Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 332-345.doi: 10.3864/j.issn.0578-1752.2020.02.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Soil Organic Carbon Management and Farmland Organic Matter Balance Method

ZHANG WeiLi1,KOLBE H2,ZHANG RenLian1,JI HongJie1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Sächsische Landesanstalt für Landwirtschaft, Waldheimer Straße 219, D-01683 Nossen, Germany;
  • Received:2019-06-03 Accepted:2019-09-02 Online:2020-01-16 Published:2020-02-17

Abstract:

Progress of soil and fertilizer research work has promoted establishment of scientific recommendation for mineral nutrient requirements of major crops in different regions and counties. These quantitative and precise indicators have become the basis of scientific fertilization and ensured yield, income, and fertilizer efficiency increase and environmental safety. While application of organic manure, green manure and straw returning are the main measures to fertilize soil, studies have showed that excessive organic manure application will result in not only energy and resource waste, but also nutrient release and environmental pollution. Up to now, however, there are still no scientific and quantitative indicators for farmland fertilization in international arena. In recent years, a new method tried in Germany might break the deadlock. The purpose of this paper was to introduce the principle, application scope and examples of the method, so as to provide useful experience for China. The scientific basis of the method is the humus equivalent values (Heq) of crops and organic manures, and materials derived from long-term experiments in different regions. The Heq values of different crops is applied to identify the SOC changes caused by different crops under their typical production conditions. The Heq values of different manures and organic materials is applied to characterize the soil humus producing capacity after these materials applied to farmland. Through Heq value, the deficit or surplus of soil humus caused by crops and the increase of soil humus caused by straw returning or organic manure application can be analyzed and calculated on one unified dimension basis. In many states of Germany and in Austria, the method has been used as officially recommended approach. It was suitable for both integrated farming system and organic farming system. For organic farming system, where mineral nitrogen fertilizers were not allowed to apply, the method could also be used as nitrogen nutrient management approach. A large amount of field tests showed that yield increases arrived to 50%-150%, when SOC management level raised from "low" to "balanced" by using the method. Organic matter balance method, specifically designed for farmers, is a region condition identified, group classified and accurately quantified farming’s management approach. A five-grade evaluation, which was consistent with other methods designed for farmers in Germany, was also adopted in the method. In the five grade evaluation system, name, definitions and interpretation of each grade were nation-wide unified. This was achieved by summarizing a large amount of long-term experiments and farmers surveys from all of the major agricultural areas with different climate, soil and crop production conditions. The unified name and definitions were validated in different regions to ensure the stability of the evaluation indexes. This simplified, unified, and stable evaluation system has showed strong advantages both for learning by farmers and for making relationships between farming’s management measures in practice and subsidy policies for environment. Names, definitions and interpretation of the five grades were the front indexes of the method. The ranges of Heq values in corresponding to the five grades, the Heq values of different crops, manures and organic materials were regarded as the professional indexes or parameters to support the front indexes. These professional parameters were allowed to be adjusted in accordance with local conditions by agricultural research institutions without changing of the unified front indexes. By this way, the method stability, expansibility, scientificity and extensibility in farming’s practice were improved greatly. The architecture composed of front and background indexes designed for farmers for farming’s management is also worthy of our reference. For application of the approach in China, main difficulty is to develop Heq values suitable for crops and agricultural condition in China. Since the sum of qualified long-term experiments in China are limited, we can try to develop the Heq values by use of the available long-term experiments in combination with short-term experiments, simulation experiments as well as site-specific farmland survey in different major agricultural regions in China. To speed up the work, parameter development, calibration, improvement and field demonstration might be done simultaneously.

Key words: SOC management, organic matter balance, nonpoint-source pollution control, organic farming, technique index designed for farmers

Table 1

Humus requirements measured and derived by balance calculation from optimal fertilization treatments of long-term experiments"

试验所在地
Experiment site
起始年份
Starting year
有机物质量 OM (t·hm-2·a-1)
实测值 Measured 平衡计算 Balanced
Bad Lauchstädt[19] 1902/1978 10 13
Methau[20] 1966 10 13
Spröda[20] 1966 10 13
Müncheberg[21] 1962 8 13
Braunschweig 1952 10 13
Groß Kreutz[22,23,24] 1967 10-15 13
Thyrow[25] 1938 10 10.2
Speyer[26] 1958/1983 15 12.7
中间值 Median 10.7 12.6

Table 2

Humus equivalents (Heq) of crops"

主要作物
Major crop1)
有机质碳当量 Heq (Corg kg·hm-2·a-1)
低值 Low absolute value 高值 High absolute value
糖用甜菜和饲用甜菜,含甜菜种子生产在内 Sugar & fodder beet including seed production -760 -1300
马铃薯、表3第I组作物 Potato and Group I in Table 3 -760 -1000
青贮玉米、籽粒玉米、表3第II组作物 Silage corn, kernel corn and Group II in Table 3 -560 -800
谷物、油料、纤维作物、向日葵、表3第III组作物
Cereal, oil, fibre crops, sunflower & Group III in Table 3
-280 -400
籽粒豆科作物 Seed leguminous 160 240
多年生饲草,含豆科饲草、禾本科饲草、混合饲草
Perennial forage: including leguminous, gramineous and mixed forages
低产水平2)
Low yield
高产水平3)
High yield
进入主使用期后每一年 Every main using year 600 800
播种年: 春季种子撒播 Sowing year: Spring broadcast sowing 400 500
播种年: 草皮覆盖移栽 Sowing year: Turf transplanting 300 400
播种年: 间作套播 Sowing year: Under sowing intercropping 200 300
播种年: 夏季种子撒播 Sowing year: Summer broadcast sowing 100 150
间作作物(地上收获物运送出田) Intercropping crops (harvests aboveground transported out of field)4)
冬季间作作物 Winter intercropping crops 120 160
普通间作作物 Common intercropping crops 80 120
套播间作作物 Under sowing intercropping crops 200 300
休耕地 Fallow land
休耕地的自绿化 Self-greening of fallow farmland
自头年秋季开始休耕 Begin since last autumn 180
自当年春季开始休耕 Begin since spring 80
休耕地的人工绿化 Artificial greening of farmland
去年夏季开始绿化 Begin since last summer 700
当年春季始开始绿化 Begin since spring 400

Table 3

Grouping of Humus Equivalents (Heq) for vegetables, perfume, condiment and pharmaceutical crops"

分组 Group 作物 Crop
第I组
Group I
花椰菜、西兰花、大白菜、毛地黄、黄瓜、块茎芹菜、南瓜、韭菜、大黄、紫甘蓝、番茄、芹菜、甘蓝、皱叶甘蓝、西葫芦、甜瓜
Cauliflower, broccoli, chinese cabbage, foxglove, cucumber, celeriac, pumpkin, leek, rhubarb, red cabbage, bar tomato, celery, cabbage, kale, zucchini, sugar melon
第II组
Group II
茄子、根用菊苣、桂竹香、甘菊、大蒜、芜青甘蓝、蜀葵、胡萝卜、山葵、菜椒、辣椒、欧洲防风草,万寿菊,白屈菜,婆罗门参,金光菊,甜玉米
Eggplant, chicory (root), gold lacquer, chamomile, garlic, turnip, mallow, carrot, horseradish, paprika, parsnip, marigold, celandine, salsify, coneflower, sweet corn
第III组
Group III
问荆、旋复花、药用香菜、缬草,山金车花、山香薄荷、茴芹、皱叶欧芹、香菜、香薄荷、琉璃苣,荨麻,莳萝,白花枝子花、蜀葵,土茴香、风轮菜、药用蜀葵、莴苣、玻璃生菜、菊苣、当归、草莓、龙蒿、纤维作物、大田生菜、大茴香、秋麒麟草,青豌豆、羽衣甘蓝、啤酒花、圣约翰草、球茎甘蓝,球叶莴苣、矢车菊,荷兰芹、红叶生菜、独活草、墨角兰、糖莴苣、小白菊、月见草、薄荷、菊苣、萝卜、小水萝卜、萝蔓莴苣、红甜菜,鼠尾草,西洋蓍草、细香葱、菠菜,长叶车前草,架菜豆、烟草、百里香、根用香菜,香蜂草、洋葱
Field horsetail, Alant, Dried fennel, Valerian, Bergarnika, Mountain savory, Beaver, Parsley, Savory, Borage, Stinging nettle, Bush bean, Scorpionfish, Dill, Dost, Marshmallow, Sage lettuce, Iceberg lettuce, Endive, Angelica, Strawberry, Tarragon, Fiber crops, Field salad, Fennel (large-fruited), goldenrod, green pea, kale, hops, St. John's wort, kohlrabi, lettuce, cornflower, caraway, lollo, lovage, marjoram, chard, feverfew, evening primrose, oilseed, peppermint, radicchio, radishes, radish, Romana, beet, sage , Yarrow, chives, spinach, ribwort, barley bean, tobacco, thyme, root parsley, lemon balm, onion

Table 4

Humus equivalents (Heq) of organic manures and materials"

有机物料
Organic material
干物质含量
Dry matter content (%)
有机质碳当量
Heq Corg kg·t-1 fresh material
植物类 Plant materials
秸秆 Straw 86 100
绿肥、甜菜叶、残次菜叶 Green manure, beet leave, residual leave 10 8
绿植切碎物 Cut green plant 20 16
厩肥 Manures
鲜粪 Fresh manure 20 28
30 40
沤肥 Anaerobic compost 25 40
35 56
堆肥 Compost 35 62
55 96
流质厩肥 Slurry
猪厩 Pig stable 4 4
8 8
牛厩 Cattle stable 4 6
7 9
10 12
禽厩(粪便)Poultry stables (feces) 15 12
25 22
35 30
45 38
生物垃圾 Biological wastes
未腐熟1)Non-decomposed 20 30
40 62
鲜堆肥1)Fresh compost 30 40
50 66
堆肥制品*)Composting products 40 46
50 58
60 70
污泥 Sludges
未加添加剂
No additives
10 8
15 12
25 28
35 40
45 52
加入石灰稳定剂 With lime stabilizer 20 16
25 20
35 36
45 46
55 56
其他 Others
牛粪堆肥 Cow manure compost 30 60
50 100
湖泥和塘泥 Lake & pond mud 10 10
40 40
生物能源发酵设施产出物 Bioenergy fermentation facility output
液体 Liquid 4 6
7 9
10 12
固体 Solid 25 36
堆肥 Compost 35 50
30 40
60 70

Table 5

Five grade system for evaluating organic matter supply of farmland in integrated farming system"

分级名
Grade
分级释义
Definition
有机质碳当量
Heq Corg kg·hm-2·a-1
评价
Evaluation
推荐
Recommendation
A 很低
Very low
<-200 对土壤肥力和产量有负面影响
Negative influences on soil fertility and yield
改变轮作或增加有机肥用量
Change rotation or increase organic fertilizers
B
Low
-200—-76 中期尚可承受
Medium-term affordable
需要改变轮作或增施有机肥实现平衡
Changing rotation or increasing organic fertilizer to achieve balance
C 达到平衡
Balance
-75—100 农田投入的有机质量与有机质矿化量达到平衡 Balance between organic matter input to farmland and SOC mineralization achieved 无 No
D
High
101—300 中期尚可承受 Medium-term affordable 需要改变轮作或减施有机肥实现平衡
Changing rotation or decreasing organic fertilizer to achieve balance
E 很高
Very high
> 300 有机质矿化量升高导致养分流失和肥料利用率下降
Increased mineralization leads to nutrient loss and fertilizer efficiency decrease
注意避免农田过量用氮
Excessive nitrogen input in farmland should be avoided

Table 6

Five grade system for evaluating organic matter supply of farmland in organic farming system"

分级名
Grade
分级释义
Definition
有机质碳当量
Heq Corg kg·hm-2·a-1
评价
Evaluation
推荐
Recommendation
A 很低
Very low
< -200 对土壤肥力和产量有负面影响
Negative influences on soil fertility and yield.
改变轮作或增加有机肥用量
Change rotation or increase organic fertilizers
B
Low
-200—-1 中期尚可承受
Medium-term affordable
需要改变轮作或增施有机肥实现平衡
Changing rotation or increasing organic fertilizer to achieve balance
C 达到平衡
Balance
0—300 农田投入的有机质量与有机质矿化量达到平衡
Balance between organic matter input to farmland and SOC mineralization achieved.
无 No
D
High
301—500 中期尚可承受 Medium-term affordable 需要改变轮作或减施有机肥实现平衡
Changing rotation or decreasing organic fertilizer to achieve balance
E 很高
Very high
> 500 有机质矿化量升高导致养分流失和肥料利用率下降 Increased mineralization leads to nutrient loss and fertilizer efficiency decrease 注意避免农田过量用氮
Excessive nitrogen input in farmland should be avoided

Table 7

Example——Organic matter requirement in one crop rotation"

种植年份
Year
轮作作物
Crop
有机质碳当量
Heq (Corg kg·hm-2·a-1)
1 马铃薯 Potato -760
2 冬小麦 Winter wheat -280
3 冬大麦 Winter barley -280
4 豌豆 Peas 160
5 冬黑麦 Winter rye -280
套播间作作物
Under sowing intercropping crops
200
6 苜蓿 Alfalfa 600
合计 Sum -640

Table 8

Example——Organic matter produced by organic fertilizer application in the rotation"

种植年份
Year
轮作作物
Crop
有机肥 Organic fertilizers 有机肥折Heq值 Convert to Heq
种类 Type 用量 Rate (t·hm-2) Corg kg·t-1 Corg kg·hm-2
1 马铃薯 Potato 沤肥 Anaerobic compost (dry matter 25%) 20 40 800
2 冬小麦 Winter wheat 秸秆 Straw 3 110 330
3 冬大麦 Winter barley
4 豌豆 Peas
5 冬黑麦 Winter rye
套播间作作物
Under sowing intercropping crops
6 苜蓿 Alfalfa
合计 Sum 1130

Table 9

Example——Balance of organic matter input and expenditure"

项目 Item 有机质碳当量 Heq (Corg kg·hm-2)
作物有机质碳当量合计值 Sum of crop Heq in whole rotation -640
有机肥的有机质碳当量合计值 Organic fertilizer Heq sum 1130
整个轮作的有机质碳当量收支计算 Balance of Heq input and expenditure in whole rotation 490
一年的有机质碳当量收支计算 Balance of Heq input and expenditure in one year 82

Fig. 1

Effects of soil organic matter supply on yield stability of farmland"

[1] 张维理, 冀宏杰, Kolbe H, 徐爱国 . 中国农业面源污染形势估计及控制对策 II. 欧美国家农业面源污染状况及控制. 中国农业科学, 2004,37(7):1018-1025.
ZHANG W L, JI H J, KOLBE H, XU A G . Estimation of agricultural non-point source pollution in China and the alleviating strategies II: Status of agricultural non-point source pollution and the alleviating strategies in European and American countries. Scientia Agricultura Sinica, 2004,37(7):1018-1025. (in Chinese)
[2] 张维理, 徐爱国, 冀宏杰, Kolbe H . 中国农业面源污染形势估计及控制对策 III. 中国农业面源污染控制中存在问题分析. 中国农业科学, 2004,37(7):1026-1033.
ZHANG W L, XU A G, JI H J, KOLBE H . Estimation of agricultural non-point source pollution in China and the alleviating strategies III. A review of policies and practices of agricultural non-point source pollution in China. Scientia Agricultura Sinica, 2004,37(7):1026-1033. (in Chinese)
[3] VDLUFA. Phosphorduengung nach Bodenuntersuchung und Pflanzenbedarf. Darmstadt, Germany:VDLUFA-Standpunkt, 1997: 1-9. (in Germany)
[4] VDLUFA. Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf Richtwerte für die Gehaltsklasse C. Darmstadt, Germany: VDLUFA-Standpunkt, 1999: 1-11. (in Germany)
[5] VDLUFA. Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Darmstadt,Germany: VDLUFA Standpunkt, 2000: 1-12. (in Germany)
[6] ANONYM. Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (Bodenschätzungsgesetz -BodSchätzG). Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2007. (in Germany)
[7] FAO-Statistics. 1971-2015.
[8] KOLBE H, ZIMMER J . Leitfaden zur Humusversorgung. Dresden, Germany: Saechsisches Landesamt fuer Umwelt. Landwirtschaft und Geologie, 2015: 1-61. (in Germany)
[9] VDLUFA. Humusbilanzierung-Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. Darmstadt,Germany: VDLUFA Standpunk, 2004: 1-13. (in Germany)
[10] VDLUFA. Humusbilanzierung-Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland. Darmstadt, Germany: VDLUFA-Standpunkt, 2014, 1-11. (in Germany)
[11] 张维理, Kolbe H, 张认连 . 土壤有机碳作用及转化机制研究进展. 中国农业科学, 2020,53(2):317-331.
ZHANG W L, KOLBE H, ZHANG R L . Research progress: SOC functions and transformation mechanisms. Scientia Agricultura Sinica, 2020,53(2):317-331. (in Chinese)
[12] KÖRSCHENS M, SCHULZ E . Die organische Bodensubstanz- Dynamik - Reproduktion - Ökonomisch und ökologisch begründete Richtwerte. Germany: UFZ Bericht, 1999: 1-46. (in Germany)
[13] WALDMANN F, WEINZIERL W . Organische Kohlenstoffvorräte der Böden Baden-Württembergs in Abhängigkeit von Bodentyp, Bodenart, Klima und Landnutzung. Forschungsbericht KLIMOPASS. Karlsruhe, Germany: Landesamt für Umwelt, Messungen und Naturschutz Baden-Württemberg, 2014. (in Germany)
[14] WIESMEIER M . Der Humuskörper bayerischer Böden im Klimawandel- Auswirkungen und Potenziale. Augsburg Germany: Bayerisches Landesamt für Umwelt, 2014: 1-41. (in Germany)
[15] SCHMIDT W I M, TORN M, ABIVEN S, DITTMAR T, GUGGENBERGER G, JANSSENS I A, KLEBER M, KNABNER I K, LEHMANN J, MANNING D A C, NANNIPIER P, RASSET D, WEINERTO S, TRUMBORE S E . Persistence of soil organic matter as an ecosystem property. Nature, 2011,478:49-56.
[16] ANONYM. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen. Germany: Bundesministerium der Justiz und für Verbraucherschutz, 2012: 1-33. (in Germany)
[17] ANONYM. Düngegesetz. Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 2017: 1-9. (in Germany)
[18] ANONYM. Bundes-Bodenschutz- und Altlastenverordnung Germany: Bundesministeriums der Justiz und für Verbraucherschutz, 1999: 1-21. (in Germany)
[19] KÖRSCHENS M, STEGEMANN K, PFEFFERKORN A, WEISE V, MÜLLER A . Der Statische Düngungsversuch Bad Lauchstädt nach 90 Jahren. Stuttgart-Leipzig, Germany: B. G Teubner Verlagsgesellschaft, 1994: 1-71. (in Germany)
[20] ALBERT E . Wirkung einer langjährig differenzierten mineralisch- organischen Düngung auf Ertragsleistung, Humusgehalte und N-Bilanz. UFZ-Bericht, 1999(24):59-62. (in Germany)
[21] ROGASIK J, SCHROETTER S, FUNDER U, SCHNUG E, KURTINECZ P . Long-term fertilizer experiments as a data base for calculating the carbon sink potential of arable soils. Prague: International Workshop “Practical solutions for managing optimum C and N content in agricultural soils, 2003: 45-56.
[22] ASMUS F . Ergebnisse aus einem langjährigen Dauerversuch zur organisch-mineralischen Düngung auf Tieflehm-Fahlerde. Arch Acker Pfl Boden, 1995,39:359-367. (in Germany)
[23] ZIMMER J & PRYSTAV W. Mitteilungen der Untersuchung. Dresden, Germany: Saechsisches Landesamt fuer Umwelt. Landwirtschaft und Geologie, 2003: 1-17. (in Germany)
[24] ZIMMER J, ROSCHKE M . Einfache Reproduktion der organischen Bodensubstanz auf Sandstandorten - Erfahrungen aus Dauerversuchen im Land Brandenburg. VDLUFA-Schriftenreihe 2001: 481-489. (in Germany)
[25] LETTAU T, ELLMER F . Kohlenstoffgehalte und -bilanzen nach langjährig differenzierter Düngung eines Sandbodens - Ergebnisse aus einem Dauerfeldversuch. VDLUFA-Schriftenreihe, 1997: 46-52. (in Germany)
[26] BISCHOFF R, EMMERLING R . Auswirkungen differenzierter organischer und mineralischer Düngung auf die Nährstoffsalden und Bodengehalte - Ergebnisse langjähriger Dauerversuche. VDLUFA- Schriftenreihe, 2004: 59-67. (in Germany)
[27] VDLUFA. Humusbilanzierung Ökologischer Landbau. Darmstadt, Germany:VDLUFA-Standpunkt, 2013: 1-11. (in Germany)
[28] KOLBE H . Zusammenführende Untersuchungen zur Genauigkeit und Anwendung von Methoden der Humusbilanzierung im konventionellen und ökologischen Landbau//Bilanzierungsmethoden und Versorgungsniveau für Humus. Schriftenreihe des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie, 2012(19):1-85. (in Germany)
[29] KOLBE H . Site-adjusted organic matter-balance method for use in arable farming systems. Journal of Plant Nutrition and Soil Science, 2010,173:678-691.
[30] 张维理, 徐爱国, 张认连, 冀宏杰 . 我国耕地保育技术创新不足已危及粮食安全与环境安全. 中国农业科学, 2015,48(12):2374-2378.
ZHANG W L, XU A G, ZHANG R L, JI H J . Shortage of innovative technology for arable land fertility management endangered food security and environmental safety in China. Scientia Agricultura Sinica, 2015,48(12):2374-2378. (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!