Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 117-121.doi: 10.3864/j.issn.0578-1752.2020.01.011

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF CUCUMBER • Previous Articles     Next Articles

Molecular Biology of Important Agronomic Traits in Cucumber

ShengPing ZHANG,XingFang GU   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Biology and Germplasm Creation, Ministry of Agriculture and Rural Areas, Beijing 100081
  • Received:2019-12-14 Accepted:2019-12-30 Online:2020-01-01 Published:2020-01-19
[1] http://www.fao.org/faostat/en/#data , 2019.
[2] HUANG S W, LI R Q, ZHANG Z H, LI L, GU X F, FAN W, LUCAS W J, WANG X W, XIE B Y, NI P X, REN Y Y, ZHU H M, LI J, LIN K, JIN W W, FEI Z J, LI G C, STAUB J E, KILIAN A, VAN DER VOSSEN E A G , et al. The genome of the cucumber, Cucumis sativus L. Nature genetics, 2009,41:1275-1281.
[3] YANG L M, KOO D H, LI Y H, ZHANG X J, LUAN F S, HAVEY M, JIANG J M, WENG Y Q . Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant Journal, 2012,71(6):895-906.
[4] LI Q, LI H B, HUANG W, XU Y C, ZHOU Q, WANG S H, RUAN J, HUANG S W, ZHANG Z H . A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience, 2019,8:1-10.
[5] QI J J, LIU X, SHEN D, MIAO H, XIE B Y, LI X X, ZENG P, WANG S H, SHANG Y, GU X F, DU Y C, LI Y, LIN T, YUAN J H, YANG X Y, CHEN J F, CHEN H M, XIONG X Y, HUANG K, FEI Z J, MAO L Y, TIAN L, STÄDLER T, RENNER S S, KAMOUN S, LUCAS W J, ZHANG Z H, HUANG S W . A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature genetics, 2013,45:1510
[6] ZHANG W W, PAN J S, HE H L, ZHANG C, LI Z, ZHAO J L, YUAN X J, ZHU L H, HUANG S W, CAI R . Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theoretical and Applied Genetics,
[7] ZHOU Q, MIAO H, LI S, ZHANG S P, WANG Y, ZHANG Z H, HUANG S W, GU X F . A sequencing-based linkage map enables precise localization of Mendelian genes and quantitative trait loci in cucumber. Molecular Plant, 2015,8(6):961-963.
[8] KANG H X, WENG Y Q, YANG Y H, ZHANG Z H, ZHANG S P, MAO Z C, CHENG G H, GU X F, HUANG S W, XIE B Y . Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theoretical and Applied Genetics, 2010,122:795-803.
[9] AMANO M, MOCHIZUKI A, KAWAGOE Y, IWAHORI K, NIWA K, SVOBODA T, MAEDA T, IMURA Y . High-resolution mapping of zym, a recessive gene for zucchini yellow mosaic virus resistance in cucumber. Theoretical and Applied Genetics, 2013,126(12):2983-2993.
[10] ZHANG S P, MIAO H, YANG Y H, XIE B Y, WANG Y, GU X F . A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Molecular Breeding, 2014,34(4):1805-1815.
[11] WANG Y H, VANDENLANGENBERG K, WEN C L, WEHNER T C, WENG Y Q . QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping‑by‑sequencing in RIL population. Theoretical and Applied Genetics, 2018,131(3):597-611.
[12] WIN K T, VEGAS J, ZHANG C Y, SONG K, LEE S . QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods. Theoretical and Applied Genetics, 2017,130:199-211.
[13] ZHANG S P, LIU S L, MIAO H, SHI Y X, WANG M, WANG Y, LI B J, GU X F . Inheritance and QTL mapping of resistance to gummy stem blight in cucumber stem. Molecular Breeding, 2017,37(4):49.
[14] SŁOMNICKA R, OLCZAK-WOLTMAN H, KORZENIEWSKA A, GOZDOWSKI D, NIEMIROWICZ-SZCZYTT K, BARTOSZEWSKI G . Genetic mapping of psl locus and quantitative trait loci for angular leaf spot resistance in cucumber. Molecular Breeding, 2018,38:111.
[15] PAN J S, TAN J Y, WANG Y H, ZHENG X Y, OWENS K, LI D W, LI Y H, WENG Y Q . STAYGREEN (CsSGR) is a candidate for the anthracnose(Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theoretical and Applied Genetics, 2018,131(7):1577-1587.
[16] WANG Y H, TAN J Y, WU Z M, VANDENLANGENBERG K, WEHNER T C, WEN C L, ZHENG X Y, OWENS K, THORNTON A, BANG H H, HOEFT E, KRAAN P A G, SUELMANN J, PAN J S, WENG Y Q . STAYGREEN, STAY HEALTHY: A loss-of- susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytologist, 2019,221(1):415-430.
[17] XIN T X, ZHANG Z, LI S, ZHANG S, LI Q, ZHANG Z H, HUANG S W, YANG X Y . Genetic regulation of ethylene dosage for cucumber fruit elongation. The Plant Cell, 2019,31:1063-1076.
[18] YANG L M, LIU H Q, ZHAO J Y, PAN Y P, CHENG S Y, LIETZOW C D, WEN C L, ZHANG X L, WENG Y Q . LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. The Plant Journal, 2018,95:834-847.
[19] ZHANG C W, CHEN F F, ZHAO Z Y, HU L L, LIU H Q, CHENG Z H, WENG Y Q, CHEN P, LI Y H . Mutations in CsPID encoding a Ser/Thr protein kinase are responsible for round leaf shape in cucumber(Cucumis sativus L.). Theoretical and Applied Genetics, 2018,131(6):1379-1389.
[20] GUO C L, YANG X Q, WANG Y L, NIE J T, YANG Y, SUN J X, DU H, ZHU W Y, PAN J, CHEN Y, LV D, HE H L, LIAN H L, PAN J S, CAI R . Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus. Theoretical and Applied Genetics, 2018,131:1-12.
[21] YANG X Q, ZHANG W W, HE H L, NIE J T, BIE B B, ZHAO J L, REN G L, LI Y, ZHANG D B, PAN J S, CAI R . Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber(Cucumis sativus L.). The Plant Journal, 2014,78:1034-1046.
[22] BO K L, MIAO H, WANG M, XIE X X, SONG Z C, XIE Q, SHI L X, WANG W P, WEI S, ZHANG S P, GU X F . Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theoretical and Applied Genetics, 2019,132(1):27-40.
[23] PAN Y P, QU S P, BO K L, GAO M L, HAIDER K R, WENG Y Q . QTL mapping of domestication and diversifying selection related traits in round‑fruited semi‑wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics, 2017,130:1531-1548.
[24] WANG C H, XIN M, ZHOU X Y, LIU C H, LI S G, LIU D, XU Y, QIN Z W . The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber. Plant Molecular Biology, 2017,95:519-531.
[25] JIAO J Q, LIU H Q, LIU J, CUI M M, XU J, MENG H W, LI Y H, CHEN S X, CHENG Z H . Identification and functional characterization of APRR2 controlling green immature fruit color in cucumber(Cucumis sativus L.). Plant Growth Regulation, 2017,83:233-243.
[26] LI Y H, WEN C L, WENG Y Q . Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theoretical and Applied Genetics, 2013,126(8):2187-2196.
[27] LI S, PAN Y P, WEN C L, LI Y H, LIU X F, ZHANG X L, BEHERA T K, XING G M, WENG Y Q . Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber. Theoretical and Applied Genetics, 2016,129(5):1007-1022.
[28] XIE Q, LIU P N, SHI L X, MIAO H, BO K L, WANG Y, GU X F, ZHANG S P . Combined fine mapping, genetic diversity and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. Theoretical and Applied Genetics, 2018,131(6):1-14.
[29] MIAO H, ZHANG S P, WANG M, WANG Y, WENG Y Q, GU X F . Fine mapping of virescent leaf genev-1 in cucumber(Cucumis sativus L.). International Journal of Molecular Sciences, 2016(17):1602.
[30] SHEN J J, ZHANG Y Q, GE D F, WANG Z Y, SONGA W Y, GUA R, CHE G, CHENG Z H, LIU R Y, ZHANG X L . CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proceedings of the National Academy of Sciences of the USA, 2019,116(34):17105-17114.
[31] WEN C L, ZHAO W S, LIU W L, YANG L M, WANG Y H, LIU X W, XU Y, REN H Z, GUO Y D, LI C, LI J G, WENG Y Q, ZHANG X L . CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development, 2019,146(14): dev180166.
[32] HAN Y K, ZHAO F Y, GAO S, WANG X Y, WEI A M, CHEN Z G, LIU N, TONG X Q, FU X M, WEN C L, ZHANG Z X, WANG N G, DU S L . Fine mapping of a male sterility gene ms-3 in a novel cucumber(Cucumis sativus L.) mutant. Theoretical and Applied Genetics, 2018,131(2):449-460.
[33] PAN Y P, QU S P, BO K L, GAO M L, HAIDER K R, WENG Y Q . QTL mapping of domestication and diversifying selection related traits in round‑fruited semi‑wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics, 2017,130:1531-1548.
[34] SHANG Y, MA Y S, ZHOU Y, ZHANG H M, DUAN L X, CHEN H M, ZENG J G, ZHOU Q, WANG S H, GU W H, LIU M, REN J W, GU X F, ZHANG S P, WANG Y, YASUKAWA K, BOUWMEESTER H J, QI X Q, ZHANG Z H, LUCAS W J, HUANG S W . Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 2014,346:1084-1088.
[35] YANG S, CAI Y l, LIU X W, DONG M M, ZHANG Y Q, CHEN S Y, ZHANG W B, LI Y J, TANG M, ZHAI X L, WENG Y Q, REN H Z . A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber. Journal of Experimental Botany, 2018,69(8):1887-1902.
[36] YANG S, WEN C L, LIU B, CAI Y L, XUE S D, BARTHOLOMEW E S, DONG M M, JIAN C, XU S, WANG T, QI W Z, PANG J N, MA D H, LIU X W, REN H Z . A CsTu-TS1 regulatory module promotes fruit tubercule formation in cucumber. Plant Biotechnology Journal, 2019,17(1):289-301.
[37] LIU X F, NING K, CHE G, YAN S S, HAN L J, GU R, LI Z, WENG Y Q, ZHANG X L . CsSPL functions as an adaptor between HD‐ZIP III and CsWUS transcription factors regulating anther and ovule development in Cucumis sativus(cucumber). The Plant Journal, 2018,94:535-547.
[38] ZHAO J Y, JIANG L, CHE G, PAN Y P, LI Y Q, HOU Y, ZHAO W S, ZHONG Y T, DING L, YAN S S, SUN C Z, LIU R Y, YAN L Y, WU T, LI X X, WENG Y Q, ZHANG X L . A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. The Plant Cell, 2019,31(6):1289-1307.
[49] 蔡和序, 薄凯亮, 周琪, 苗晗, 董邵云, 顾兴芳, 张圣平 . 黄瓜幼苗下胚轴长度GWAS分析及候选基因挖掘. 中国农业科学, 2020,53(1):122-132.
CAI H X, BO K L, ZHOU Q, MIAO H, DONG S Y, GU X F, ZHANG S P . GWAS analysis of hypocotyl length and candidate gene mining in cucumber seedlings. Scientia Agricultura Sinica, 2020,53(1):122-132. (in Chinese)
[40] 潘健, 温海帆, 何欢乐, 连红莉, 王刚, 潘俊松, 蔡润 . 黄瓜ERF基因家族鉴定及其在雌花芽分化中的表达分析. 中国农业科学, 2020,53(1):133-147.
PAN J, WEN H F, HE H L, LIAN H L, WANG G, PAN J S, CAI R . Genome-wide identification of cucumber ERF gene family and expression analysis in female bud differentiation. Scientia Agricultura Sinica, 2020,53(1):133-147. (in Chinese)
[41] 宋维源, 侯钰, 赵剑宇, 刘小凤, 张小兰 . 黄瓜CsRPL1/2的克隆及其功能分析. 中国农业科学, 2020,53(1):148-159.
SONG W Y, HOU Y, ZHAO J Y, LIU X F, ZHANG X L . Cloning and functional analysis of CsRPL1/2 in cucumber. Scientia Agricultura Sinica, 2020,53(1):148-159. (in Chinese)
[42] 牛志红, 宋晓飞, 李晓丽, 郭晓雨, 何书强, 贺栾劲芝, 冯志红, 孙成振, 闫立英 . 黄瓜单性结实性状遗传与QTL定位. 中国农业科学, 2020,53(1):160-171.
NIU Z H, SONG X F, LI X L, GUO X Y, HE S Q HE L J Z, FENG Z H, SUN C Z, YAN L Y . Inheritance and QTL mapping for parthenocarpy in cucumber. Scientia Agricultura Sinica, 2020,53(1):160-171. (in Chinese)
[43] 亓飞, 林姝, 宋蒙飞, 张孟茹, 陈姝延, 张乃心, 陈劲枫, 娄群峰 . 黄瓜抗白粉病突变体筛选与鉴定. 中国农业科学, 2020,53(1):172-182.
QI F, LIN S, SONG M F, ZHANG M R, CHEN S Y, ZHANG N X, CHEN J F, LOU Q F . Screening and identification of cucumber mutant resistant to powdery mildew. Scientia Agricultura Sinica, 2020,53(1):172-182. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!