Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 317-331.doi: 10.3864/j.issn.0578-1752.2020.02.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research Progress of SOC Functions and Transformation Mechanisms

ZHANG WeiLi1,KOLBE H2,ZHANG RenLian1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Sächsische Landesanstalt für Landwirtschaft, Waldheimer Straße 219, D-01683 Nossen, Germany
  • Received:2019-06-03 Accepted:2019-09-02 Online:2020-01-16 Published:2020-02-17

Abstract:

Up to end of last century, studies on SOC were mainly concentrated in identifying chemical structures of different organic materials in soil, such as structural characteristics of humic or fulvic acids and their related functions for soil quality. In recent years, focus on SOC has been laid on SOC transformation characteristics in soil, trying to establish the relationship between SOC functions and the grouping according to SOC transformation characteristics. According to the transformation properties, SOC can be divided into two groups, including the stable SOC and the active SOC. The first one refers mainly to the SOC closely combined with clay or fine silt and it is difficult to be decomposed and mineralized by soil microorganisms. Stable SOC belongs to passive and inert SOC pool in soil. The second one refers to SOC, which mainly consists of crop residues and roots after harvesting, crop straws returned to farmland and organic manures applied. The active SOC belongs to nutritive and labile SOC pool in soil. This part of SOC is of great importance to soil fertility. SOC concentration is actually the expression of dynamic equilibrium of two processes. One is the input of organic materials to soil and the other one is the decomposition and mineralization of SOC. When the amount of organic material input is less than the mineralized amount, the SOC concentration and soil fertility will decrease. When the annual input of organic carbon is greater than the annual mineralization amount, the SOC concentration will keep rising until the annual input is equal to the annual mineralized amount. At this moment, SOC concentration will no longer increase and reaches the equilibrium point. Under normal agricultural production conditions, the duration for reaching equilibrium point needs 20 to 30 years. If the active SOC input is in very high level, the dynamic equilibrium system will also lead to a high amount of SOC mineralization annually. In such case, it might lead to a loss of mineral nutrients from soil into water and atmospheric environments, especially mineral nitrogen loss. For the purposes of soil fertility improvement and environmental protection, the active SOC input for farmland should be controlled to the level equal to the annual SOC mineralization amount, sustaining the so-called balance with positive zero. New research shows that the active SOC, after entering soil, is decomposed into a series of short-chain chemical compounds by soil organisms. These short-chain chemical compounds combine with soil mineral particles and form soil organic-mineral aggregates through bioturbation. A lot of soil fertility properties are positively affected by formation of these aggregates. Influenced by humification, decomposition and other processes of SOC, aggregation and disaggregation in soil occur simultaneously and consistently. In order to maintain stability of the total aggregates in soil and to increase soil fertility, sustained and abundant active SOC should be inputted to soil. Variation of SOC concentration depends mainly on climate, soil texture and land use forms. Among the artificial influences, land use form changing has the greatest impact on SOC concentration. In comparison, farming managements, such as fertilization, straw returning, tillage and crop rotation, have much less impacts on SOC concentration. In arable land, crops with different growth periods, tillage and harvesting managements will produce different amounts of above ground residues and root residues after harvesting. Depending on residue quantity and quality, different crops are of different capacity for SOC reproduction. According to the differentiated SOC reproduction capacities, field crops can be divided into two types: SOC increasing crops and SOC consuming crops. For farmland with SOC consuming crops, it is very important to introduce SOC increasing crops in rotation or to apply organic manure or organic materials to field, in order to sustain soil fertility.

Key words: SOC, active SOC, soil fertility, SOC transformation mechanisms, crop rotation

Fig. 1

SOC grouping and its moving mechanism based on soil transformation rate"

Fig. 2

SOC accumulation, decomposition and transformation when the same amount of organic material inputed into soil annually"

Fig. 3

Time required for decomposition of different organic materials in soil"

Fig. 4

Two models of soil aggregates formed with soil humus A Model: Soil aggregates are formed by combination of long-chain humic acids with soil particles. B Model: Soil aggregates are composed of various short-chain substances produced by humification, such as polysaccharides (black), polypeptides (blue), aliphatic compounds (green) and polycyclic lignin fragments (brown). These short-chain substances are combined with soil mineral particles by cations (red) to form aggregates"

Table 1

Effects of organic matter supply from low to balanced grade on soil quality"

土壤质量性状Soil quality property 相对变化范围 Relative increase (%)
物理性状 Physical property
土壤容重 Soil bulk density -13—-3
土壤孔隙度 Soil porosity 1—3.5
土壤团聚体稳定性 Soil aggregates stability 8—34
土壤中大孔隙所占比例 Ratio of macropore to total porosity 8—11
土壤入渗水量 Infiltrated water amount 27—80
土壤水容量 Soil water capacity 3—4
土壤田间持水量(砂质土)Field water holding capacity (sandy soil) 23—28
土壤田间持水量(黏质土)Field water holding capacity (clay soil) 13—15
化学性状 Chemical property
有机碳和总氮含量 SOC & total nitrogen contents 30
土壤可矿化氮量 Soil mineralizable nitrogen content 26—33
土壤阳离子代换量(砂质土)Cation exchange capacity (sandy soil) 20
土壤阳离子代换量(黏质土)Cation exchange capacity (clay soil) 10
生物性状 Biological property
土壤微生物总生物量 Total soil microbial biomass 6—50
蚯蚓密度 Earthworm density 38—40
作物平均产量 Average crop yield increase 10—33
作物最大增产 Maximum crop yield increase 123—127

Table 2

Soil organic matter content (0—20 cm soil depth) in Germany"

分级
Grade
分级释义
Grade interpretation
有机质
OM (g·kg-1)
换算系数
Conversion coefficient
有机碳
SOC (Corg g·kg-1)
1 很低 Very low <10 1.724 <5.8
2 低 Low 10—20 1.724 5.8—11.5
3 中 Medium 20—40 1.724 11.6—23.1
4 较高 A little high 40—80 1.724 23.2—46.3
5 很高 Very high 80—150 1.724 46.4—86.9
6 极端高 Extremely high 150—300 2 87.0—150.0
7 泥炭土 Peat soil >300 2 >150.0

Table 3

Soil Organic matter content (0—30 cm soil depth) in China"

分级
Grade
分级释义
Grade interpretation
有机质
OM (g·kg-1)
换算系数
Conversion coefficient
有机碳
SOC (Corg g·kg-1)
占陆域面积
Ratio to land area (%)
1 很低 Very low ≤5 1.724 ≤2.9 5
2 低 Low 5—10 1.724 2.9—5.8 24
3 较低 A little low 10—15 1.724 5.8—8.7 18
4 中 Medium 15—25 1.724 8.7—14.5 19
5 较高 A little high 25—35 1.724 14.5—20.3 9
6 高 High 35—45 1.724 20.3—26.1 16
7 很高 Very high >45 1.724 >26.1 6

Table 4

Soil organic matter content of different land use forms in Germany"

土地利用类型 Land use form 土壤有机质 Soil OM (g·kg-1)
草地 Grass land 40—150
林地 Forestry land 20—80
耕地 Arable land 10—40

Fig. 5

Effects of soil texture composition on SOC content"

Fig. 6

Interaction of soil texture and rainfall on SOC content"

Fig. 7

Plant and root residue amounts after harvesting of different crops"

Fig. 8

Humus equivalent (Heq) of different crops"

Fig. 9

Humus equivalent (Heq) of different organic manures and materials"

[1] SCHMIDT W I M, TORN M, ABIVEN S, DITTMAR T, GUGGENBERGER G, JANSSENS I A, KLEBER M, KNABNER I K, LEHMANN J, MANNING D A C, NANNIPIER P, RASSET D, WEINERTO S, TRUMBORE S E . Persistence of soil organic matter as an ecosystem property. Nature, 2011,478:49-56.
[2] KOERSCHENS M . Der organische Kohlenstoff im Boden (corg) - Bedeutung, Bestimmung, Bewertung. Archives Agronomy Soil Science, 2010,56:375-392.
[3] KOLBE H, SCHLIEPHAKE W, MUELLER P . Ernte- und Wurzelrückstände und Nährstoffgehalte der Fruchtarten, Nährstoffgehalte organischer Düngemittel sowie Abbauverhalten von organischen Materialien im Boden//Parameterdatensätze von organischen Materialien. Dresden,Germany: Landwirtschaft und Geologie, 2019: 1-89. (in Germany)
KOLBE H, W SCHLIEPHAKE & P MUELLER . Ernte- und Wurzelrückstände und Nährstoffgehalte der Fruchtarten, Nährstoffgehalte organischer Düngemittel sowie Abbauverhalten von organischen Materialien im Boden. In: Parameterdatensätze von organischen Materialien. Schriftenreihe des Landesamtes fuer Umwelt, Landwirtschaft und Geologie, 2019: 1-89. (in Germany)
[4] SAUERBECK D . Funktion, Güte und Belastbarkeit des Bodens aus agrikulturchemischer Sicht. Stuttgart, Germany: Verlag W. Kohlhammer, 1985: 1-260. (in Germany)
[5] KÖRSCHENS M& SCHULZ E . Die organische Bodensubstanz- Dynamik Reproduktion Ökonomisch und ökologisch begründete Richtwerte. UFZ-Bericht, 1999(13):1-46. (in Germany)
[6] HLUG. Untersuchung des Einflusses des Klimawandels auf die CO2- Freisetzung aus Böden ausgewählter hessischer Dauerbeobachtungsflächen . Wiesbaden,Germany: Hessisches Landesamt für Umwelt und Geologie, 2008: 1-52. (in Germany)
[7] HERBST M . Pilotstudie zur Kohlenstoffmodellierung der Dauerversuchsfläche Bonn Dikopshof Modellierung der landwirtschaftlich genutzten Dauerversuchsflächen in NRW . Jülich, Germany: Institut für Bio- und Geowissenschaften, 2010: 1-13. (in Germany)
[8] ANONYM. Klimawandel und Boden Auswirkungen der globalen Erwärmung auf den Boden als Pflanzenstandort. Düsseldorf, Germany: Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen, 2011: 1-27. (in Germany)
[9] KOLBE H, ZIMMER J . Leitfaden zur Humusversorgung. Saechsisches Landesamt fuer Umwelt. Dresden,Germany: Landwirtschaft und Geologie, 2015: 1-61. (in Germany)
[10] KOLBE H, SCHUSTER M . Bodenfruchtbarkeit im Öko-Betrieb. Untersuchungsmethoden. Dresden, Germany: Sächsisches Landesamt für Umwelt,Landwirtschaft und Geologie, 2011: 1-134. (in Germany)
[11] KOLBE H . Verfahren zur Abschätzung von Humusreproduktion und N-Umsatz im ökologischen und konventionellen Ackerbau in Humusreproduktion und N-Umsatz Schriftenreihe des Landesamtes für Umwelt,. Landwirtschaft und Geologie, 2013(1):1-119. (in Germany)
[12] PAUL E A, CLARK F E. Soil microbiology and biochemistry. San Diego,USA:Academic Press, 1996: 34-83.
[13] SIMPSON A J . Molecular structure and associations of humic substances in the terrestrial environment. Naturwissenschaften, 2002,89:84-88.
[14] VERSTRAETE W, TOP E M . Soil clean-up: lessons to remember. Internat. Biodeterioration & Biodegradation, 1999,43:147-153.
[15] LTZ. Untersuchungsergebnisse von Praxisflächen aus den Jahren 1993-2006. Karlsruhe, Germany: Landwirtschaftliches Technologiezentrum Augustenberg Baden-Württemberg, 2015: 1-93. (in Germany)
[16] ANONYM. Bundes-Bodenschutzgesetz. Germany: Bundesministeriums der Justiz und für Verbraucherschutz. 2017: 1-11. (in Germany)
[17] ANONYM. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen. Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-46. (in Germany)
[18] ANONYM. Düngegesetz. Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-11. (in Germany)
[19] ANONYM. Verordnung (EG) Nr. 834/2007 des Rates über die ökologische/ biologische Produktion und Kennzeichnung von ökologischen/ biologischen Erzeugnissen und zur Aufhebung der Verordnung (EWG) Nr. 2092/91 . Brussels: Council of the European Union, 2007: 1-23. (in Germany)
[20] KOLBE H . Zusammenfuehrende Untersuchungen zur Genauigkeit und Anwendung von Methoden der Humusbilanzierung im konventionellen und ökologischen Landbau Bilanzierungsmethoden und Versorgungsniveau für Humus. Schriftenreihe des Sächsischen Landesamtes für Umwelt, 2012(19):1-85. (in Germany)
[21] KOLBE H . Anwendungsbeispiele zur standortangepassten Humusbilanzierung im konventionellen Ackerbau. Informationen für Praxis, Beratung und Schulung. Dresden, Germany: Sächsisches Landesamt für Umwelt,Landwirtschaft und Geologie, 2013: 1-47. (in Germany)
[22] KOLBE H . Anwendungsbeispiele zur standortangepassten Humusbilanzierung im ökologischen Landbau. Informationen fuer Praxis, Beratung und Schulung. Dresden, Germany: Sächsisches Landesamt für Umwelt,Landwirtschaft und Geologie, 2013: 1-101. (in Germany)
[23] ANONYM. Bodenkundliche Kartierunganleitung. Hannover,Germany: Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten, 2005: 1-25. (in Germany)
[24] 全国土壤普查办公室. 中国土壤图有机质含量分布图(1:400万比例尺). 西安: 西安地图出版社, 1996.
National Soil Survey Office. Map of China Soil Organic Matter Content (Scale 1: 4 000 000). Xi'an: Xi'an Map Publishing House, 1996. (in Chinese)
[25] DUEWEL O, UTERMANN J. Humusversorgung der (Ober-) Böden in Deutschland - Status Quo. In: Huettl R: Zum Stand der Humusversorgung von Böden in Deutschland Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung Band 7. Cottbus, Germany: Brandenburgische Technische Universität, 2008: 129-136. (in Germany)
[26] KOLBE H . Auswirkungen differenzierter Land- und Bodenbewirtschaftung auf den C- und N-Haushalt der Böden unter Berücksichtigung konkreter Szenarien der prognostizierten Klimaänderung im Freistaat Sachen. Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie, 2009 (23):1-143. (in Germany)
[27] LBGR. Auswertung des Fachinformationssystems Bodengeologie des Landes Brandenburg nach den Bodengruppen zur Düngung und den Gehalten an organischem Kohlenstoff bzw der organischen Bodensubstanz (Glühverlust) auf Grundlage der Bodenübersichtskarte 1:3000.000. Cottbus, Germany: Landesamt für Bergbau, Geologie und Rohstoffe des Landes Brandenburg, 2015. (in Germany)
[28] CAPRIEL P . Standorttypische Humusgehalte von Ackerböden in Bayern. Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft, 2010(5):1-23. (in Germany)
[29] ROGASIK J . Humusbilanz und Maßnahmen für optimale Humusgehalte. Braunschweig,Germany: Institut für Pflanzenernährung und Bodenkunde FAL, 2005: 1-31. (in Germany)
[30] KOLBE H. Nährstoff- und Humusversorgung. In: Gute fachliche Praxis - Bodenfruchtbarkeit. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz. AID, 2016(4):50-58. (in Germany)
[31] VDLUFA. Humusbilanzierung-Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Darmstadt, Germany: VDLUFA-Standpunkt, 2004: 1-13. (in Germany)
[32] VDLUFA. Humusbilanzierung-Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland. Darmstadt, Germany: VDLUFA-Standpunk, 2014: 1-11. (in Germany)
[33] KOLBE H . Site-adjusted organic matter-balance method for use in arable farming systems. Journal of Plant Nutrition and Soil Science, 2010, 173:678-691.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHANG YeJun,ZHANG DeQuan,HOU ChengLi,BAI YuQiang,REN Chi,WANG Xu,LI Xin. Effects of Protein Phosphorylation on the Dissociation and Acetylation Level of Actomyosin [J]. Scientia Agricultura Sinica, 2022, 55(7): 1433-1444.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] ZHANG Jie,WANG Chuan,DONG XiaoXia,ZHU WenQi,YUE HuiLi,LIU ShengPing,ZHOU QingBo. Development and Application of Rapid Investigation and Analysis Platform for Agricultural and Rural Information Based on Fission Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4158-4174.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[8] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[9] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[10] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[11] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[14] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[15] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!