Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 474-485.doi: 10.3864/j.issn.0578-1752.2020.03.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet

WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun()   

  1. Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031
  • Received:2019-06-13 Accepted:2019-08-20 Online:2020-02-01 Published:2020-02-13
  • Contact: ZhiJun QIAO E-mail:nkypzs@126.com

Abstract:

【Objective】The objective of this study is to investigate the photoperiod response characteristics of broomcorn millet of eight main agronomic traits, including heading period, plant height, panicle length, aboveground fresh weight, number of leaves, number of nodes, flag leaf area and 1000-grain weight, and to screen for the suitable traits for broomcorn millet photoperiod sensitivity evaluation by pot shading and field planting modes in two different photoperiod ecological regions.【Method】The photoperiod relative sensitivity and D value of comprehensive evaluation index of photoperiod sensitivity were established based on data values of eight traits in field and pot planting, and the photoperiod sensitivity of broomcorn millet was comprehensively evaluated by two methods.【Result】The result of variance analysis showed that eight traits of broomcorn millet were significant difference under different photoperiod treatments. The performance values of each agronomic trait in pot under long sunshine of sixteen hours were significantly higher than those in short sunshine of eight hours, and the performance values of each agronomic trait in Dingxiang area were significantly higher than those in Sanya area. It was found that photoperiod relative sensitivity of aboveground fresh weight was the highest in both pot and field planting, while the 1000-grain weight was the lowest. Correlation analysis showed that plant height, panicle length, aboveground fresh weight, flag leaf area, number of nodes and number of leaves had extremely significant correlated with the D value, the 1000-grain weight had positively correlated with D value, and heading period had no significant negative correlation with D value in pot. All the traits were positively significant correlated with the D value except 1000-grain weight in field planting. The top three in the simple correlation coefficients of each agronomic character and photoperiod sensitivity comprehensive index D in the field were plant height (0.867), aboveground fresh weight(0.811) and panicle length (0.784). Potted plants were height (0.787), panicle length (0.687) and aboveground fresh weight (0.677). The formula to calculate the photoperiod sensitivity comprehensive index D in pot was Y=0.048+0.012X1+0.063X2+0.0446X3+0.053X4+0.036X5+ 0.016X6+0.024X7-0.011X8, and the formula to calculate the photoperiod sensitivity comprehensive index D in field was Y=0.019+ 0.034X1+0.094X2+0.066X3+0.080X4+0.057X5+0.028X6+0.011X7+0.139X8, in which X1, X2, X3, X4, X5, X6, X7 and X8 represented heading period, plant height, panicle length, number of leaves, number of nodes, flag leaf area, aboveground fresh weight and 1000-grain weight respectively. Regression and path analysis showed that potted and field fresh weight and plant height had the largest direct effect on the comprehensive photoperiod sensitive index D, which were 0.383, 0.300 and 0.251, 0.250 respectively, followed by flag leaf area and panicle length, which were 0.295, 0.276 and 0.238, 0.249 respectively. By comparing and analyzing the results of pot and field planting between photoperiod relative sensitivity and comprehensive evaluation index D value, we found that aboveground fresh weight and plant height showed strong photoperiod sensitivity, followed by panicle length and flag leaf area, on the contrary, 1000-grain weight and heading period had weak photoperiod sensitivity.【Conclusion】Aboveground fresh weight and plant height can be used as main evaluation indexes for the photoperiod sensitivity of broomcorn millet, and flag leaf area and panicle length can be used as the reference evaluation indexes, while 1000-grain weight and heading period are not suitable for the evaluation indexes for the photoperiod sensitivity.

Key words: photoperiod sensitivity, broomcorn millet, aboveground fresh weight, plant height, comprehensive evaluation

Table 1

The broomcorn millet germplasm resource"

来源地Regions 资源份数Sample size
中国山西Shanxi, China 23
中国陕西Shaanxi, China 7
中国黑龙江Heilongjiang, China 22
中国宁夏Ningxia, China 12
中国内蒙古Inner Mongolia, China 21
中国甘肃Gansu, China 12
中国河北Hebei, China 1
俄罗斯Russia 1

Table 2

The effect of different photoperiod conditions on 8 traits of broomcorn millet"

性状
Character
不同处理Different treatments
盆栽Pot 大田Field
16 h 8 h 自然光照Natural light 定襄Dingxiang 三亚Sanya
抽穗期HD 43.24±0.26a 19.20±0.32c 31.23±0.78b 40.84±0.98a 18.71±0.07b
株高 PH 123.79±13.43a 49.3±5.13c 97.24±6.51b 163.10±4.55a 72.43±1.34b
主穗长PL 28.84±1.89a 13.82±1.47c 25.88±1.94b 37.64±1.53a 16.75±0.23b
叶片数NL 7.13±0.05a 4.72±0.11c 6.49±0.09b 7.51±0.07a 4.90±0.04b
节数NN 6.15±0.08a 3.82±0.1c 5.49±0.07b 6.52±0.07a 3.92±0.06b
旗叶叶面积FLA 29.12±3.39a 12.62±2.15b 28.67±1.71a 52.80±3.73a 24.60±2.22b
地上鲜重AFW 2.68±0.31a 1.02±0.02c 2.24±0.10b 20.09±2.12a 5.31±0.56b
千粒重1000-GW 6.37±0.05a 5.31±0.03c 6.15±0.04b 6.87±0.34a 5.20±0.24b

Fig. 1

Sensitivity of each trait under different photoperiod conditions HD: Heading date; PH: Plant height; PL: Panicle length; NL: Number of leaves; NN: Number of nodes; FLA: Flag leaf area; AFW: Aboveground fresh weight; 1000-GW: 1000-grain weight. The same as below"

Table 3

The eigenvalues of each principal component"

主成分
Component
性状的初始特征值(盆栽)
Initial eigenvalues(pot)
性状的初始特征值(大田)
Initial eigenvalues(field)
特征值
Eigenvalues
方差贡献率
Variance contribution (%)
累计方差贡献率
Cumulative variance contribution (%)
特征值
Eigenvalues
方差贡献率
Variance contribution (%)
累计方差贡献率
Cumulative variance contribution (%)
1 2.668 33.354 33.354 3.982 49.777 49.777
2 2.315 28.939 62.294 1.707 21.340 71.116
3 0.997 12.461 74.755 0.878 10.973 82.089
4 0.870 10.874 85.629 0.613 7.662 89.751
5 0.621 7.756 93.384 0.471 5.885 95.636
6 0.293 3.656 97.041 0.211 2.637 98.273
7 0.182 2.271 99.312 0.108 1.345 99.618
8 0.055 0.688 100.000 0.031 0.382 100.000

Table 4

The weighted coefficients of agronomic traits in three principal components"

性状
Character
主成分(盆栽)Principal component (pot) 主成分(大田)Principal component (field)
1 2 3 1 2 3
抽穗期HD -0.344 0.161 0.515 0.349 -0.128 -0.226
株高PH 0.395 0.376 -0.060 0.445 0.061 0.138
主穗长PL 0.535 -0.007 0.087 0.324 0.469 -0.118
叶片数NL -0.109 0.622 -0.020 0.390 -0.406 0.269
节数NN -0.087 0.621 -0.034 0.378 -0.417 0.281
旗叶叶面积FLA 0.530 -0.099 0.250 0.320 0.488 -0.186
地上鲜重AFW 0.281 0.161 0.567 0.415 0.140 -0.065
千粒重1000-GW 0.246 0.160 -0.582 -0.081 0.404 0.852

Table 5

Correlation coefficient between agronomic characters and photoperiod comprehensive evaluation index D (pot)"

性状
Character
抽穗期
HD
株高
PH
主穗长
PL
叶片数
NL
节数
NN
旗叶叶面积
FLA
地上鲜重
AFW
千粒重
1000-GW
D
抽穗期HD 1.000
株高PH -0.154 1.000
主穗长PL -0.397** 0.598** 1.000
叶片数NL 0.240* 0.344** -0.164 1.000
节数NN 0.198* 0.412** -0.094 0.935** 1.000
旗叶叶面积FLA -0.363** 0.399** 0.738** -0.262** -0.238* 1.000
地上鲜重AFW -0.021 0.245* 0.240* 0.141 0.082 0.412** 1.000
千粒重 1000-GW -0.237* 0.330** 0.150 0.120 0.066 0.175 0.163 1.000
D -0.114 0.787** 0.687** 0.382** 0.405** 0.658** 0.677** 0.241* 1.000

Table 6

Correlation coefficient between agronomic characters and photoperiod comprehensive evaluation index D (field)"

性状
Character
抽穗期
HD
株高
PH
主穗长
PL
叶片数
NL
节数
NN
旗叶叶面积
FLA
地上鲜重
AFW
千粒重
1000-GW
D
抽穗期HD 1.000
株高PH 0.548** 1.000
主穗长PL 0.322** 0.652** 1.000
叶片数NL 0.489** 0.643** 0.179 1.000
节数NN 0.448** 0.627** 0.158 0.968** 1.000
旗叶叶面积FLA 0.244* 0.514** 0.756** 0.164 0.150 1.000
地上鲜重AFW 0.569** 0.652** 0.479** 0.506** 0.472** 0.674** 1.000
千粒重 1000-GW -0.218* -0.032 0.089 -0.234* -0.238* 0.062** -0.048 1.000
D 0.536** 0.867** 0.784** 0.576** 0.551** 0.773** 0.811** 0.195 1.000

Table 7

Path analysis between agronomic characters and photoperiod comprehensive evaluation index D (pot)"

性状
Character
D简单相关Simple relevant with D 直接效应
Direct
effect
间接效应 Indirect effect
抽穗期
HD
株高
PH
主穗长
PL
叶片数
NL
节数
NN
旗叶叶面积
FLA
地上鲜重
AFW
千粒重
1000-GW
抽穗期HD -0.114 0.076 -0.046 -0.110 0.041 0.034 -0.107 -0.008 0.007
株高PH 0.787 0.300 -0.012 0.165 0.059 0.071 0.118 0.094 -0.009
主穗长PL 0.687 0.276 -0.030 0.180 -0.028 -0.016 0.218 0.092 -0.004
叶片数NL 0.382 0.171 0.018 0.103 -0.045 0.162 -0.077 0.054 -0.003
节数NN 0.405 0.173 0.015 0.124 -0.026 0.160 -0.070 0.032 -0.002
旗叶叶面积FLA 0.658 0.295 -0.027 0.120 0.204 -0.045 -0.041 0.158 -0.005
地上鲜重AFW 0.677 0.383 -0.002 0.074 0.066 0.024 0.014 0.122 -0.005
千粒重 1000-GW 0.241 -0.027 -0.018 0.099 0.041 0.021 0.012 0.052 0.063

Table 8

Path analysis between agronomic characters and photoperiod comprehensive evaluation index D (field)"

性状
Character
D简单相关
Simple relevant with D
直接效应
Direct effect
间接效应 Indirect effect
抽穗期
HD
株高
PH
主穗长
PL
叶片数
NL
节数
NN
旗叶叶面积
FLA
地上鲜重
AFW
千粒重
1000-GW
抽穗期HD 0.536 0.078 0.137 0.080 0.062 0.054 0.058 0.122 -0.055
株高PH 0.867 0.250 0.043 0.163 0.082 0.076 0.123 0.140 -0.008
主穗长PL 0.784 0.249 0.025 0.163 0.023 0.019 0.180 0.103 0.023
叶片数NL 0.576 0.127 0.038 0.160 0.045 0.117 0.039 0.109 -0.059
节数NN 0.551 0.121 0.035 0.157 0.039 0.123 0.036 0.101 -0.060
旗叶叶面积FLA 0.773 0.238 0.019 0.128 0.189 0.021 0.018 0.144 0.016
地上鲜重AFW 0.811 0.251 -0.017 -0.008 0.022 -0.030 -0.029 0.015 -0.010
千粒重 1000-GW 0.195 0.214 0.044 0.163 0.119 0.064 0.057 0.161 -0.012

Fig. 2

Clustering diagram of broomcorn millet from different sources"

[1] XUE W, XING Y, WENG X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008,40(6):761-767.
[2] TAMAKI S, MATSUO S, WONG H L, YOKOI S, SHIMAMOTO K . Hd3a protein is a mobile flowering signal in rice. Science, 2007,316:1033-1036.
[3] ITOH H, NONOUE Y, YANO M, IZAWA T . A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nature Genetics, 2010,42:635-638.
[4] IMAIZUMI T, SCHULTZ T F, HARMON F G, HO L A, KAY S A . FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005,309:293-297.
[5] SAMACH A, ONOUCHI H, GOLD S E, DITTA G S, SCHWARZ-SOMMER Z, YANOFSKY M F, COUPLAND G . Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000,288:1613-1616.
[6] MATHIEU J, WARTHMANN N, KÜTTNER F, SCHMID M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Current Biology, 2007,17:1055-1060.
[7] 谢丽莉 . 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012.
XIE L L . QTL mapping and analysis for the related traits of photoperiod sensitivity in Setaria italica[D]. Zhengzhou: Henan Agricultural University, 2012. ( in Chinese)
[8] MARGARITA M H, WANG X W, BARBIER H, BRUTNELL T P, DEVOS K M, DOUST A N . Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). Genes Genomes Genetics, 2013,3(2):283-295.
[9] DOUST A N, MAURO-HERRERA M, HODGEAND J G, STROMSK J . The C4 model grass Setaria is a short day plant with secondary long day genetic regulation. Frontiers in Plant Science, 2017,8:1-10.
[10] 贾小平, 张博, 李剑峰, 袁玺垒, 陆平, 戴凌峰 . 谷子SSR标记与光周期敏感性的关联分析. 华北农学报, 2019,34(1):89-96.
JIA X P, ZHANG B, LI J F, YUAN X L, LU P, DAI L F . Association analysis of SSR markers and photoperiod sensitivity in foxtail millet. Acta Agriculturae Boreali-Sinica, 2019,34(1):89-96. (in Chinese)
[11] 费志宏, 吴存祥, 孙洪波, 候文胜, 张宝石, 韩天富 . 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009,35(8):1525-1531.
FEI Z H, WU C X, SUN H B, HOU W S, ZHANG B S, HAN T F . Identification of photothermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agronomica Sinica, 2009,35(8):1525-1531. (in Chinese)
[12] ELLIS R H, SUMERFIELD R J, EDMEADES G O . Photoperiod, temperature, and the interval from sowing initiation to emergence of maize. Crop Science, 1992,32:1225-1232.
[13] 龙挺, 柏光晓, 付梅 . 西南地区10个玉米自交系光周期敏感性研究. 山地农业生物学报, 2014,33(2):5-9.
LONG T, BAI G X, FU M . Research on photoperiod sensitivity of 10 maize inbred lines from southwest region. Journal of Mountain Agriculture and Biology, 2014,33(2):5-9. (in Chinese)
[14] 陈彦惠, 吴连成, 吴建宇, 席章营 . 两种纬度生态条件下热带、亚热带玉米群体的鉴定. 中国农业科学, 2000,33(增刊):40-48.
CHEN Y H, WU L C, WU J Y, XI Z Y . Identification of tropical, subtropical populations of maize in different ecological conditions of two latitudes. Scientia Agricultura Sinica, 2000,33(suppl.):40-48. (in Chinese)
[15] 白志良, 张福跃, 王呈祥, 韦耀明, 牛天堂 . 高粱品种资源光周期敏感性研究. 华北农学报, 1999,14(1):84-88.
BAI Z L, ZHANG F Y, WANG C X, WEI Y M, NIU T T . A study on sorghum photosensitivity. Acta Agriculturae Boreali-Sinica, 1999,14(1):84-88. (in Chinese)
[16] ZHANG P P, FENG B L, WANG P K . Leaf senescence and activities of antioxidant enzymes in different broomcorn millet (Panicum miliaceum L.) cultivars under simulated drought condition. Journal of Food, Agriculture & Environment, 2012,10(2):438-444.
[17] WANG H G, CHEN L, WANG J J, CAO X N, DONG J L, WANG L, YANG T Y, QIAO Z J . Comprehensive assessment of drought resistance of proso millet germplasm resources in Shanxi. Agricultural Science&Technology, 2015,16(9):1916-1920.
[18] 张盼盼, 冯佰利, 王鹏科, 高小丽, 高金峰, 宋慧, 张小东, 柴岩 . PEG胁迫下糜子苗期抗旱指标鉴选研究. 中国农业大学学报, 2012,17(1):53-59.
ZHANG P P, FENG B L, WANG P K, GAO X L, GAO J F, SONG H, ZHANG X D, CHAI Y . Study on identification of drought-resistance indexes at seeding stage in broomcorn millet under PEG stress. Journal of China Agricultural University, 2012,17(1):53-59. (in Chinese)
[19] WANG R Y, WANG H G, LIU X Y, LIAN S, CHEN L, QIAO Z J, MCINERNEY C E, WANG L . Drought-induced transcription of resistant and sensitive common millet varieties. Journal of Animal & Plant Sciences, 2017,27(4):1303-1314.
[20] 张小红, 张绪成 . 半干旱区旱地不同覆盖方式对糜子耗水和产量的影响. 水土保持研究, 2012,19(5):29-33.
ZHANG X H, ZHANG X C . Effects of different mulching methods on water consumption and yield of millet in rain-fed semiarid area. Research of Soil and Water Conservation, 2012,19(5):29-33. (in Chinese)
[21] 苏旺, 张艳平, 屈洋, 李翠, 妙佳源, 高小丽, 刘建华, 冯佰利 . 不同覆膜方式对黄土高原旱地土壤水分及糜子生长、光合特性和产量的影响. 应用生态学报, 2014,25(11):3215-3222.
SU W, ZHANG Y P, QU Y, LI C, MIAO J Y, GAO X L, LIU J H, FENG B L . Effects of Mulching patterns on soil water, broomcorn millet growth, photosynthetic characteristics and yield in the dryland of Loess Plateau in China. Chinese Journal of Applied Ecology, 2014,25(11):3215-3222. (in Chinese)
[22] 苏旺, 屈洋, 冯佰利, 柴岩 . 垄沟覆膜集水模式提高糜子光合作用和产量. 农业工程学报, 2014,30(13):137-145.
SU W, QU Y, FENG B L, CHAI Y . Photosynthesis characteristics and yield of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in semi-arid region of Northern Shanxi. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(13):137-145. (in Chinese)
[23] 杨清华, 邱军, 李海, 杨天育, 程炳文, 赵敏, 刘国庆, 高小丽, 冯佰利 . 糜子育成品种农艺、产量和品质性状综合鉴定与评价. 中国农业科学, 2017,50(23):4530-4544.
YANG Q H, QIU J, LI H, YANG T Y, CHENG B W, ZHAO M, LIU G Q, GAO X L, FENG B L . Comprehensive evaluation of agronomic, yield and quality traits of broomcorn millet (Panicum miliaceum L.) cultivars. Scientia Agricultura Sinica, 2017,50(23):4530-4544. (in Chinese)
[24] 王君杰, 曹晓宁, 陈凌, 王海岗, 刘思辰, 田翔, 秦慧彬, 杨光宗, 乔治军 . 不同氮肥处理对糜子产量及品质的影响. 干旱地区农业研究, 2015,33(5):30-34.
WANG J J, CAO X N, CHEN L, WANG H G, LIU S C, TIAN X, QIN H B, YANG G Z, QIAO Z J . Effects of different nitrogen fertilizers on the yield and quality of broomcorn millet. Agricultural Research in the Arid Areas, 2015,33(5):30-34. (in Chinese)
[25] WANG R Y, WANG H G, LIU X H, JI X, CHEN L, LU P, LIU M X, TENG B, QIAO Z J . Waxy allelic diversity in common millet (Panicum miliaceum L.) in China. The Crop Journal, 2018,6(4):377-385.
[26] 王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军 . 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学, 2017,50(20):3848-3859.
WANG R Y, LIU X Y, WANG H G, LU P, LIU M X, CHEN L, QIAO Z J . Evaluation of genetic diversity of common millet (Panicum miliaceum) germplasm available in China using high motif nucleotide repeat SSR markers. Scientia Agricultura Sinica, 2017,50(20):3848-3859. (in Chinese)
[27] 薛延桃, 陆平, 乔治军, 刘敏轩, 王瑞云 . 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学, 2018,51(15):2846-2859.
}XUE Y T, LU P, QIAO Z J, LIU M X, WANG R Y . Genetic diversity and genetic relationship of broomcorn millet (Panicum miliaceum L.) germplasm based on SSR markers. Scientia Agricultura Sinica, 2018,51(15):2846-2859. (in Chinese)
[28] 董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军 . 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015,48(16):3121-3131.
DONG J L, WANG H G, CHEN L, WANG J J, CAO X N, WANG L, QIAO Z J . Analysis of genetic diversity and structure of proso millet core germplasm. Scientia Agricultura Sinica, 2015,48(16):3121-3131. (in Chinese)
[29] 贾小平, 李剑峰, 全建章, 王永芳, 董志平, 张博, 袁玺垒 . 不同光周期条件下谷子农艺性状的光周期敏感性评价. 植物遗传资源学报, 2018,19(5):919-924.
JIA X P, LI J F, QUAN J Z, WANG Y F, DONG Z P, ZHANG B, YUAN X L . Evaluation of photoperiod sensitivity of agronomic traits of foxtail millet varieties under different photoperiod conditions. Journal of Plant Genetic Resources, 2018,19(5):919-924. (in Chinese)
[30] 贾小平, 袁玺垒, 李剑峰, 张博, 张小梅, 郭秀璞, 陈春燕 . 不同光温条件谷子资源主要农艺性状的综合评价. 中国农业科学, 2018,51(13):2429-2441.
JIA X P, YUAN X L, LI J F, ZHANG B, ZHANG X M, GUO X P, CHEN C Y . Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions. Scientia Agricultura Sinica, 2018,51(13):2429-2441. (in Chinese)
[31] WANG C L, CHENG F F, SUN Z H, TANG J H, WU L C, KU L X, CHEN Y H . Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theoretical and Applied Genetics, 2008,117:1129-1139.
[32] 陈彦惠, 吴连成, 吴建宇 . 热带、亚热带玉米群体的鉴定研究. 河南农业大学学报, 1999,33(4):321-325.
CHEN Y H, WU L C, WU J Y . Study on identifying tropical, subtropical populations of maize. Journal of Henan Agricultural University, 1999,33(4):321-325. (in Chinese).
[33] 张凤路, MUGO S. 不同玉米种质对长光周期反应的初步研究. 玉米科学, 2001,9(4):54-56.
ZHANG F L, MUGO S . Primary study on the effect of long photoperiod on different maize germplasm. Journal of Maize Sciences, 2001,9(4):54-56. (in Chinese)
[34] GOUEANARD B, REBOURG C, WELCKER C, CHARCOSSET A . Analysis of photoperiods sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution, 2002,49:471-481.
[35] 谢传晓, 王振华, 於琍, 张玮, 李明顺, 李新海, 程备久, 张世煌 . 160个玉米自交系光周期敏感性鉴定. 玉米科学, 2008,16(3):15-18.
XIE C X, WANG Z H, YU L, ZHANG W, LI M S, LI X H, CHENG B J, ZHANG S H . Identification of the sensitivity to photoperiod among 160 maize inbred lines. Journal of Maize Sciences, 2008,16(3):15-18. (in Chinese)
[36] 梁文科 . 热带温带玉米群体育种价值评估及光周期反应敏感性指标研究[D]. 武汉: 华中农业大学, 2008.
LIANG W K . Assessment on potential of tropical and temperate maize populations and index analysis of photoperiod sensitivity[D]. WuHan: Huazhong Agricultural University, 2008. ( in Chinese)
[37] DOUST A N, DIAO X M. Genetics and Genomics of Setaria. Germany: Springer-Verlag Press, 2017: 197-210.
[38] 朱正梅, 卢小良, 解新明, 赵军华 . 玉米光周期敏感性的主成分分析. 浙江农业科学, 2009,2:345-347.
ZHU Z M, LU X L, XIE X M, ZHAO J H . Principal component analysis of photoperiod sensitivity in maize. Journal of Zhejiang Agricultural Sciences, 2009,2:345-347. (in Chinese)
[39] 郭国亮, 李培良, 张乃生, 钮笑晓, 张志慧, 赵建峰 . 热带Suwan玉米群体遗传变异的研究. 玉米科学, 2001,9(4):6-9.
GUO G L, LI P L, ZHANG N S, NIU X X, ZHANG Z H, ZHAO J F . Study on the genetic variations of the tropic maize population Suwan. Journal of Maize Sciences, 2001,9(4):6-9. (in Chinese)
[1] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[2] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[3] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[4] BIAN NengFei, SUN DongLei, GONG JiaLi, WANG Xing, XING XingHua, JIN XiaHong, WANG XiaoJun. Evaluation of Edible Quality of Roasted Peanuts and Indexes Screening [J]. Scientia Agricultura Sinica, 2022, 55(4): 641-652.
[5] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[8] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[9] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[10] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[11] GUO ShuQing,SONG Hui,YANG QingHua,GAO JinFeng,GAO XiaoLi,FENG BaiLi,YANG Pu. Analyzing Genetic Effects for Plant Height and Panicle Traits by Means of the Mixed Inheritance Model of Major Gene Plus Polygene in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(24): 5177-5193.
[12] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[13] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[14] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[15] ZHAO Rui,ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia. Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage [J]. Scientia Agricultura Sinica, 2021, 54(18): 3818-3833.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!