Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4761-4777.doi: 10.3864/j.issn.0578-1752.2021.22.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels

CHEN Yang(),WANG Lei(),BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2021-01-07 Accepted:2021-04-08 Online:2021-11-16 Published:2021-11-19
  • Contact: Lei WANG E-mail:17839964165@163.com;wanglei02@caas.cn

Abstract:

【Objective】In order to explore the growth dynamic prediction model and its characteristic parameters of summer maize plant height and leaf area index (LAI) based on effective accumulated temperature with different nitrogen, phosphorus and potassium treatments, in order to provide a theoretical basis for using effective accumulated temperature to quantitatively simulate the growth and development of summer maize.【Method】Based on the two-year field experiment in Langfang, Hebei province (2019-2020), this study uses Zhengdan 958 as the experimental material and is divided into three single-factor fertilizer efficiency experiments of nitrogen, phosphorus, and potassium. Each factor is set at 4 levels, respectively no fertilizer, low fertilizer, moderate fertilizer and high fertilizer treatments. The Logistic mathematical model was used to fit the dynamic equation of summer maize plant height and leaf area index based on effective accumulated temperature under different nitrogen, phosphorus and potassium nutrition levels, and the growth rate curve and its characteristic parameters were used to quantitatively analyze the growth and development characteristics of summer maize.【Result】(1) Under the conditions of this experiment, compared with other treatments, the maximum summer corn plant height was the largest in the treatments with proper amount of fertilizer (N2, P2 and K2). Excessive application of potassium fertilizer has a significant inhibitory effect on the maximum plant height of summer corn. Appropriate fertilization treatment of summer maize plant height requires accumulated temperature of 952.43-958.83℃·d. proper fertilization can effectively increase summer maize leaf area index, and excessive or insufficient nutrients will affect the formation of leaf area. Appropriate fertilization treatment of summer maize leaf area index required accumulated temperature to enter the plateau period is 849.18-952.43 ℃·d.(2) The fit R2 of the summer maize plant height and leaf area index equations established with effective accumulated temperature as the independent variable under each fertilization treatment condition were 0.9949-0.9970 and 0.9840-0.9939, respectively, and the equations reached extremely significant levels and had biological significance. The correlation coefficient (r) between the simulated value and the measured value based on the plant height fitting equation of the effective accumulated temperature is between 0.9961-0.9983; the r of the simulated value and the measured value of the leaf area index fitting equation based on the effective accumulated temperature is 0.9815-0.9981.(3) Under various fertilization conditions, the growth rate of summer maize plant height and leaf area index showed a “single-peak curve”. Under the conditions of appropriate fertilization, the growth rate curve showed the characteristics of rapid rise and fall. The growth rate curve of the treatments without nitrogen fertilizer, phosphate fertilizer and potassium fertilizer showed the characteristics of slow rise and slow decline. (4) Under the condition of appropriate fertilization, the accumulated temperature of summer maize plant height entering the rapid growth period, the accumulated temperature entering the slow growth period and the accumulated temperature reaching the maximum growth rate are 394.17℃·d, 776.63℃·d and 585.40℃·d, respectively, which were significantly different from N0, P0 and K0 treatment. The maximum growth rate and average growth rate of plant height in the rapid growth period are 0.4907 cm·(℃·d)-1 and 0.4302 cm·(℃·d)-1, respectively, which are not significantly different from N0, P0 and K0 treatment. (5) Under the condition of appropriate fertilization, the accumulated temperature of summer maize leaf area index entering the rapid increase period, the accumulated temperature entering the slow increase period and reaching the maximum growth rate are 609.69℃·d, 855.08℃·d and 732.38℃·d, respectively. The maximum growth rate of leaf area index and the average growth rate of rapid increase period are 0.0135℃·d and 0.0118℃·d, respectively.【Conclusion】Insufficient nutrient supply can increase the effective accumulated temperature required for summer corn plant height and leaf area index to enter the plateau period. The Logistic model based on the effective accumulated temperature can well simulate and predict the dynamic changes of summer maize plant height and leaf area index under different N, P, and K treatments. The degree of fit and stability of the fitting equation under the condition of proper fertilization is better than that of the fitting equation with excessive or insufficient nutrients. Compared with the treatment with no fertilization, the plant height and LAI of summer corn reach the required accumulated temperature during the critical period (accumulated temperature required to enter the rapid increase period, accumulated temperature required to enter the slow increase period, and accumulated temperature required for the maximum growth rate). The growth rate (the maximum growth rate, the average growth rate during the rapid growth period) has decreased significantly. This study provides a theoretical basis for the effective accumulated temperature to quantitatively simulate the growth and development of summer maize.

Key words: summer maize, effective accumulated temperature, Logistic model, NPK, plant height, LAI

Fig. 1

Changes in effective accumulated temperature and precipitation during growth periods of summer maize in different years in the experimental area"

Table 1

The amount of fertilizer applied to each treatment"

梯度
Gradient
处理
Treatment
施肥量 Fertilizer amount (kg·hm-2)
N P2O5 K2O
N N0 0 90 90
N1 90 90 90
N2 180 90 90
N3 270 90 90
P P0 180 0 90
P1 180 45 90
P2 180 90 90
P3 180 135 90
K K0 180 90 0
K1 180 90 45
K2 180 90 90
K3 180 90 135

Table 2

Correlation analysis of summer maize plant height and LAI under different NPK treatments"

年份
Year
处理Treatment
N0 N1 N2 N3 P0 P1 P2 P3 K0 K1 K2 K3
2019 0.977** 0.974** 0.975** 0.968** 0.971** 0.979** 0.975** 0.980** 0.969** 0.977** 0.975** 0.974**
2020 0.962** 0.964** 0.958** 0.964** 0.967** 0.972** 0.958** 0.966** 0.967** 0.966** 0.958** 0.964**

Fig. 2

Dynamic changes of summer maize plant height with accumulated temperature under different NPK treatments Different letters in the same column of the same gradient indicate significant differences at 0.05 level. From top to bottom, they are N0, N1, N2, N3; P0, P1, P2, P3; K0, K1, K2, K3. The same as below"

Table 3

Growth dynamic equation parameters of summer maize plant height under different NPK treatments (2019)"

处理
Treatment
参数Parameter R2
K a b
N0 283.00 59.93 0.0067 0.9962**
N1 282.28 59.23 0.0068 0.9959**
N2 285.00 56.34 0.0069 0.9955**
N3 281.97 58.76 0.0068 0.9955**
P0 279.42 60.74 0.0068 0.9952**
P1 285.30 64.82 0.0068 0.9949**
P2 285.00 56.34 0.0069 0.9955**
P3 285.70 58.42 0.0068 0.9958**
K0 278.93 68.96 0.0069 0.9970**
K1 288.52 56.77 0.0067 0.9949**
K2 285.00 56.34 0.0069 0.9955**
K3 274.12 59.52 0.0068 0.9958**

Table 4

Validation and evaluation of the measured and simulated values of summer maize plant height (2020)"

处理Treatment r nRMSE (%)
N0 0.9964 7.77
N1 0.9983 6.39
N2 0.9972 5.86
N3 0.9966 6.29
P0 0.9968 6.81
P1 0.9972 6.47
P2 0.9972 5.86
P3 0.9961 7.47
K0 0.9966 6.70
K1 0.9962 8.80
K2 0.9972 5.86
K3 0.9978 5.62

Fig. 3

Measured and simulated plant height of summer maize (2020)"

Fig. 4

Dynamic changes of summer maize plant height growth rate with effective accumulated temperature under different NPK treatments (2019)"

Table 5

Logistic model characteristic parameters of summer maize plant height dynamic changes (2019)"

处理
Treatment
速率峰值参数 Rate peak parameter 快增期参数 Rapid increase period parameters
V1 (cm·(℃·d)-1) T1 (℃·d) T2 (℃·d) T3 (℃·d) V2 (cm·(℃·d)-1)
N0 0.4717a 613.98a 416.44a 811.53a 0.4136a
N1 0.4796a 600.51ab 406.74ab 794.27ab 0.4205a
N2 0.4907a 585.40b 394.17b 776.63b 0.4302a
N3 0.4815a 596.41ab 403.59ab 789.23ab 0.4221a
P0 0.4741a 605.09ab 411.04ab 799.14ab 0.4157a
P1 0.4862a 611.97a 418.78a 805.17a 0.4263a
P2 0.4907a 585.40c 394.17c 776.63c 0.4302a
P3 0.4866a 597.02b 403.73bc 790.31bc 0.4267a
K0 0.4839a 610.02a 420.26a 799.78a 0.4243a
K1 0.4859a 599.57ab 404.08b 795.06a 0.4260a
K2 0.4907a 585.40b 394.17b 776.63b 0.4302a
K3 0.4665b 600.33ab 406.85ab 793.81ab 0.4090b

Fig. 5

Dynamic changes of summer maize LAI with accumulated temperature under different NPK treatments (2020)"

Table 6

Growth dynamic equation parameters of summer maize LAI under different NPK treatments (2019)"

处理
Treatment
参数Parameter R2
K a b
N0 4.73 2347.43 0.0103 0.9920**
N1 5.15 3540.47 0.0111 0.9841**
N2 5.43 2682.15 0.0108 0.9950**
N3 5.42 3067.87 0.0107 0.9874**
P0 4.90 2779.92 0.0103 0.9889**
P1 5.02 3184.30 0.0107 0.9892**
P2 5.43 2682.15 0.0108 0.9950**
P3 5.13 2783.15 0.0109 0.9862**
K0 5.06 3665.81 0.0108 0.9856**
K1 5.19 1738.18 0.0101 0.9867**
K2 5.43 2682.15 0.0108 0.9950**
K3 4.89 2319.66 0.0104 0.9880**

Table 7

Validation and evaluation of the measured and simulated value of summer maize LAI (2020)"

处理Treatment r nRMSE (%)
N0 0.9981 5.77
N1 0.9971 5.77
N2 0.9955 8.40
N3 0.9924 10.27
P0 0.9942 9.10
P1 0.9918 10.05
P2 0.9955 8.40
P3 0.9955 7.18
K0 0.9965 7.31
K1 0.9973 6.62
K2 0.9955 8.40
K3 0.9815 19.13

Fig. 6

Measured and simulated values of LAI of summer maize (2020)"

Fig. 7

Dynamic changes of summer maize LAI growth rate with effective accumulated temperature under different NPK treatments (2019)"

Table 8

Logistic model characteristic parameters of summer maize LAI dynamic change (2019)"

处理
Treatment
速率峰值参数 Rate peak parameter 快增期参数 Rapid increase period parameters
V1 (cm·(℃·d)-1) T1(℃·d) T2 (℃·d) T3 (℃·d) V2 (cm·(℃·d)-1)
N0 0.0109c 754.48a 626.45a 882.50a 0.0096c
N1 0.0128b 739.10a 619.99a 858.21a 0.0112b
N2 0.0135a 732.38a 609.69a 855.08a 0.0118a
N3 0.0130ab 751.28a 628.05a 874.52a 0.0114ab
P0 0.0114b 769.42a 641.64a 897.20a 0.0100b
P1 0.0121b 750.79ab 628.21ab 873.38ab 0.0106b
P2 0.0135a 732.38bc 609.69ab 855.08bc 0.0118a
P3 0.0126ab 724.77c 604.42b 845.11c 0.0111ab
K0 0.0122b 763.06a 640.59a 885.53a 0.0107b
K1 0.0117b 742.10ab 611.10b 873.10a 0.0103b
K2 0.0135a 732.38b 609.69b 855.08a 0.0118a
K3 0.0114b 744.87ab 618.28ab 871.46a 0.0100b
[1] 郭银巧. 玉米栽培管理知识模型系统的设计与实现[D]. 保定: 河北农业大学, 2005.
GUO Y Q. Design and implementation of a knowledge model system for maize management[D]. Baoding: Hebei Agricultural University, 2005. (in Chinese)
[2] 胡立勇, 丁艳锋. 作物栽培学. 北京: 高等教育出版社, 2008: 23-26.
HU L Y, DING Y F. Crop Cultivation. Beijing: Higher Education Press, 2008: 23-26. (in Chinese)
[3] 王昭, 鞠章纲, 卢家栋. 玉米群体粒叶比与光合特性及产量的关系. 南京农业大学学报, 1998(1): 3-5.
WANG Z, JU Z G, LU J D. Grain leaf ratio in relation to photosynthesis and grain yield in maize. Journal of Nanjing Agricultural University, 1998(1): 3-5. (in Chinese)
[4] 张旭东, 蔡焕杰, 付玉娟, 王健. 黄土区夏玉米叶面积指数变化规律的研究. 干旱地区农业研究, 2006, 24(2): 25-29.
ZHANG X D, CAI H J, FU Y J, WANG J. Study on leaf area index of summer maize in loess areas. Agricultural Research in Arid Areas, 2006, 24(2): 25-29. (in Chinese)
[5] 曹卫星, 朱艳. 作物管理知识模型. 北京: 中国农业出版社, 2005: 104-107.
CAO W X, ZHU Y. Crop Management Knowledge Model. Beijing: China Agriculture Press, 2005: 104-107. (in Chinese)
[6] 吕新. 生态因素对玉米生长发育影响及气候生态模型与评价系统建立的研究[D]. 泰安: 山东农业大学, 2002.
LÜ X. Studies on effects of ecological factors on growth of maize and establishment of climate ecology model and appraisement system[D]. Taian: Shandong Agricultural University, 2002. (in Chinese)
[7] SHABABI A, SEPASKHAH A R, KAMGAR-HAGHIGHI A A. Estimation of yield and dry matter of rapeseed using logistic model under water salinity and deficit irrigation. Archives of Agronomy & Soil Science, 2014, 60(7): 951-969.
[8] BUNTING E S. Accumulated temperature and maize development in England. The Journal of Agricultural Science, 1976, 87(3): 577-583.
doi: 10.1017/S0021859600033207
[9] 毛振强, 宇振荣, 刘洪. 冬小麦及其叶片发育积温需求研究. 中国农业大学学报, 2002, 7(5): 14-19.
MAO Z Q, YU Z R, LIU H. Experimental research on thermal requirement for winter wheat and its leaves. Journal of China Agricultural University, 2002, 7(5): 14-19. (in Chinese)
[10] 郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001, 27(6): 862-868.
ZHENG H J, DONG S T, WANG K J, GUO Y Q, HU C H, ZHANG J W. Effects of ecological factors on maize (Zea mays L.) yield of different varieties and corresponding regulative measure. Acta Agronomica Sinica, 2001, 27(6): 862-868. (in Chinese)
[11] 孙孟梅, 姜丽霞, 于荣环, 孙玉亭. 玉米生育期热量指标及其不同品种栽培北界的研究. 中国农业气象, 1998, 19(4): 8-12.
SUN M M, JIANG L X, YU R H, SUN Y T. Study on the heat index at growthing stages of corn and the planting border of different varieties in the north. Chinese Journal of Agrometeorolog, 1998, 19(4): 8-12. (in Chinese)
[12] 张银锁, 宇振荣. 夏玉米植株及叶片生长发育热量需求的试验与模拟研究. 应用生态学报, 2001, 12(4): 561-565.
ZHANG Y S, YU Z R. Growing degree-days requirements for plants and leaf development of summer maize(Zea mays)—an experimental and simulation study. Chinese Journal of Applied Ecology, 2001, 12(4): 561-565. (in Chinese)
[13] 王声锋, 段爱旺, 徐建新. 冬小麦株高和叶面积指数变化动态分析及模拟模型. 灌溉排水学报, 2010, 29(4): 97-100.
WANG S F, DUAN A W, XU J X. Dynamic changes and simulation model of plant height and leaf area index of winter wheat. Journal of Irrigation and Drainage, 2010, 29(4): 97-100. (in Chinese)
[14] 李国强, 汤亮, 张文宇, 曹卫星, 朱艳. 不同株型小麦干物质积累与分配对氮肥响应的动态分析. 作物学报, 2009, 35(12): 2258-2265.
doi: 10.3724/SP.J.1006.2009.02258
LI G Q, TANG L, ZHANG W Y, CAO W X, ZHU Y. Dynamic analysis on response of dry matter accumulation and partitioning to nitrogen fertilizer in wheat cultivars with different plant types. Acta Agronomica Sinica, 2009, 35(12): 2258-2265. (in Chinese)
doi: 10.3724/SP.J.1006.2009.02258
[15] LECOEUR J, GUILIONI L. Rate of leaf production in response to soil water deficits in field pea. Field Crops Research, 1998, 57(3): 319-328.
doi: 10.1016/S0378-4290(98)00076-8
[16] 严美春, 曹卫星, 李存东, 王兆龙. 小麦发育过程及生育期机理模型的检验和评价. 中国农业科学, 2000, 33(2): 43-50.
YAN M C, CAO W X, LI C D, WANG Z L. Validation and evaluation of a mechanistic model of phasic and phenological development of wheat. Scientia Agricultura Sinica, 2000, 33(2): 43-50. (in Chinese)
[17] 王贺, 白由路, 杨俐苹, 卢艳丽, 王磊. 利用有效积温建立夏玉米追肥时期决策模型. 中国生态农业学报, 2012, 20(4): 408-413.
doi: 10.3724/SP.J.1011.2012.00408
WANG H, BAI Y L, YANG L P, LU Y L, WANG L. A summer maize dressing decision-making model based on effective accumulated temperature. Chinese Journal of Eco-Agriculture, 2012, 20(4): 408-413. (in Chinese)
doi: 10.3724/SP.J.1011.2012.00408
[18] 林忠辉, 项月琴, 莫兴国, 李俊, 王玲. 夏玉米叶面积指数增长模型的研究. 中国生态农业学报, 2003, 11(4): 69-72.
LIN Z H, XIANG Y Q, MO X G, LI J, WANG L. Normalized leaf area index model for summer maize. Chinese Journal of Eco-Agriculture, 2003, 11(4): 69-72. (in Chinese)
[19] 李书钦, 诸叶平, 刘海龙, 李世娟, 刘升平, 张红英, 高伟. 基于有效积温的冬小麦返青后植株三维形态模拟. 中国农业科学, 2017, 50(9): 1594-1605.
LI S Q, ZHU Y P, LIU H L, LI S J, LIU S P, ZHANG H Y, GAO W. 3D shape simulation of winter wheat after turning green stage based on effective accumulated temperature. Scientia Agricultura Sinica, 2017, 50(9): 1594-1605. (in Chinese)
[20] 李正鹏, 宋明丹, 冯浩. 水氮耦合下冬小麦LAI与株高的动态特征及其与产量的关系. 农业工程学报, 2017, 33(4): 195-202.
LI Z P, SONG M D, FENG H. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 195-202. (in Chinese)
[21] 孙仕军, 姜浩, 陈志君, 朱振闯, 张旭东, 迟道才. 不同颜色地膜覆盖下春玉米主要生长性状对耕层积温的响应. 草业学报, 2019, 28(2): 61-72.
SUN S J, JIANG H, CHEN Z J, ZHU Z C, ZHANG X D, CHI C D. Effect of surface-layer accumulated temperature on major growth traits of spring maize when un-mulched or under clear or black plastic film mulches. Acta Prataculturae Sinica, 2019, 28(2): 61-72. (in Chinese)
[22] 王贺垒, 韩宪忠, 范凤翠, 王克俭, 张哲, 齐浩. 基于有效积温的设施茄子营养生长期蒸散量模拟系统. 节水灌溉, 2019, 282(2): 11-17.
WANG H L, HAN X Z, FAN F C, WANG K J, ZHANG Z, QI H. Dynamic simulation system of eggplant evapotranspiration at vegetative growth stage based on effective accumulated temperature. Water Saving Irrigation, 2019, 282(2): 11-17. (in Chinese)
[23] SEPASKHAH A R, FAHANDEZH-SAADI S, ZAND-PARSA S. Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management, 2011, 99(1): 51-57.
doi: 10.1016/j.agwat.2011.07.019
[24] 刘娟, 熊淑萍, 杨阳, 翟清云, 王严峰, 王静, 马新明. 基于归一化法的小麦干物质积累动态预测模型. 生态学报, 2012, 32(17): 5512-5520.
doi: 10.5846/stxb
LIU J, XIONG S P, YANG Y, ZHAI Q Y, WANG Y F, WANG J, MA X M. A model to predict dry matter accumulation dynamics in wheat based on the normalized method. Acta Ecologica Sinica, 2012, 32(17): 5512-5520. (in Chinese)
doi: 10.5846/stxb
[25] BANNAYAN M, HOOGENBOOM G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 2009, 111(3): 290-302.
doi: 10.1016/j.fcr.2009.01.007
[26] 魏湜. 玉米生态基础. 北京: 中国农业出版社, 2010: 40-49.
WEI S. Ecological Basis of Maize. Beijing: China Agriculture Press, 2010: 40-49. (in Chinese)
[27] 秦文利, 李春杰, 刘孟朝, 韩宝文. 氮磷钾配施对夏玉米主要性状和产量的影响. 河北农业科学, 2006, 10(3): 27-29.
QIN W L, LI C J, LIU M C, HAN B W. Effect of different NPK ratios on main characteristics and yield of summer corn. Journal of Hebei Agricultural Sciences, 2006, 10(3): 27-29. (in Chinese)
[28] FOIS S, MOTZO R, GIUNTA F. The effect of nitrogenous fertiliser application on leaf traits in durum wheat in relation to grain yield and development. Field Crops Research, 2009, 110(1): 69-75.
doi: 10.1016/j.fcr.2008.07.004
[29] 朱昆仑, 靳立斌, 董树亭, 赵斌, 刘鹏, 张吉旺. 综合农艺管理对夏玉米叶片衰老特性的影响. 中国农业科学, 2014, 47(15): 2949-2959.
ZHU K L, JIN L B, DONG S T, ZHAO B, LIU P, ZHANG J W. Effects of integrated agronomic practices on leaf senescence physiological characteristics of summer maize. Scientia Agricultura Sinica, 2014, 47(15): 2949-2959. (in Chinese)
[30] 杨博. 山西省典型农业生态区冬小麦/夏玉米轮作养分资源管理[D]. 太原: 山西大学, 2008.
YANG B. Nutrient resources management on the winter wheat/ summer maize rotation system in typical agro-ecological area of Shanxi Province[D]. Taiyuan: Shanxi University, 2008. (in Chinese)
[31] HADA NEERAJ, WASNIK V K, BHADAURIA S S, SINGH K V. Influence of balanced nutrition, seed rate and plant geometry on fodder maize in south-eastern Rajasthan. Range Management and Agroforestry, 2017, 37(2): 243-247.
[32] 于宁宁, 张吉旺, 任佰朝, 赵斌, 刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响. 作物学报, 2020, 46(6): 960-967.
doi: 10.3724/SP.J.1006.2020.93050
YU N N, ZHANG J W, REN B Z, ZHAO B, LIU P. Effect of integrated agronomic managements on leaf growth and endogenous hormone content of summer maize. Acta Agronomica Sinica, 2020, 46(6): 960-967. (in Chinese)
doi: 10.3724/SP.J.1006.2020.93050
[33] 罗新兰, 陈祥兰, 姚运生, 卢涛, 殷红, 高西宁, 张彦. 东北玉米叶面积指数动态模拟模型研究. 江苏农业科学, 2012, 40(1): 91-94.
LUO X L, CHEN X L, YAO Y S, LU T, YIN H, GAO X N, ZHANG Y. Study on dynamic simulation model of maize leaf area index in Northeast China. Jiangsu Agricultural Sciences, 2012, 40(1): 91-94. (in Chinese)
[34] 麻雪艳, 周广胜. 春玉米最大叶面积指数的确定方法及其应用. 生态学报, 2013, 33(8): 2596-2603.
doi: 10.5846/stxb
MA X Y, ZHOU G S. Method of determining the maximum leaf area index of spring maize and its application. Acta Ecologica Sinica, 2013, 33(8): 2596-2603. (in Chinese)
doi: 10.5846/stxb
[35] 史纪安, 刘玉华, 贾志宽. 紫花苜蓿第1茬地上部干物质生长过程与有效积温的关系. 草业科学, 2009, 26(8): 81-86.
SHI J A, LIU Y H, JIA Z K. Relationship between the aboveground dry matter accumulation of alfalfa and the effective accumulated temperature in the first cutting. Pratacultural Science, 2009, 26(8): 81-86. (in Chinese)
[36] SETIYONO T D, WEISS A, SPECHT J E, CASSMAN K G, DOBERMANN A. Leaf area index simulation in soybean grown under near-optimal conditions. Field Crops Research, 2008, 108(1): 81-86.
[37] 李丽伟, 范芳, 张勇, 霍晓婷, 杨建堂, 王文亮. 菊花地上部干物质增长过程与有效积温的关系. 中国农学通报, 2007, 23(7): 543-546.
LI L W, FAN F, ZHANG Y, HUO X T, YANG J T, WANG W L. Studies on the relationship between the course of the dry matter accumulation in aerial parts in chrysanthemum and the available accumulation temperature. Chinese Agricultural Science Bulletin, 2007, 23(7): 543-546. (in Chinese)
[38] 肖强, 闫连波, 朱欣宇, 张怀文, 曹兵, 倪小会, 李丽霞, 杨俊刚, 黄德明, 衣文平. 夏玉米植株干物质、氮磷钾养分积累速度和时间的动态分析. 植物营养与肥料学报, 2014, 20(3): 606-612.
XIAO Q, YAN L B, ZHU X Y, ZHANG H W, CAO B, NI X H, LI L X, YANG J G, HUANG D M, YI W P. Dynamic analysis of dry matter and NPK accumulation with time in summer maize. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 606-612. (in Chinese)
[39] 余卫东, 冯利平, 盛绍学, 石磊, 李德. 涝渍胁迫下夏玉米的灌浆特征及其动态模拟. 中国生态农业学报, 2015, 23(9): 1142-1149.
YU W D, FENG L P, SHENG S X, SHI L, LI D. Analysis of the dynamics and characteristics of grain filling in summer maize under waterlogging stress. Chinese Journal of Eco-Agriculture, 2015, 23(9): 1142-1149. (in Chinese)
[40] 何萍, 金继运. 氮钾互作对春玉米养分吸收动态及模式的影响. 玉米科学, 1999, 7(3): 68-72.
HE P, JIN J Y. Dynamics and models of N, P and K absorption by spring maize as influenced by nitrogen and potassium interaction. Journal of Maize Sciences, 1999, 7(3): 68-72. (in Chinese)
[41] 赵凡. 基于Richards模型的全膜双垄沟播与传统栽培模式玉米生长势差异研究. 干旱地区农业研究, 2016, 34(4): 211-217.
ZHAO F. Research on growth variations of maize by whole film double furrow sowing based on Richards model from traditional cultivation mode. Agricultural Research in the Arid Areas, 2016, 34(4): 211-217. (in Chinese)
[42] 张旭, 李莎, 蔡煜, 马亮. 干旱区不同水氮梯度滴灌冬小麦干物质积累动态特征及产量效应. 西南农业学报, 2020, 33(9): 2018-2026.
ZHANG X, LI S, CAI Y, MA L. Analysis on DMA dynamic characteristics and yield of winter wheat with different water and nitrogen gradients under drip irrigation in arid area. Southwest China Journal of Agricultural Sciences, 2020, 33(9): 2018-2026. (in Chinese)
[43] 陆景陵. 植物营养学(上册)(第2版). 北京: 中国农业大学出版社, 2003: 34-35.
LU J L. Plant Nutrition(Volume 1) (2nd Edition). Beijing: China Agricultural University Press, 2003: 34-35. (in Chinese)
[44] 何萍, 金继运, 林葆, 王秀芳, 张宽. 不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998, 4(2): 123-130.
HE P, JIN J Y, LIN B, WANG X F, ZHANG K. Dynamics of biomass and its components and models of nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates. Journal of Plant Nutrition and Fertilizers, 1998, 4(2): 123-130. (in Chinese)
[45] 蔡甲冰, 常宏芳, 陈鹤, 张宝忠, 魏征, 彭致功. 基于不同有效积温的玉米干物质累积量模拟. 农业机械学报, 2020, 51(5): 263-271.
CAI J B, CHANG H F, CHEN H, ZHANG B Z, WEI Z, PENG Z G. Simulation of maize dry matter accumulation in normalized Logistic model with different effective accumulated temperatures in field. Transactions of The Chinese Society of Agricultural Machinery, 2020, 51(5): 263-271. (in Chinese)
[46] WANG X X, WANG Q J, FAN J, SU L J, SHEN X l. Logistic model analysis of winter wheat growth on China's Loess Plateau. Canadian Journal of Plant Science, 2014, 94(8): 1471-1479.
doi: 10.4141/cjps2013-293
[47] 李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36(12): 2143-2153.
doi: 10.3724/SP.J.1006.2010.02143
LI X L, ZHAO M, LI C F, GE Y Z, HOU H P, LI Q, HOU L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agronomica Sinica, 2010, 36(12): 2143-2153. (in Chinese)
doi: 10.3724/SP.J.1006.2010.02143
[1] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[2] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[3] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[4] YAO QiFu, CHEN HuangXin, ZHOU JieGuang, MA RuiYing, DENG Liang, TAN ChenXinYu, SONG JingHan, LÜ JiJuan, MA Jian. QTL Identification and Genetic Analysis of Plant Height in Wheat Based on 16K SNP Array [J]. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[8] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[9] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[10] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[11] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[12] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[13] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[14] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[15] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!