Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5177-5193.doi: 10.3864/j.issn.0578-1752.2021.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analyzing Genetic Effects for Plant Height and Panicle Traits by Means of the Mixed Inheritance Model of Major Gene Plus Polygene in Foxtail Millet

GUO ShuQing1(),SONG Hui2(),YANG QingHua1,GAO JinFeng1,GAO XiaoLi1,FENG BaiLi1,YANG Pu1,*()   

  1. 1College of Agriculture, Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi
    2Institute of Millet Crops, Anyang Academy of Agricultural Sciences, Anyang 455000, Henan
  • Received:2021-05-24 Accepted:2021-07-08 Online:2021-12-16 Published:2021-12-28
  • Contact: Pu YANG E-mail:gsq055069@nwafu.edu.cn;837181622@qq.com;yangpu5532@hotmail.com

Abstract:

【Objective】Plant height and panicle traits are key yield-dependent traits in foxtail millet. The objective was to probe into inheritance patterns of plant height and panicle traits and provide a reference basis for genetically improving related traits and mapping their genes. 【Method】Yugu 18, a high performing foxtail millet variety, was arranged as the male parent to cross two foxtail millet varieties, Huangruangu and Hongjiugu, and thus two F7 populations of which each was composed of recombinant inbred lines involving 250 family lines(YYRIL and YRRIL)were established. Phenotypic data of Five agronomic traits of the two populations, plant height, panicle length, internode length under panicle, spikelet number per panicle and grain weight per panicle, were genetically examined in two different environments using the mixed inheritance model of major gene plus polygene. 【Result】In these two environments, all the five agronomic traits showed continuous variations with their kurtosis and skewness values standing at the absolute value of less than 1 and thus presenting a distribution close to a normal distribution, were characterized by typical inheritance of quantitative traits; some of these traits saw super-parent separation phenomena. The correlation analysis among the traits showed that the plant height appeared significantly and positively correlated with the panicle length, and an extremely significantly positive correlation between spikelet number per panicle and grain weight per panicle was also found in the two environments. The analysis by the inheritance model showed that the best inheritance models for the plant height of the YYRIL and YRRIL population were the PG-AI and PG-A polygene models, and the heritability of the polygenes standing at 95.15% and 91.27%, respectively. The best inheritance models for the spikelet number per panicle of the two populations were the PG-AI, with the heritability of the polygenes standing at 70.07%-71.58%. The best inheritance models for the internode length under panicle of the two populations were the 4MG-CEA and 3MG-CEA of which both were models for equally additive major genes. In YYRIL, the heritability of the major genes for the internode length under panicle stood at 9.69%, and the four pairs of major genes had an equal additive effect value of -0.34, taking negative effect; and in the YYRIL, the heritability of the major genes for the internode length under panicle stood at 45.78%, and the 3 major gene pairs in question had an equal additive effect value of 1.17, taking positive effect. In the YYRIL, the best inheritance model for the panicle length was the MX2-ED-A, a model for two pairs of dominant epistatic major genes and additive polygenes, with the heritability of the major genes and polygenes standing at 43.56% and 50.56%, respectively. the two pairs of panicle length-dependent major genes separately had the additive effect values of -1.21 and 1.68 and the polygenes had a lower additive effect value of -0.0017; in the YRRIL, the best inheritance model for the panicle length was the MX2-AE-A, a mixed inheritance model for two pairs of accumulative effect major genes and additive polygenes; the major genes and polygenes for the panicle length had heritability values standing at 46.40% and 46.91%, respectively. The first pair of panicle length-dependent major genes had an additive effect value of 1.53, taking positive effect; The additive and epistatic interactions effect value of the first×the second pairs of major genes were 0.60. The polygenes had an additive effect value of -0.47, taking the lower negative inheritance effect. In the YYRIL, the best inheritance model for the grain weight per panicle was the MX2-ED-A; the grain weight per panicle followed the inheritance model for two pairs of dominant epistatic major genes + additive polygenes with the heritability of the major genes and polygenes standing at 69.09% and 12.08%; the additive effect values of the two pairs of grain-weight per panicle-dependent major genes were separately 0.58 and 5.82, with the additive effect of the second pair of major genes dominating, and the additive effect value of polygenes stood at a value of -3.81. In the YRRIL, the best inheritance model for the grain weight per panicle was the 3MG-PEA, an inheritance model for three pairs of partially equal additive major genes; the heritability of the grain weight per panicle-dependent major genes stood at 81.10% and the additive effect values of the three pairs of major genes separately were -2.68, -2.68and 2.66, all taking negative effect. 【Conclusion】In foxtail millet, the plant height and spikelet number per panicle had similar inheritance models, were all under polygenic control with a higher heritability and environmentally affected to a slight content; the inheritance of the internode length under panicle was genetically controlled by major genes, which had a lower heritability and were environmentally affected to a great extent, and thus environmental factors should be taken into full account in production; the panicle length was genetically controlled jointly by major genes and polygenes; the grain weight per panicle was genetically controlled by major genes with a high heritability in both of the two population and probably carried major QTL.

Key words: foxtail millet, RIL, plant height, panicle traits, major gene+polygene

Table 1

Descriptive analysis of plant height and panicle traits in YYRIL and YRRIL foxtail millet population"

群体
Population
性状
Trait
环境
Environment
亲本 Parent 统计参数 Statistical parameter
豫谷18
Yugu 18
黄软谷
Huangruangu
红酒谷
Hongjiugu
F
F value
平均值±
标准差
Mean±SD
变异系数
Variable coefficient (%)
偏度
Skewness
峰度
Kurtosis
极小值
Min value
极大值
Max value
YYRIL 株高
PH (cm)
E1 130.33±4.31 167.60±5.12 - 155.15** 133.25±9.39 7.05 -0.72 0.54 98.67 163.00
E2 111.03±1.34 130.30±1.48 278.64** 112.64±6.40 5.68 -0.13 0.50 92.30 129.00
穗长
PL (cm)
E1 27.17±1.77 28.67±2.56 1.16 26.09±2.64 10.14 -0.09 1.34 17.00 35.00
E2 21.11±0.59 20.37±0.60 2.32 21.30±2.53 11.89 0.58 0.23 16.37 29.51
穗下节间长
PIL (cm)
E1 26.67±3.73 38.43±3.59 5.30* 26.67 ±4.86 18.23 1.29 3.60 15.00 47.67
E2 27.08±1.61 24.41±1.80 3.66 26.70 ±2.32 8.68 0.22 0.38 19.40 33.50
穗码数
SN
E1 87.00±6.71 116.80±5.70 57.32** 91.52±15.85 17.35 0.61 0.41 51.00 142.00
E2 92.00±5.41 68.83±0.35 54.81** 95.32±10.26 10.79 -0.02 0.64 60.00 127.33
穗粒重
GW (g)
E1 35.98±1.97 35.38±1.55 0.28 35.57±6.31 17.74 0.19 0.12 20.70 55.47
E2 15.99±2.41 15.37±1.88 0.13 18.88 ±4.96 26.27 -0.25 -0.46 6.27 30.90
YRRIL 株高
PH (cm)
E1 130.33±4.31 - 167.60±5.12 0.34 140.77±14.34 10.19 -0.36 0.94 88.67 182.33
E2 113.53±4.52 130.30±1.48 0.01 116.15±11.52 9.92 -0.05 0.27 83.40 147.90
穗长
PL (cm)
E1 27.17 ±1.77 28.67±2.56 0.22 29.74±4.04 13.60 0.23 0.47 18.33 43.00
E2 21.11±0.59 20.37±0.60 6.95* 23.25±3.31 14.24 0.33 -0.07 15.72 33.44
穗下节间长
PIL (cm)
E1 26.67±3.73 38.43±3.59 1.06 28.31±4.62 16.35 0.04 -0.07 14.00 40.67
E2 26.04±2.42 24.41±1.80 1.43 27.83±2.99 10.73 0.17 0.12 18.70 36.30
穗码数
SN
E1 87.00 ±6.71 116.80±5.70 26.61** 92.56±12.46 13.46 0.41 0.60 63.00 140.00
E2 92.00±5.41 68.83±0.35 116.61** 88.52±15.53 17.54 -0.03 0.06 42.67 131.67
穗粒重
GW (g)
E1 15.97±1.97 35.38±1.55 34.38** 28.98±8.22 28.37 -0.30 0.33 1.28 50.22
E2 15.99±2.41 15.37±1.88 14.10** 14.94±4.96 33.20 0.06 -0.25 0.56 27.17

Fig. 1

Frequent (column), mixed (red line), and component (black line) distributions for plant height and panicle traits in YYRIL and YRRIL foxtail millet population PH: Plant height; PL: Panicle length; PIL: Internode length under panicle; SN: Spikelet number per panicle ; GW: Grain weight per panicle. E1: Yulin, Shaanxi; E2: Anyang, Henan. The same as below"

Fig. 2

Correlation analysis of plant height and panicle traits in YYRIL and YRRIL foxtail millet population a: Correlation analysis of plant height and panicle traits of YYRIL in Yulin; b: Correlation analysis of plant height and panicle traits of YYRIL in Anyang; c: Correlation analysis of plant height and panicle traits of YRRIL in Yulin; d: Correlation analysis of plant height and panicle traits of YRRIL in Anyang"

Table 2

Log Max likelihood value and AIC value for segregation analysis of the optimal genetic models for plant height and panicle traits in YYRIL and YRRIL foxtail millet population"

群体
Population
模型
Model
环境
Environment
AIC值 AIC value 极大似然值函数 log Max likelihood value
株高
PH
(cm)
穗长
PL
(cm)
穗下节
间长
PIL (cm)
穗码数
SN
穗粒重
GW
(g)
株高
PH
(cm)
穗长
PL
(cm)
穗下节
间长
PIL (cm)
穗码数
SN
穗粒重
GW
(g)
YYRIL 2MG-CE E1 1928.983 1258.995 1525.436 2165.766 1703.545 -961.491 -626.498 -759.718 -1079.880 -848.772
E2 1673.334 1205.629 1165.094 1891.071 1493.398 -833.667 -599.815 -579.547 -942.536 -743.749
2MG-IE E1 1946.947 1259.334 1592.593 2199.59 1700.742 -970.474 -626.667 -793.296 -1096.800 -847.371
E2 1683.772 1191.154 1165.221 1499.641 1555.967 -838.886 -592.577 -579.611 -945.651 -746.821
PG-AI E1 1874.259 1258.761 1563.550 2184.263 1688.339 -932.129 -624.381 -776.775 -1087.130 -839.170
E2 1643.336 1193.997 1166.565 1881.470 1494.873 -816.668 -591.999 -578.283 -935.735 -742.436
PG-A E1 1910.028 1262.937 1579.432 2191.688 1686.369 -951.014 -627.468 -785.716 -1091.844 -839.184
E2 1670.006 1195.977 1166.656 1894.977 1501.853 -831.003 -593.989 -579.328 -943.489 -746.926
MX2-ED-A E1 1905.438 1263.735 1537.786 2169.123 1690.337 -946.719 -625.867 -762.893 -1078.562 -839.168
E2 1668.164 1186.078 1167.351 1894.254 1485.489 -828.082 -587.039 -577.675 -941.127 -736.745
MX2-IE-A E1 1893.120 1259.66 1549.822 2179.865 1688.339 -941.560 -624.830 -769.911 -1084.930 -839.170
E2 1650.743 1194.107 1166.805 1885.618 1490.959 -820.372 -592.054 -578.403 -937.809 -740.480
3MG-AI E1 1920.146 1263.787 1520.849 2175.811 1695.520 -951.073 -622.894 -751.425 -1078.910 -838.760
E2 1672.503 1196.305 1170.383 1894.109 1499.248 -827.251 -589.153 -576.192 -938.054 -740.624
3MG-A E1 1907.177 1304.757 1526.969 2194.113 1745.407 -948.589 -647.378 -758.485 -1092.060 -867.704
E2 1741.659 1262.926 1247.707 1980.956 1528.237 -865.829 -626.463 -618.854 -985.478 -759.069
4MG-AI E1 1883.204 1262.754 1522.043 2176.348 1695.575 -930.602 -620.377 -750.022 -1077.170 -836.787
E2 1644.595 1194.974 1174.859 1890.751 1491.577 -811.298 -586.487 -576.430 -934.376 -734.788
4MG-CEA E1 1924.862 1260.966 1581.604 2190.545 1703.538 -959.431 -627.483 -787.802 -1092.273 -848.769
E2 1671.823 1205.795 1164.932 1894.115 1500.879 -832.911 -599.897 -579.466 -944.057 -747.440
YRRIL PG-AI E1 2127.810 1463.860 1548.080 2060.150 1808.660 -1058.900 -726.930 -769.040 -1025.080 -899.330
E2 1968.100 1327.790 1290.100 2086.370 1485.673 -979.050 -658.900 -640.050 -1038.180 -737.837
PG-A E1 2144.070 1470.269 1552.737 2084.070 1875.610 -1068.030 -731.130 -772.370 -1038.040 -933.810
E2 1966.339 1327.199 1291.175 2105.070 1488.229 -979.170 -659.600 -641.590 -1048.540 -740.115
MX2-AI-AI E1 2132.700 1468.770 1553.880 2063.510 1813.240 -1058.350 -726.380 -768.940 -1023.750 -898.620
E2 1973.990 1328.040 1294.300 2092.370 1489.548 -978.990 -656.020 -639.150 -1038.190 -736.774
MX2-AE-A E1 2133.610 1466.480 1550.140 2077.840 1863.340 -1060.810 -727.240 -769.070 -1032.920 -925.670
E2 1970.120 1324.700 1290.420 2095.100 1487.522 -979.060 -656.350 -639.210 -1041.550 -737.761
MX2-CE-A E1 2126.700 1464.320 1547.970 2075.380 1847.080 -1058.350 -727.160 -768.980 -1032.690 -918.540
E2 1968.100 1327.780 1290.590 2087.170 1485.717 -979.050 -658.890 -640.300 -1038.580 -737.858
MX2-IE-A E1 2126.700 1464.210 1547.970 2071.480 1816.670 -1058.350 -727.110 -768.980 -1030.740 -903.330
E2 1968.100 1327.780 1289.670 2086.890 1485.713 -979.050 -658.890 -639.840 -1038.450 -737.856
3MG-CEA E1 2145.760 1475.360 1552.430 2094.450 1885.850 -1069.880 -734.680 -773.210 -1044.230 -939.920
E2 1976.140 1330.790 1285.900 2105.820 1491.784 -985.070 -662.390 -639.950 -1049.910 -742.892
3MG-PEA E1 2144.328 1473.738 1552.977 2086.316 1877.291 -1068.164 -732.869 -772.489 -1039.158 -934.645
E2 1974.695 1330.540 1291.268 2105.610 1481.494 -983.347 -661.270 -641.634 -1048.805 -736.747
4MG-CEA E1 2142.510 1336.310 1289.190 2083.790 1875.220 -1068.260 -733.820 -772.400 -1038.890 -934.610
E2 1978.410 1473.630 1550.790 2103.240 1491.345 -985.080 -665.150 -641.600 -1048.620 -742.673
4MG-EEEA E1 2137.697 1472.090 1546.820 2074.633 1860.792 -1064.849 -732.050 -769.410 -1033.316 -926.396
E2 1977.930 1336.030 1288.290 2093.559 1488.400 -984.960 -664.020 -640.140 -1042.779 -740.200

Table 3

Adaptability test of the optimal genetic models for plant height and panicle traits in YYRIL and YRRIL foxtail millet population"

群体
Population
性状
Traits
环境
Environment
模型代码
Model code
世代
Generation
U12 U22 U32 nW2 Dn
YYRIL 株高
PH (cm)
E1 PG-AI P1 0.0662(0.7970) 0.1000(0.7518) 0.0721(0.7883) 0.0388(0.9392) 0.1938(0.9454)
P2 2.00E-04(0.9885) 0.0046(0.9460) 0.0462(0.8299) 0.0430(0.9171) 0.2032(0.9248)
RIL 0.1309(0.7175) 0.0243(0.8761) 0.6052(0.4366) 0.1151(0.5231) 0.0568(0.3928)
E2 PG-AI P1 0.000(0.9997) 0.0043(0.9480) 0.0673(0.7954) 0.0584(0.8257) 0.2500(0.9062)
P2 0.0377(0.8460) 0.0269(0.8698) 0.0093(0.9233) 0.0521(0.8641) 0.2500(0.9062)
RIL 0.0029(0.9568) 0.0138(0.9066) 0.4614(0.4970) 0.0466(0.8966) 0.0359(0.8992)
穗长
PL (cm)
E2 MX2-ED-A P1 0.2331(0.6292) 0.2687(0.6042) 0.0414(0.8388) 0.0745(0.7332) 0.3457(0.6199)
P2 0.1657(0.6839) 0.2539(0.6143) 0.1926(0.6608) 0.0539(0.8531) 0.2819(0.8247)
RIL 0.2644(0.6071) 0.2146(0.6432) 0.0191(0.8900) 0.0700(0.7584) 0.0418(0.7609)
穗下节间长
PIL (cm)
E2 4MG-CEA P1 0.5189(0.4713) 0.6671(0.4141) 0.2275(0.6334) 0.0814(0.6952) 0.3361(0.6526)
P2 1.0280(0.3106) 0.9273(0.3356) 0.0056(0.9403) 0.1594(0.3633) 0.4168(0.3853)
RIL 0.0088(0.9252) 0.0654(0.7982) 0.4344(0.5099) 0.04300(0.917) 0.0364(0.8845)
穗码数
SN
E2 PG-AI P1 0.0618(0.8037) 0.0237(0.8776) 0.1202(0.7288) 0.0673(0.7736) 0.2736(0.8477)
P2 0.0165(0.8977) 0.0070(0.9335) 0.0270(0.8695) 0.0333(0.9641) 0.2028(0.9859)
RIL 0.0000(0.9944) 0.0147(0.9035) 0.2622(0.6086) 0.0249(0.9897) 0.0321(0.9567)
穗粒重
GW (g)
E2 MX2-ED-A P1 0.0742(0.7853) 0.0855(0.7700) 0.0131(0.9087) 0.0506(0.8730) 0.2938(0.7898)
P2 0.0193(0.8894) 0.0015(0.9688) 0.1461(0.7023) 0.04980.8776 0.2430(0.9256)
RIL 0.0022(0.9626) 0.0011(0.9733) 0.0023(0.9621) 0.0249(0.9898) 0.0347(0.9250)
YRRIL 株高
PH (cm)
E2 PG-A P1 0.1357(0.7126) 0.000(0.9999) 2.0374(0.1535) 0.1035(0.5781) 0.3144(0.7251)
P2 0.0436(0.8346) 0.0005(0.9827) 0.5212(0.4703) 0.076(0.7251) 0.2962(0.7823)
RIL 0.0170(0.8962) 0.1167(0.7326) 0.7418(0.3891) 0.1078(0.5569) 0.0495(0.5607)
穗长
PL (cm)
E2 MX2-AE-A P1 0.0575(0.8104) 0.0067(0.9346) 0.3608(0.5481) 0.0719(0.7475) 0.3064(0.7507)
P2 0.1065(0.7442) 0.2014(0.6536) 0.2825(0.5951) 0.0436(0.9140) 0.2323(0.9491)
RIL 0.0024(0.9612) 1.00E-04(0.9935) 0.0243(0.8761) 0.0169(0.9991) 0.0266(0.9928)
穗下节间长
PIL (cm)
E2 3MG-CEA P1 0.3320(0.5645) 0.1360(0.7123) 0.5724(0.4493) 0.0732(0.7403) 0.2888(0.8046)
P2 1.0170(0.3132) 1.1713(0.2791) 0.1791(0.6721) 0.136(0.4381) 0.4204(0.3746)
RIL 0.0692(0.7925) 0.1113(0.7386) 0.0998(0.752) 0.051(0.8705) 0.0418(0.7624)
穗码数
SN
E1 PG-AI P1 0.0460(0.8301) 0.0653(0.7983) 0.0366(0.8483) 0.0689(0.7647) 0.2934(0.5835)
P2 0.0273(0.8689) 1.00E-04(0.9929) 0.4557(0.4997) 0.0835(0.6836) 0.2453(0.7883)
RIL 0.1758(0.6750) 0.3119(0.5765) 0.3719(0.5420) 0.0801(0.7023) 0.058(0.3559)
E2 PG-AI P1 5.00E-04(0.9816) 0.0748(0.7845) 1.4007(0.2366) 0.0617(0.8065) 0.2500(0.9063)
P2 0.0545(0.8154) 4.00E-04(0.9837) 0.9728(0.324) 0.0521(0.864) 0.2398(0.9333)
RIL 0.0127(0.9101) 0.0052(0.9425) 0.0220(0.8820) 0.0626(0.8010) 0.0431(0.7379)
穗粒重
GW (g)
E2 3MG-PEA P1 3.0278(0.0818) 3.0582(0.0803) 0.0655(0.7980) 0.4180(0.0671) 0.5793(0.0857)
P2 1.3457(0.2460) 0.8914(0.3451) 0.5132(0.4738) 0.1739(0.3252) 0.4645(0.2578)
RIL 0.0165(0.8977) 0.0061(0.9375) 0.0340(0.8536) 0.0305(0.9746) 0.0268(0.9937)

Table 4

The estimates of genetic parameters of the optimal genetic models for plant height and panicle traits in YYRIL and YRRIL foxtail millet population"

群体
Population
性状
Trait
环境
Environment
亲本 Parent 统计参数 Statistical parameter
豫谷18
Yugu 18
黄软谷
Huangruangu
红酒谷
Hongjiugu
F
F value
平均值±
标准差
Mean±SD
变异系数
Variable coefficient (%)
偏度
Skewness
峰度
Kurtosis
极小值
Min value
极大值
Max value
YYRIL 株高
PH (cm)
E1 130.33±4.31 167.60±5.12 - 155.15** 133.25±9.39 7.05 -0.72 0.54 98.67 163.00
E2 111.03±1.34 130.30±1.48 278.64** 112.64±6.40 5.68 -0.13 0.50 92.30 129.00
穗长
PL (cm)
E1 27.17±1.77 28.67±2.56 1.16 26.09±2.64 10.14 -0.09 1.34 17.00 35.00
E2 21.11±0.59 20.37±0.60 2.32 21.30±2.53 11.89 0.58 0.23 16.37 29.51
穗下节间长
PIL (cm)
E1 26.67±3.73 38.43±3.59 5.30* 26.67 ±4.86 18.23 1.29 3.60 15.00 47.67
E2 27.08±1.61 24.41±1.80 3.66 26.70 ±2.32 8.68 0.22 0.38 19.40 33.50
穗码数
SN
E1 87.00±6.71 116.80±5.70 57.32** 91.52±15.85 17.35 0.61 0.41 51.00 142.00
E2 92.00±5.41 68.83±0.35 54.81** 95.32±10.26 10.79 -0.02 0.64 60.00 127.33
穗粒重
GW (g)
E1 35.98±1.97 35.38±1.55 0.28 35.57±6.31 17.74 0.19 0.12 20.70 55.47
E2 15.99±2.41 15.37±1.88 0.13 18.88 ±4.96 26.27 -0.25 -0.46 6.27 30.90
YRRIL 株高
PH (cm)
E1 130.33±4.31 - 167.60±5.12 0.34 140.77±14.34 10.19 -0.36 0.94 88.67 182.33
E2 113.53±4.52 130.30±1.48 0.01 116.15±11.52 9.92 -0.05 0.27 83.40 147.90
穗长
PL (cm)
E1 27.17 ±1.77 28.67±2.56 0.22 29.74±4.04 13.60 0.23 0.47 18.33 43.00
E2 21.11±0.59 20.37±0.60 6.95* 23.25±3.31 14.24 0.33 -0.07 15.72 33.44
穗下节间长
PIL (cm)
E1 26.67±3.73 38.43±3.59 1.06 28.31±4.62 16.35 0.04 -0.07 14.00 40.67
E2 26.04±2.42 24.41±1.80 1.43 27.83±2.99 10.73 0.17 0.12 18.70 36.30
穗码数
SN
E1 87.00 ±6.71 116.80±5.70 26.61** 92.56±12.46 13.46 0.41 0.60 63.00 140.00
E2 92.00±5.41 68.83±0.35 116.61** 88.52±15.53 17.54 -0.03 0.06 42.67 131.67
穗粒重
GW (g)
E1 15.97±1.97 35.38±1.55 34.38** 28.98±8.22 28.37 -0.30 0.33 1.28 50.22
E2 15.99±2.41 15.37±1.88 14.10** 14.94±4.96 33.20 0.06 -0.25 0.56 27.17
[1] JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L F, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E H, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B J, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013, 45(8):957-961.
doi: 10.1038/ng.2673
[2] 贾小平, 张博, 董志平, 全建章, 王永芳, 张小梅, 袁玺垒, 李剑峰, 戴凌峰. 海南短日照条件下谷子穗部性状的全基因组关联分析. 河南农业科学, 2018, 47(9):33-40.
JIA X P, ZHANG B, DONG Z P, QUAN J Z, WANG Y F, ZHANG X M, YUAN X L, LI J F, DAI L F. Genome-wide association analysis of panicle traits of foxtail millet under hainan short-day condition. Journal of Henan Agricultural Sciences, 2018, 47(9):33-40. (in Chinese)
[3] 盖钧镒. 植物数量性状遗传体系的分离分析方法研究. 遗传, 2005(1):130-136.
GAI J Y. Segregation analysis of genetic system of quantitative traits in plants. Hereditas, 2005(1):130-136. (in Chinese)
[4] 王小勤. 谷子高密度遗传图谱构建及产量和农艺性状QTL分析[D]. 重庆: 西南大学, 2017.
WANG X Q. Construction of high-density genetic map and QTL analysis of yield and agronomic traits in Foxtail millet[D]. Chongqing: Southwest University, 2017. (in Chinese)
[5] 章元明, 盖钧镒, 王永军. 利用P1、P2和DH或RIL群体联合分离分析的拓展. 遗传, 2001(5):467-470.
ZHANG Y M, GAI J Y, WANG Y J. An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas, 2001(5):467-470. (in Chinese)
[6] 张书芬, 傅廷栋, 朱家成, 王建平, 文雁成, 马朝芝. 甘蓝型油菜芥酸含量的基因分析. 中国农业科学, 2008, 41(10):3343-3349.
ZHANG S F, FU T D, ZHU J C, WANG J P, WEN Y C, MA C Z. Genetic analysis of erucic acid in Brassica napus L. using mixed major gene and polygene inheritance model. Scientia Agricultura Sinica, 2008, 41(10):3343-3349. (in Chinese)
[7] 王金社, 李海旺, 赵团结, 盖钧镒. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010, 36(2):191-201.
doi: 10.3724/SP.J.1006.2010.00191
WANG J S, LI H W, ZHAO T J, GAI J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agronomica Sinica, 2010, 36(2):191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00191
[8] 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26(4):385-391.
GAI J Y, ZHANG Y M, WANG J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agronomica Sinica, 2000, 26(4):385-391. (in Chinese)
[9] 章元明, 盖钧镒, 张孟臣. 利用P1F1P2和F2或F2:3世代联合的数量性状分离分析. 西南农业大学学报, 2000, 22(1):6-9.
ZHANG Y M, GAI J Y, ZHANG M C. Jointly segregating analysis of P1P2F1 and F2 or F2∶3 families. Journal of Southwest Agricultural University, 2000, 22(1):6-9. (in Chinese)
[10] 章元明, 盖钧镒. 数量性状分离分析中分布参数估计的IECM算法. 作物学报, 2000(6):699-706.
ZHANG Y M, GAI J Y. The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits. Acta Agronomica Sinica, 2000(6):699-706. (in Chinese)
[11] 咸丰, 张勇, 马建祥, 张显, 杨建强. 野生甜瓜‘云甜-930’抗白粉病主基因+多基因遗传分析. 中国农业科学, 2011, 44(7):1425-1433.
XIAN F, ZHANG Y, MA J X, ZHANG X, YANG J Q. Genetic analysis of resistant to powdery mildew with mixed model of major gene plus polygene in wild melon material ‘Yuntian-930’. Scientia Agricultura Sinica, 2011, 44(7):1425-1433. (in Chinese)
[12] 冯云超, 余志江, 霍仕平, 晏庆九, 向振凡, 张芳魁, 羊炼, 张兴端. 玉米雄穗抽雄至散粉间隔时间主基因+多基因遗传模型及遗传效应. 玉米科学, 2019, 27(4):1-8.
FENG Y C, YU Z J, HUO S P, YAN Q J, XIANG Z F, ZHANG F K, YANG L, ZHANG X D. Genetic effects of tassel-anthesis interval using mixture model of major gene plus polygene in maize. Journal of Maize Sciences, 2019, 27(4):1-8. (in Chinese)
[13] WANG J, PODLICH D W, COOPER M, DELACY I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theoretical and Applied Genetics, 2001, 103(5):804-816.
doi: 10.1007/s001220100628
[14] 王培, 李晓林, 杨林, 吴青霞, 杨子博, 白志元, 李立群, 李学军. 小麦单株穗数的遗传分析及基于QTL定位的最优基因型预测. 麦类作物学报, 2012, 32(5):820-827.
WANG P, LI X L, YANG L, WU Q X, YANG Z B, BAI Z Y, LI L Q, LI X J. Genetic analysis of spike number per plant in wheat and prediction of superior genotype based on QTL information. Journal of Triticeae Crops, 2012, 32(5):820-827. (in Chinese)
[15] 刘莹, 盖钧镒, 吕慧能, 王永军, 陈受宜. 大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位. 遗传学报, 2005(8):855-863.
LIU Y, GAI J Y, LÜ H N, WANG Y J, CHEN S Y. Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr). Acta Gentica Sinica, 2005(8):855-863. (in Chinese)
[16] 王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜. 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008, 41(5):1274-1282.
WANG C E, GAI J Y, FU S X, YU D Y, CHEN S Y. Inheritance and QTL mapping of tofu and soymilk output in soybean. Scientia Agricultura Sinica, 2008, 41(5):1274-1282. (in Chinese)
[17] 马斯霜, 白海波, 惠建, 吕雪莲, 陈晓军, 高颖银, 李树华. 旱胁迫下2个小麦RIL群体苗期性状主基因与多基因的遗传分析. 江苏农业科学, 2020, 48(14):87-93.
MA S S, BAI H B, HUI J, LÜ X L, CHEN X J, GAO Y Y, LI S H. Genetic analysis of main genes and polygenes in seedling traits of two wheat RIL populations under drought stress. Jiangsu Agricultural Sciences, 2020, 48(14):87-93. (in Chinese)
[18] 苏展, 程海涛, 郭玉华, 曹宏, 张伟伟, 付飞. 水稻DH群体盐胁迫下苗高的主基因-多基因混合模型遗传分析. 华北农学报, 2011, 26(3):210-213.
SU Z, CHENG H T, GUO Y H, CAO H, ZHANG W W, FU F. Genetic analysis of seedling height of rice DH population under salt stress by using major genes plus polygenes mixed model. Acta Agriculturae Boreali-Sinica, 2011, 26(3):210-213. (in Chinese)
[19] 刘鹏飞, 周富亮, 梁思维, 蒋锋. 甜玉米茎秆强度性状的主基因+多基因遗传分析. 西北农林科技大学学报(自然科学版), 2020, 48(9):64-72+88.
LIU P F, ZHOU F L, LIANG S W, JIANG F. Mixed major genes and polygenes inheritance analyses for stem strength traits of sweet corn. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(9):64-72+88. (in Chinese)
[20] 刘霞, 张冰冰, 马兵, 赵娜, 田正书, 秦梦凡, 王阳, 郎丽娜, 刘亚萍, 黄镇, 徐爱遐. 甘蓝型油菜株高及其相关性状的主基因+多基因遗传分析. 西北农业学报, 2018, 27(4):528-536.
LIU X, ZHANG B B, MA B, ZHAO N, TIAN Z S, QIN M F, WANG Y, LANG L N, LIU Y P, HUANG Z, XU A X. Mixed major gene plus poly-gene genetic analysis of plant height and its related traits in Brassica napus L. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(4):528-536. (in Chinese)
[21] 龚举武, 刘爱英, 李俊文, 姜骁, 段丽, 葛群, 邓晓英, 巩万奎, 石玉真, 商海红, 陈全家, 耿洪伟, 袁有禄. 陆地棉衣分性状的主基因-多基因遗传分析. 棉花学报, 2019, 31(3):192-200.
GONG J W, LIU A Y, LI J W, JIANG X, DUAN L, GE Q, DENG X Y, GONG W K, SHI Y Z, SHANG H H, CHEN Q J, GENG H W, YUAN Y L. Major gene plus polygene genetic analysis of lint percent in upland cotton. Cotton Science, 2019, 31(3):192-200. (in Chinese)
[22] 吕亮杰, 郭元世, 杜丽杰, 吕超, 张新忠, 郭宝健, 许如根. 大麦籽粒淀粉含量的主基因+多基因遗传模型分析. 麦类作物学报, 2014, 34(1):13-22.
LÜ L J, GUO Y S, DU L J, LÜ C, ZHANG X Z, GUO B J, XU R G. Major genes plus polygenes mixed inheritance model for starch contents in barley seed. Journal of Triticeae Crops, 2014, 34(1):13-22. (in Chinese)
[23] 杜成章, 龙珏臣, 龚万灼, 朱振东, 宗绪晓, 张继君. 蚕豆赤斑病抗性的主基因+多基因遗传分析. 植物保护, 2019, 45(6):131-137.
DU C Z, LONG J C, GONG W Z, ZHU Z D, ZONG X X, ZHANG J J. Analysis of major genes plus polygenes mixed inheritance for resistance to chocolate spot on faba bean. Plant Protection, 2019, 45(6):131-137. (in Chinese)
[24] SUN X R, LIU L, ZHI X N, BAI J R, CUI Y N, SHU J H, LI J M. Genetic analysis of tomato internode length via mixed major gene plus polygene inheritance model. Scientia Horticulturae, 2019, 246:759-764.
doi: 10.1016/j.scienta.2018.11.044
[25] 张兴伟, 王志德, 刘艳华, 任民, 杨洋. 植物数量性状“主基因+多基因”混合遗传模型及其在烟草上的应用. 中国烟草学报, 2013, 19(3):41-44.
ZHANG X W, WANG Z D, LIU Y H, REN M, YANG Y. Major gene plus polygene mixed genetic model in quantitative characters and its application in tobacco. Acta Tabacaria Sinica, 2013, 19(3):41-44. (in Chinese)
[26] SHEN P, GAO S P, CHEN X, LEI T, LI W J, HUANG Y X, LI Y R, JIANG M Y, HU D, DUAN Y F, LI M, LI J N. Genetic analysis of main flower characteristics in the F1 generation derived from intraspecific hybridization between Plumbago auriculata and Plumbago auriculata f. alba. Scientia Horticulturae, 2020, 274:109652.
doi: 10.1016/j.scienta.2020.109652
[27] 龚举武, 刘爱英, 段丽, 姜骁, 李俊文, 邓晓英, 葛群, 巩万奎, 石玉真, 商海红, 陈全家, 耿洪伟, 袁有禄. 不同环境下‘中棉所70’RIL群体棉铃重的主基因+多基因遗传分析. 中国农学通报, 2019, 35(15):128-137.
GONG J W, LIU A Y, DUAN L, JIANG X, LI J W, DENG X Y, GE Q, GONG W K, SHI Y Z, SHANG H H, CHEN Q J, GENG H W, YUAN Y L. Major gene + polygene genetic analysis of boll weight in RIL population of 'CCRI70' under various environments. Chinese Agricultural Science Bulletin, 2019, 35(15):128-137. (in Chinese)
[28] 陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
LU P. Descriptors and data standard for foxtail millet germplasm resources. Beijing: China Agriculture Press, 2006. (in Chinese)
[29] HISATO M, HIROKI T, YOHEI M, RYOHEI T, KENJI F. Genetic analysis of NEKODE1 gene involved in panicle branching of foxtail millet, Setaria italica (L.) P. Beauv., and mapping by using QTL-seq. Molecular Breeding, 2016, 36(5):59.
doi: 10.1007/s11032-016-0481-z
[30] SARIKA G, KAJAL K, MEHANATHAN M, Swarup Kumar P, Manoj P. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Reports, 2014, 33(6):881-893.
doi: 10.1007/s00299-014-1564-0
[31] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013, 36(6):1-6.
CAO X W, LIU B, ZHANG Y M. SEA:a software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013, 36(6):1-6. (in Chinese)
[32] 崔月, 陆建农, 施玉珍, 殷学贵, 张启好. 蓖麻株高性状主基因+多基因遗传分析. 作物学报, 2019, 45(7):1111-1118.
doi: 10.3724/SP.J.1006.2019.84127
CUI Y, LU J N, SHI Y Z, YIN X G, ZHANG Q H. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model. Acta Agronomica Sinica, 2019, 45(7):1111-1118. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84127
[33] 方路斌, 罗河月, 陈洁, 李平. 谷子主要农艺性状的相关和主成分分析. 天津农业科学, 2018, 24(11):62-65.
FANG L B, LUO H Y, CHEN J, LI P. Correlation analysis and principal component analysis on major agronomic characters of millet. Tianjin Agricultural Sciences, 2018, 24(11):62-65. (in Chinese)
[34] 李晓宇, 王昆鹏, 刘迎春, 张一波. 谷子主要农艺性状分析. 内蒙古农业大学学报(自然科学版), 2015, 36(2):26-30.
LI X Y, WANG K P, LIU Y C, ZHANG Y B. Analysis on the agronomic traits of millet. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2015, 36(2):26-30. (in Chinese)
[35] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016, 42(1):19-30.
doi: 10.3724/SP.J.1006.2016.00019
WANG H G, JIA G Q, ZHI H, WEN Q F, DONG J L, CHEN L, WANG J J, CAO X Y, LIU S C, WANG L, QIAO Z J, DIAO X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016, 42(1):19-30. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00019
[36] HE Q, ZHI H, TANG S, XING L, WANG S Y, WANG H G, ZHANG A Y, LI Y H, GAO M, ZHANG H J, CHEN G Q, DAI S T, LI J X, YANG J J, LIU H F, ZHANG W, JIA Y C, LI S J, LIU J R, QIAO Z J, GUO E H, JIA G Q, LIU J, DIAO X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theoretical and applied genetics, 2020, 134(2):1-16.
doi: 10.1007/s00122-020-03709-7
[37] 白晓倩, 卢华雨, 于澎湃, 裴忠有, 罗峰, 孙守钧. 粒用高粱×苏丹草杂交F2代农艺性状的数量遗传分析. 江苏农业科学, 2019, 47(19):188-193.
BAI X Q, LU H Y, YU P P, PEI Z Y, LUO F, SUN S J. Quantitative analysis of agronomic traits of Sorghum × Sudangrass F2 generation. Jiangsu Agricultural Sciences, 2019, 47(19):188-193. (in Chinese)
[38] 王铁固, 马娟, 张怀胜, 陈士林. 玉米株高主基因+多基因遗传模型分析. 玉米科学, 2012, 20(4):45-49.
WANG T G, MA J, ZHANG H S, CHEN S L. Genetic analysis on plant height by mixed inheritance model of major genes plus polygenes in maize. Journal of Maize Sciences, 2012, 20(4):45-49. (in Chinese)
[39] VANDANA J, SARIKA G, VIJAY G, MEHANATHAN M, TIRTHANKAR B, NIRALA R, MANOJ P. Genome-wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Scientific Reports, 2019, 9:5020.
doi: 10.1038/s41598-019-41602-6
[40] ZHANG K, FAN G Y, ZHANG X X, ZHAO F, WEI W, DU G H, FENG X L, WANG X M, WANG F, SONG G L, ZOU H F, ZHANG X L, LI S D, NI X M, ZHANG G Y, ZHAO Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3- Genes Genomes Genetics, 2017, 7(5):1587-1594.
[41] 杜希朋, 闫媛媛, 刘伟华, 高爱农, 张锦鹏, 李秀全, 杨欣明, 车永和, 郭小敏. 蚂蚱麦×碧玉麦杂交F2代部分重要农艺性状的遗传分析. 麦类作物学报, 2011, 31(4):624-629.
DU X P, YAN Y Y, LIU W H, GAO A N, ZHANG J P, LI X Q, YANG X M, CHE Y H, GUO X M. Genetic analysis on several important agronomic traits in F2 generation of Mazhamai×Quality. Journal of Triticeae Crops, 2011, 31(4):624-629. (in Chinese)
[42] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020, 46(3):365-384.
doi: 10.3724/SP.J.1006.2020.91044
XIE S F, JI W Q, ZHANG Y Y, ZHANG J J, HU W G, LI J, WANG C Y, ZHANG H, CHEN C H. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat. Acta Agronomica Sinica, 2020, 46(3):365-384. (in Chinese)
doi: 10.3724/SP.J.1006.2020.91044
[43] WANG Z L, WANG J, PENG J X, DU X F, JIANG M S, LI Y F, HAN F, DU G H, YANG H Q, LIAN S C, YONG J P, CAI W, CUI J D, HAN K N, YUAN F, CHANG F, YUAN G B, ZHANG W N, ZHANG L Y, PENG S Z, ZOU H F, GUO E H. QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P. Beauv). Springer Netherlands, 2019, 39:18.
[44] ZHI H, HE Q, TANG S, YANG J J, ZHANG W, LIU H, JIA Y C, JIA G Q, ZHANG A Y, LI Y H, GUO E H, GAO M, LI S J, LI J X, QIN N, ZHU C C, MA C Y, ZHANG H J, CHEN G Q, ZHANG W F, WANG H G, QIAO Z J, LI S G, CHENG R H, XING L, WANG S Y, LIU J R, LIU J, DIAO X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theoretical and Applied Genetics, 2021, 134(9):1-14.
doi: 10.1007/s00122-020-03709-7
[45] 杨坤. 谷子SSR标记连锁图谱构建及几个主要性状QTL分析[D]. 石家庄: 河北师范大学, 2008.
YANG K. Construction of SSR based linkage map and QTL analysis of several important traits in foxtail millet, Setaria italica Beauv[D]. Shijiazhuang: Hebei Normal University, 2008. (in Chinese)
[46] WANG J, WANG Z L, DU X F, YANG H Q, HAN F, HAN Y H, YUAN F, ZHANG L Y, PENG S Z, GUO E H. A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE, 2017, 12:e0179717.
doi: 10.1371/journal.pone.0179717
[47] FANG X M, DONG K J, WANG X Q, LIU T P, HE J H, REN R Y, ZHANG L, LIU R, LIU X Y, LI M, HUANG M Z, ZHANG Z S, YANG T Y. A high density genetic map and QTL for agronomic and yield traits in foxtail millet [ Setaria italica (L.) P. Beauv.]. BMC Genomics, 2016, 17:336.
doi: 10.1186/s12864-016-2628-z
[48] LIU T P, HE J H, DONG K J, WANG X W, WANG W W, YANG P, REN R Y, ZHANG L, ZHANG Z S, YANG T Y. QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genomics, 2020, 21:141.
doi: 10.1186/s12864-020-6553-9
[49] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦株高及其构成因素的遗传及相关性分析. 麦类作物学报, 2011, 31(4):604-610.
YAO J B, REN L J, ZHANG P P, YANG X M, MA H X, YAO G C, ZHANG P, ZHOU M P. Genetic and correlation analysis of plant height and its components in wheat. Journal of Triticeae Crops, 2011, 31(4):604-610. (in Chinese)
[50] 杨兆生, 阎素红, 王俊娟. 不同种植方式下小麦株高构成因素的相关研究. 麦类作物学报, 1999(4):19-22.
YANG Z S, YAN S H, WANG J J. Study on components of wheat plant height under different planting patterns. Journal of Triticeae Crops, 1999(4):19-22. (in Chinese)
[51] 赵万春, 王红. 小麦株高及其构成因素的遗传和相关性研究. 麦类作物学报, 2003(4):28-31.
ZHAO W C, WANG H. Genetic and correlation study on plant height and its components in wheat. Journal of Triticeae Crops, 2003(4):28-31. (in Chinese)
[1] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[2] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[3] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[4] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[5] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[6] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[7] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[8] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[9] WANG LiJian,LUO Cheng,PAN XueFeng,CHEN Xia,CHEN YinJi. Effects of Cellulose Replacing Starch on the Gel Properties of Myofibrillar Protein [J]. Scientia Agricultura Sinica, 2022, 55(11): 2227-2238.
[10] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[11] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
[12] LI ShunGuo, LIU Fei, LIU Meng, CHENG RuHong, XIA EnJun, DIAO XianMin. Current Status and Future Prospective of Foxtail Millet Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 459-470.
[13] GAO ZhiYuan,XU JiLi,LIU Shuo,TIAN Hui,WANG ZhaoHui. Variations of Winter Wheat Nitrogen Harvest Index in Field Wheat Population [J]. Scientia Agricultura Sinica, 2021, 54(3): 583-595.
[14] CHEN Yang,WANG Lei,BAI YouLu,LU YanLi,NI Lu,WANG YuHong,XU MengZe. Quantitative Relationship Between Effective Accumulated Temperature and Plant Height & Leaf Area Index of Summer Maize Under Different Nitrogen, Phosphorus and Potassium Levels [J]. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777.
[15] HAN KeYing,FENG Xiao,YANG YuLing,LI ShanShan,WEI SuMeng,CHEN YuMin. Effects of Camellia Oil on the Properties of Myofibrillar Protein Gel [J]. Scientia Agricultura Sinica, 2021, 54(20): 4446-4455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!