同生态区的农学表现. 江西农业大学学报, 2013,35(1):25-32.
HUANG S, HE H, ZHANG W X, WANG Z G, ZHANG X F, LIAO X Y, PAN X H . Agronomic performance of different japonica rice varieties in different eco-regions in Jiangxi province. Acta Agriculturae Universitatis Jiangxiensis, 2013,35(1):25-32. (in Chinese)
[26] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙 . 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012,45(11):2147-2158.
GONG J L, HU Y J, LONG H Y, CHANG Y, LI J, ZHANG H C, MA R R, WANG X Y, DAI Q G, HUO Z Y, XU K, WEI H Y, DENG Z Z, MING Q L . Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Scientia Agricultura Sinica, 2012,45(11):2147-2158. (in Chinese)
[27] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森 . 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006,39(7):1336-1345.
YANG J C, DU Y, WU C F, LIU L J, WANG Z Q, ZHU Q S . Growth and development characteristics of super-high-yielding mid-season japonica rice. Scientia Agricultura Sinica, 2006,39(7):1336-1345. (in Chinese)
[28] 耿立清, 王嘉宇, 陈温福 . 孕穗—灌浆期低温对水稻穗部性状的影响. 华北农学报, 2009,24(3):107-111.
GENG L Q, WANG J Y, CHEN W F . Effect of low temperature on panicle characters of rice during booting and grain filling period. Acta Agriculturae Boreali-Sinica, 2009,24(3):107-111. (in Chinese)
[29] 查光天 . 秋季低温与连作晚稻的冷害. 浙江农业科学, 1981(4):165-169.
ZHA G T . Low temperature in autumn and cold damage of late rice. Journal of Zhejiang Agricultural Sciences, 1981(4):165-169. (in Chinese)
[30] 曾研华, 张玉屏, 潘晓华, 朱德峰, 向镜, 陈惠哲, 张义凯 . 花后低温对水稻籽粒灌浆与内源激素含量的影响. 作物学报, 2016,42(10):1551-1559.
ZENG Y H, ZHANG Y P, PAN X H, ZHU D F, XIANG J, CHEN H Z, ZHANG Y K . Effect of low temperature after flowering on grain filling and plant hormones contents in rice. Acta Agronomica Sinica, 2016,42(10):1551-1559. (in Chinese)
[31] 李亚寒 . 气候变化对中国水稻生产与效率的影响研究--基于籼稻、粳稻的比较分析[D]. 南京: 南京农业大学, 2014.
LI Y H . The research of impacts of climate change on Chinese rice production and efficiency--based an comparative analysis of indica rice and japonica rice[D]. Nanjing: Nanjing Agricultural University, 2014. ( in Chinese)
[32] YAO Y, YAMAMOTO Y, YOSHIDA T, NITTA Y, MIYAZAKI A . Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles. Soil Science and Plant Nutrition, 2000,46(3):631-641.
[33] 刘奇华, 周学标, 杨连群, 李天, 张建军 . 生育前期遮光对水稻灌浆期剑叶生理特性及籽粒生长的影响. 应用生态学报, 2009,20(9):2135-2141.
LIU Q H, ZHOU X B, YANG L Q, LI T, ZHANG J J . Effects of early growth stage shading on rice flag leaf physiological characters and grain growth at grain-filling stage. Chinese Journal of Applied Ecology, 2009,20(9):2135-2141. (in Chinese)
[34] 马莲菊, 李雪梅, 王艳 . 源库处理对两种不同穗型水稻品种籽粒灌浆的影响. 沈阳师范大学学报(自然科学版), 2006,24(4):470-473.
MA L J, LI X M, WANG Y . Affection on grain filling of rice varieties of different panicle types by cutting leaves and panicles. Journal of Shenyang Normal University(Nature Science Edition), 2006,24(4):470-473. (in Chinese)
[35] 龚金龙 . 籼、粳超级稻生产力及其形成的生态生理特征[D]. 扬州: 扬州大学, 2014.
GONG J L . Studies on productivity between indica and japonica super rice and their forming ecological and physiological characteristics[D]. Yangzhou: Yangzhou University, 2014. ( in Chinese)
[36] 孟天瑶 . 甬优中熟籼粳杂交稻高产形成相关形态生理特征[D]. 扬州: 扬州大学, 2018.
MENG T Y . Studies on physio-morphological traits underlying high-yielding of medium-maturity types of Yongyou japonica/indica hybrids[D]. Yangzhou: Yangzhou University, 2018. ( in Chinese)
[37] 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫 . 籼粳交超级稻甬优538的穗部特征及籽粒灌浆特性. 作物学报, 2015,41(12):1858-1869.
WEI H H, MENG T Y, LI C, ZHANG H C, SHI T Y, MA R R, WANG X Y, YANG J W, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W . Panicle traits and grain-filling characteristics of japonica/indica hybrid super rice Yongyou 538. Acta Agronomica Sinica, 2015,41(12):1858-1869. (in Chinese)
[38] YANG J C, DU Y, WU C F, LIU L J, WANG Z Q, ZHU Q S . Growth and development characteristics of super-high-yielding mid-season japonica rice. Frontiers of Agriculture in China, 2007,2:166-174.
[39] 朱庆森, 张祖建, 杨建昌, 曹显祖, 郎有忠, 王增春 . 亚种间杂交稻产量源库特征. 中国农业科学, 1997,30(3):52-59.
ZHU Q S, ZHANG Z J, YANG J C, CAO X Z, LANG Y Z, WANG Z C . Source-sink characteristics related to the yield in interspecific hybrid rice. Scientia Agricultura Sinica, 1997,30(3):52-59. (in Chinese)
[40] MENG T Y, WEI H H, LI X Y, DAI Q G, HUO Z Y . A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 2018,228:135-146.
[41] WEI H H, MENG T Y, LI C, XU K, HUO Z Y, WEI H Y, GUO B W, ZHANG H C, DAI Q G . Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Research, 2017,204:101-109.
[42] 朱宽宇, 展明飞, 陈静, 王志琴, 杨建昌, 赵步洪 . 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响. 中国水稻科学, 2018,32(2):155-168.
ZHU K Y, ZHAN M F, CHEN J, WANG Z Q, YANG J C, ZHAO B H . Effects of irrigation regimes during grain filling under different nitrogen rates on inferior spikelets grain-filling and grain yield of rice. Chinese Journal of Rice Science, 2018,32(2):155-168. (in Chinese)
[43] MOHAPATRA P K, PATEL R, SAHU S K . Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Australian Journal of Plant Physiology, 1993,20(2):231-241.
[44] KATO T, SHINMURA D, TANIGUCHI A . Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Production Science, 2007,10(4):442-450.
[45] 张盼 . 杂交粳稻籽粒灌浆特性与产量和品质的关系[D]. 沈阳: 沈阳农业大学, 2016.
ZHANG P . The influence of chemical agents on rice growth and development[D]. Shenyang: Shenyang agricultural University, 2016. ( in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!