Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4453-4469.doi: 10.3864/j.issn.0578-1752.2019.24.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Associated Loci Detection and Elite Allelic Variations Analysis of Main Agronomic Traits in Foxtail Millet (Setaria italica L.) Based on SSR Markers

JianFeng LI1,Bo ZHANG1,JianZhang QUAN2,YongFang WANG2,XiaoMei ZHANG1,Yuan ZHAO1,XiLei YUAN1,XiaoPing JIA1(),ZhiPing DONG2()   

  1. 1 College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan
    2 Institute of Millet, Hebei Academy of Agriculture and Forestry Sciences/National Millet Improvement Center, Shijiazhuang 050035
  • Received:2019-05-28 Accepted:2019-06-25 Online:2019-12-16 Published:2020-01-15
  • Contact: XiaoPing JIA,ZhiPing DONG E-mail:jiaxiaoping2007@163.com;dzp001@163.com

Abstract:

【Objective】Through the investigation of 10 major traits in foxtail millet at Ledong, Hainan province, Luoyang, Henan province, Jilin and Gongzhuling, Jilin province, totally four different geographical environments, association analysis between SSR markers and the ten traits was performed to obtain loci expressed in single environment or multiple environments, excavate elite allelic variations, explore the probable mechanism forming ecological adaptation and provide foundation for launching molecular-assistant selection breeding in foxtail millet.【Method】Based on the survey of ten traits (plant height, panicle length, number of leaves, panicle diameter, heading stage, spikelet number, grain number per branch, spike weight, grain weight per panicle and 1000-grain weight) from 102 foxtail millet varieties at Jilin and Gongzhuling, Jilin province, Luoyang, Henan province and Ledong, Hainan province for two consecutive years, correlation analysis of ten traits at each geographical environment was first performed by SPSS 19.0 software, then the 102 foxtail millet varieties were genotyped by 70 polymorphic SSR markers, and further genetic diversity and population genetic structure of these varieties were analyzed. Finally, linkage disequilibrium analysis among markers and association analysis between molecular markers and phenotypic traits were carried out by GLM and MLM models of TASSEL 5.0 software. 【Result】There existed significant or very significant positive correlations among most of the nine agronomic traits except 1000-grain weight across four geographical environments. Only significant or very significant positive correlations were found between 1000-grain weight and grain weight per panicle, plant height, panicle length, spike weight at Jilin, Gongzhuling and Luoyang, no significant correlations were found between 1000-grain weight and other nine traits at Ledong environment. Totally 397 alleles were detected in 70 pairs of SSR primers, giving average observed allele number, effective allele number, expected heterozygosity, Shannon index of 6, 2.24, 0.4637 and 0.7738 per marker respectively. Both genetic diversity analysis and population structure analysis divided 102 foxtail millet materials into 4 groups, and the varieties from Henan province scattered in each of the four groups, showing more abundant genetic diversity. Linkage disequilibrium analysis showed that no obvious LD structures were found among 70 SSR markers. Totally 10 associated markers were detected by GLM and MLM models, combined with allele effect analysis results, it could be determined that b115, MPGC13, b227, b194 and p56 were associated with spike weight, panicle length, number of leaves and heading stage at Jilin, Gongzhuling, sigms9034 and b125 were associated with panicle length and spikelet number at Luoyang, P18 and p59 were associated with spike weight at Ledong, p6 was associated with number of leaves and spikelet number at Jilin, Gongzhuling and Luoyang respectively. The average contribution rates of single marker to phenotypic variation ranged from 7.76% to 34.05%. Three alleles, sigms9034-168, P18-166 and p56-244, could increase panicle length and spike weight, shorten heading stage significantly, which would be used to improve panicle traits and shorten growth period by marker-assisted selection breeding.【Conclusion】Five marker loci (b115, MPGC13, b227, b194 and p56) were steadily detected at Jilin and Gongzhuling, two marker loci (sigms9034, b125), two marker loci (P18, p59) were steadily detected at Luoyang and Ledong respectively for two consecutive years. One marker locus (p6) was steadily detected at Jilin, Gongzhuling and Luoyang, three geographical environments for two consecutive years. Three elite alleles (sigms9034-168bp, P18-166bp, p56-244bp) that could be used to carry out marker-assisted selection for panicle traits and growth period were obtained.

Key words: foxtail millet, SSR, geographical environment, agronomic traits, correlation analysis

"

品种编号
Variety
number
品种名
Variety name
来源地
Origin area
品种编号
Variety
number
品种名
Variety name
来源地
Origin area
HN1 郑05-1 Zheng05-1 中国河南 Henan, China HB21 104 104 未知 Unknown
HN2 郑05-2 Zheng05-2 中国河南 Henan, China HB22 200152 200152 未知 Unknown
HN3 安04-4705 An04-4705 中国河南 Henan, China HB23 8322-14 8322-14 未知 Unknown
HN4 安04-4852 An04-4852 中国河南 Henan, China HB24 冀谷32 Jigu32 中国河北 Hebei, China
HN5 安04-5014 An04-5014 中国河南 Henan, China HB25 冀谷30 Jigu30 中国河北 Hebei, China
HN6 豫谷1 Yugu1 中国河南 Henan, China HB26 冀谷28 Jigu28 中国河北 Hebei, China
HN7 安09-8525 An09-8525 中国河南 Henan, China HB27 冀谷27 Jigu27 中国河北 Hebei, China
HN8 安08-4125 An08-4125 中国河南 Henan, China HB28 95307 95307 中国河北 Hebei, China
HN9 郑07-2 Zheng07-2 中国河南 Henan, China HB29 谷丰2 Gufeng2 中国河北 Hebei, China
HN10 郑谷2 Zhenggu2 中国河南 Henan, China HB30 K325 K325 未知 Unknown
HN11 豫谷6 Yugu6 中国河南 Henan, China HB31 白米1号 Baimi 1 hao 中国河北 Hebei, China
HN12 安10-4240 An10-4240 中国河南 Henan, China HB32 冀谷1 Jigu1 中国河北 Hebei, China
HN13 郑07-1 Zheng07-1 中国河南 Henan, China HB33 冀特5 Jite5 中国河北 Hebei, China
HN14 安10-4172 An10-4172 中国河南 Henan, China HB34 坝谷139 Bagu139 中国河北 Hebei, China
HN15 豫谷17 Yugu17 中国河南 Henan, China HB35 坝91-0079 Ba91-0079 中国河北 Hebei, China
HN16 豫谷11 Yugu11 中国河南 Henan, China HB36 毛谷2 Maogu2 中国河北 Hebei, China
HN17 豫谷8 Yugu8 中国河南 Henan, China HB37 大白谷 Dabaigu 中国河北 Hebei, China
HN18 郑06-6 Zheng06-6 中国河南 Henan, China HB38 大九根齐 Dajiugenqi 中国河北 Hebei, China
HN19 豫谷3 Yugu3 中国河南 Henan, China HB39 坝谷6 Bagu6 中国河北 Hebei, China
HN20 安4117 An4117 中国河南 Henan, China HB40 四留钱 Siliuqian 中国河北 Hebei, China
HN21 安-4585 An-4585 中国河南 Henan, China HB41 坝谷210 Bagu210 中国河北 Hebei, China
HN22 安5424 An5424 中国河南 Henan, China SD1 鲁谷10 Lugu10 中国山东 Shandong, China
HN23 豫谷15 Yugu15 中国河南 Henan, China SD2 早白糯 Zaobainuo 中国山东 Shandong, China
HN24 豫谷13 Yugu13 中国河南 Henan, China SD3 济大粒2 Jidali2 中国山东 Shandong, China
HN25 豫谷16 Yugu16 中国河南 Henan, China SD4 济叶冲4 Jiyechong4 中国山东 Shandong, China
HN26 豫谷18 Yugu18 中国河南 Henan, China SD5 济叶冲20 Jiyechong20 中国山东 Shandong, China
HN27 郑州12 Zhengzhou12 中国河南 Henan, China SD6 济长穗8 Jichangsui8 中国山东 Shandong, China
HN28 郑315 Zheng315 中国河南 Henan, China SD7 济丰30 Jifeng30 中国山东 Shandong, China
HN29 郑8041 Zheng8041 中国河南 Henan, China SD8 金线子 Jinxianzi 中国山东 Shandong, China
HN30 豫谷5 Yugu5 中国河南 Henan, China SD9 鲁谷3 Lugu3 中国山东 Shandong, China
HN31 新农673 Xinnong673 中国河南 Henan, China SD10 鲁谷7 Lugu7 中国山东 Shandong, China
HB1 谷丰1 Gufeng1 中国河北 Hebei, China SD11 书香1号 Shuxiang1hao 中国山东 Shandong, China
HB2 71杂30-2 71za30-2 未知 Unknown SC1 11郄961 11 xi 961 未知 Unknown
HB3 张庙谷选变Zhangmiaoguxuanbian 未知 Unknown SC2 11郄1071 11 xi 1071 未知 Unknown
HB4 冀谷15 Jigu15 中国河北 Hebei, China BJ1 06-766 06-766 中国北京 Beijing, China
HB5 冀谷17 Jigu17 中国河北 Hebei, China BJ2 小早谷 Xiaozaogu 中国北京 Beijing, China
HB6 衡谷9 Jigu9 中国河北 Hebei, China NMG1 小香米 Xiaoxiangmi 中国河北 Hebei, China
HB7 金谷1 Jingu1 中国河北 Hebei, China NMG2 籼紫灰谷Shanzihuigu 中国内蒙古 Neimenggu, China
HB8 沧372 Cang372 中国河北 Hebei, China NMG3 二白谷 Erbaigu 中国内蒙古 Neimenggu, China
HB9 沧369 Cang369 中国河北 Hebei, China NMG4 黄玉3 Huangyu3 中国内蒙古 Neimenggu, China
HB10 冀谷29 Jigu29 中国河北 Hebei, China SX1 呼和浩特大毛谷Huhehaotedamaogu 中国陕西 Shanxi, China
HB11 冀谷26 Jigu26 中国河北 Hebei, China SX2 延谷4 Yangu4 中国陕西 Shanxi, China
HB12 冀谷24 Jigu24 中国河北 Hebei, China SX3 红杆谷 Honggangu 中国陕西 Shanxi, China
HB13 冀谷22 Jigu22 中国河北 Hebei, China MFGY1 ISE430 ISE430 美国 America
HB14 冀谷19 Jigu19 中国河北 Hebei, China MFGY2 法谷28-81 Fagu28-81 法国 French
HB15 冀谷18 Jigu18 中国河北 Hebei, China MFGY3 SET3/80 SET3/80 德国 Germany
HB16 冀谷31 Jigu31 中国河北 Hebei, China MFGY4 ISE775 ISE775 印度 India
HB17 复12 Fu12 中国河北 Hebei, China HCCR1 龙谷26 Longgu26 中国黑龙江 Heilongjiang, China
HB18 冀创1 Jichuang1 中国河北 Hebei, China HCCR2 朝鲜谷子 Chaoxianguzi 朝鲜 Korea
HB19 2015 2015 中国河北 Hebei, China HCCR3 谷绿早1 Gulvzao1 朝鲜 Korea
HB20 2013 2013 中国河北 Hebei, China HCCR4 大王国 Dawangguo 日本 Japan

"

SSR标记
SSR markers
引物序列
Primer sequence (5’-3’)
SSR标记
SSR markers
引物序列
Primer sequence (5’-3’)
b115 F:GGTAGCGACGGATCTACAGC
R:GCTAGCAAATGCTGTCATGG
b202 F:AGAGCCCACGTCAAACC
R:AAACTGGACTAGAAGAAGCATAG
b116 F:GCAAGCGTGATGTCAGATTAT
R:ATAGGATGGTGGAAGCCCA
b101 F:ATCTAGGTGCCGATGCGT
R:TGTGGGAAGAAGCTAGGGAA
b122 F:ACTTCTTCCTTCCTTGCGG
R:TGTGGGATTAAGGTGCATCG
b106 F:TGCTTTGCTCTCTTCTCTCA
R:ACGGACGATGAGGAATTGT
b125 F:GCCATGAAACAGGTACAAAAGG
R:GCATCCCCTTAATTTGTCAATG
p59 F:TAATTTTGTGGCGTGGGATG
R:GCACTGGTTTTGTTGAATGG
p6 F:AAGGATGGAATTTGCCACTG
R:TTTCGACGATTTGCTTCAAC
p98 F:ATTCATCAGTAGCACAGC
R:TGGAACTAAGAACAGGAAAC
p5 F:CTTCCCTCCCTCCCTGAC
R:CTGAGCTGAGCTGCCTTTG
p56 F:GATGTGTACGGGTTGCATTG
R:TGGGTTTCAGGGCTCTCTC
p3 F:GCAGAAAGCATGCCGTAGTC
R:GCTTGGAGTCCACATGGATAG
p61 F:CATCCGCGTCATCTGAATC
R:ACCTGCTGCTATCCATCACC
p8 F:CGATCGAATGATCGATGAAC
R:CCCTTTGTCCGATCACGTC
p68 F:CATGCGTTGATCGTTTGTG
R:ACCACGCATTTACATGATCG
p10 F:CAATCACATCCGAGCATTTC
R:CACCCACCGTGTTGATCTG
p74 F:CAACCTAGTTTGCCTCAGTTATTC
R:AGTCACGTACATGGGTGCAG
p12x F:ACGAGTCACAAATCACAGCAC
R:ATGCCTGAGCGGAACGGAA
p80 F:GCCGTTGGATTTGATTATGG
R:TGTGGTTAGTTTATGTGGCTTG
p16 F:TTTCTCCCTCTCTCGATTCC
R:AAATTGGCGTGCTAACAACC
p87 F:ACCTTTGACAAACGAGACACG
R:GTTCGACTTGCATTGACTGG
b127 F:CCTCAAGTCAGTGAGATGCAA
R:CAGAGCTGTTTAATCCTTGTTCA
p89 F:GCCTGTCTGAAAATTCTCAATG
R:AGACGTGACATTAGCGCTTG
b129 F:CACACTCTTCTCCCCTTTTCC
R:ACGGTAACGGAGGATGGCTA
p88 F:CAAGCCACCCAGTCTAGAGG
R:TTCATCAGAACTGCGCAAAC
b142 F:TGGTAAAACTCCCATATTGAGC
R:GCCCCATCCTTGATAACAGA
p92 F:TGGAATTGGAACCCTTTCG
R:GCCATGCAAACAGTACCATC
b147 F:CTACTGCCTTCTGGCCTCC
R:GGGCATTCTTGCTTCAGTCA
p85 F:GAATTAGGCCGATGCACAAC
R:ATCCTAACTGCATGGCAAGG
b158 F:GATGAGGAAAAGGTAGGTTGGA
R:CTGCAACGTGCAGAACTACG
p100 F:AGTTGACACCACACATAACAA
R:AGAATACTCCTACCTGCCAC
b161 F:GGCATAAAAGTAAAAACCAACCA
R:ACCTGGCTTCTGTCAGTGAA
p95X F:GTCTCTGATAGTGCTTGAGCG
R:ACAGGGATGAAGGGCGATG
b163 F:CTCGGAAGCTCAGATTCTCC
R:CACTTCCTGCAGCTCTCACA
p29 F:GATGAGCACACGTTGATTGG
R:GGACTTCACCACCGAGATG
b165 F:GCTTTGGTTTGGTTTGGTTGG
R:CCATTAGTCTCTGCCCTTGTT
p44 F:TTCCCGGAACAGACAAGAAC
R:GCGTTGGAAGCCATGGAG
b166 F:CGCCCATACTACCCAACAG
R:ACCTCACCTTCCACTCCTC
p42 F:GCGACTTTCCCCTTCCAATC
R:TTCCTTTTGTTGGCTTCTCC
b194 F:CTGGGTTCCGTCTACCGTA
R:CACACCCGAAGAGGCAAAG
p91 F:AGCTGTGCTCCTCTGATCTTG
R:TAACGTGGGGATGCACTAGC
b200 F:CATCGATCTCAACCTGTCCTT
R:ATGAGCCGTCATGTCACAAA
sigms11655 F:TCGTTTAAGCTGGAATTGGG
R:AGAGTACCGTCGGCGTCTAA
b107 F:AGAACGAGGTGGTGTGTGG
R:GGGTCTCACGCTCTCATCA
P18 F:TTCTCTCGTTGGAATTTTTGTG
R:GGAACAGATATCCTTTTCACTCTT
b123 F:GGTGTTCTCCTGTGTGC
R:AGAGTTATTTCCAGCATTAGTG
p20 F:GTGCCCGCTTAGCTTTAATC
R:ATGCACGTGGGACCCATAC
b159 F:GCCAGTCCGAGATGGTTAAG
R:AGCTCTAGCAGTTGGGGACA
p17x F:CGGACACCTGAAAGACGAA
R:GTCACTTGTTGTTGTTGCG
b190 F:GAAATTTCACAAGTGTTGGTG
R:TGATCGGAGCAGAGTGTTGA
sigms9034 F:TGCTGGTCGCAGTACTTGAT
R:TCCTCTGCTCTGCTCTCCTC
b234 F:GCCGCAACGAACAACCG
R:CCTGTCCCTATCCCTGTCG
sigms10291 F:TCGTCTCCGTCAGTAATCCC
R:GCAGCAGAAGCAGATGAGG
b255 F:GAGGACAGCGGCCATT
R:CCTCCCTCCATTTACTTTGG
sigms11641 F:CACCATGGCCACCATATGTA
R:TGGTTGCTCAGCATAGCCTT
b242 F:CACTACCACTGTTCCAGATCG
R:CAGGGACCTTGCTTGCATAC
sigms11693 F:CTAATTTTGCATGTGCCAGG
R:CCACATACACCATGAGGTTCC
b185 F:GCACGTGTGACTTTCCACAT
R:GTGAATGGCACACGAAACTG
sigms11672 F:TAGTAAACTTGGGCCCATCC
R:ATAACTTCTCCCCCACCACC
b227 F:TGATCTGGCAGAACGAACA
R:CAATTCCTGGACCAATATGC
sigms10287 F:GACCGATTCCTTCCAAACAA
R:TGTCAGCTGGAGATGGTGTC
b233 F:GCCACGCACACCAACTT
R:CTCCCGCAGAACACGCA
MPGD46 F:GATGGGTCGTCGTTAGAGTTT
R:GGAAAGGGAAAGGAAGATAGC
b258 F:GGGCCAATAATGGTTGCATA
R:TTGCACATCCAAATCTTTCC
MPGD10 F:CATCTGTTGCTGCTGATGCT
R:AATTCTCAAAAGAGAGACCCACTG
b153 F:ACCCAACACATTCTCCTGAA
R:TGCTATCAAAATAGTGCTAGAAT
sigms11 F:AGATCCTCGCAGACTTCGTC
R:TGCAATCACCAGAGAGAAGC
b187 F:TTGGACAAATGACGCTATGC
R:CTGCATCAAATCAGGACCAC
MPGC13 F:CTGAAGCATTCGATAAACTAGCTG
R:GTAGTGAAAAATGAGCAAGGGTCT

Table 1

Correlation analysis of main agronomic characters of millet at different geographical environments"

环境
Environments
性状Trait HS GW PH NL PL PD SN GN SW 1000-GW
吉林市
Jilin
HS 1
GW -0.157 1
PH 0.035 0.340** 1
NL 0.538** 0.195 0.105 1
PL 0.04 0.464** 0.530** 0.109 1
PD 0.173 0.415** 0.012 0.366** 0.208 1
SN 0.421** 0.101 0.116 0.299* 0.285* 0.033 1
GN -0.08 0.667** 0.129 0.283* 0.119 0.547** -0.209 1
SW -0.09 0.957** 0.361** 0.254* 0.547** 0.478** 0.122 0.694** 1
1000-GW -0.315** 0.388** 0.242* -0.226 0.321** 0.051 -0.269* -0.005 0.382** 1
公主岭市
Gongzhuling
HS 1
GW 0.367** 1
PH 0.420** 0.343** 1
NL 0.756** 0.552** 0.485** 1
PL 0.329* 0.332** 0.686** 0.282* 1
PD 0.571** 0.480** 0.173 0.520** 0.260* 1
SN 0.363** 0.206 0.380** 0.342** 0.302* -0.115 1
GN 0.323* 0.657** 0.064 0.401** 0.077 0.594** -0.170 1
SW 0.437** 0.938** 0.373** 0.596** 0.395** 0.618** 0.132 0.674** 1
1000-GW -0.018 0.307* 0.383** 0.068 0.427** 0.092 0.202 0.012 0.384** 1
洛阳市
Luoyang
HS 1
GW 0.552** 1
PH 0.571** 0.575** 1
NL 0.662** 0.742** 0.670** 1
PL 0.338** 0.205 0.716** 0.333** 1
PD 0.567** 0.688** 0.558** 0.761** 0.388** 1
SN 0.565** 0.554** 0.667** 0.648** 0.513** 0.541** 1
GN 0.281* 0.745** 0.302** 0.493** -0.079 0.544** 0.180 1
SW 0.619** 0.951** 0.672** 0.794** 0.363** 0.766** 0.614** 0.687** 1
1000-GW 0.211 0.347** 0.343** 0.300** 0.330** 0.296** 0.264* 0.046 0.371** 1
乐东县Ledong HS 1
GW 0.623** 1
PH 0.163 0.228* 1
NL 0.771** 0.781** 0.230* 1
PL 0.607** 0.754** 0.189 0.609** 1
PD 0.665** 0.858** 0.244** 0.845** 0.613** 1
SN 0.429** 0.553** 0.284* 0.534** 0.558** 0.442** 1
GN 0.353** 0.735** 0.159 0.557** 0.364** 0.697** 0.132 1
SW 0.622** 0.808** 0.292* 0.708** 0.672** 0.775** 0.557** 0.503** 1
1000-GW -0.003 0.194 -0.083 0.064 0.120 0.129 0.079 -0.008 0.122 1

Table 2

Polymorphism of seventy SSRs among 102 foxtail millet accessions"

SSR标记
SSR markers
等位基因数
Allele number
有效等位基因数
Number of effective alleles
Shannon指数
Shannon index
期望杂合度
Expected heterozygosity
b115 6 2.005 0.618 0.350
b116 4 1.712 0.521 0.325
b122 5 2.200 0.719 0.431
b125 5 2.447 0.926 0.575
p6 4 2.059 0.738 0.468
p5 6 2.022 0.632 0.363
p3 8 2.776 1.026 0.602
p8 6 1.983 0.611 0.346
p10 5 2.204 0.786 0.494
p12x 8 2.226 0.767 0.448
p16 5 1.849 0.631 0.390
b127 7 2.355 0.765 0.438
b129 4 2.283 0.849 0.516
b142 7 2.595 0.903 0.522
b147 4 1.773 0.622 0.400
b158 5 2.148 0.784 0.495
b161 5 1.926 0.666 0.405
b163 4 1.909 0.568 0.332
b165 4 1.827 0.590 0.395
b166 4 1.943 0.685 0.442
b194 6 1.909 0.657 0.380
b200 6 2.277 0.802 0.470
b107 7 1.961 0.721 0.446
b123 6 2.426 0.872 0.520
b159 6 2.600 0.900 0.509
b190 5 1.933 0.696 0.433
b234 4 1.742 0.503 0.308
b255 6 2.434 0.816 0.469
b242 4 2.100 0.766 0.477
b185 4 2.153 0.803 0.512
b227 4 2.025 0.637 0.392
b233 5 2.354 0.895 0.558
b258 6 2.118 0.775 0.478
b153 5 2.497 0.854 0.498
b187 5 2.498 0.940 0.578
b202 7 2.329 0.790 0.449
b101 6 2.218 0.779 0.448
b106 8 2.325 0.775 0.448
p59 5 2.258 0.812 0.496
p98 4 2.177 0.728 0.443
p56 5 2.123 0.806 0.508
p61 4 1.671 0.498 0.319
p68 5 2.098 0.734 0.466
p74 5 2.366 0.825 0.515
p80 8 2.797 1.025 0.598
p87 8 3.092 1.118 0.642
p89 8 2.538 0.892 0.497
p88 8 2.832 0.974 0.560
p92 7 2.425 0.843 0.498
p85 6 2.286 0.838 0.503
p100 6 2.448 0.879 0.530
p95X 9 2.827 0.935 0.502
p29 7 2.714 0.964 0.534
p44 8 2.932 1.036 0.605
p42 7 2.785 0.989 0.567
p91 8 2.362 0.802 0.474
sigms11655 6 1.788 0.490 0.295
P18 3 1.519 0.439 0.279
p20 7 2.519 0.937 0.570
p17x 6 2.335 0.818 0.495
sigms9034 5 1.593 0.493 0.311
sigms10291 4 2.174 0.728 0.451
sigms11641 3 1.726 0.538 0.368
sigms11693 6 2.463 0.946 0.572
sigms11672 4 1.686 0.516 0.321
sigms10287 7 2.723 0.913 0.498
MPGD46 6 2.297 0.804 0.466
MPGD10 5 2.649 0.974 0.588
sigms11 6 2.390 0.883 0.522
MPGC13 5 1.794 0.599 0.355

Fig. 1

Dendrogram of 102 foxtail millet materials based on SSR markers"

Fig. 2

Population genetic structure of 102 millet materials based on SSR markers A: The changing trend of ΔK with K value, the peak value indicated that the natural population used in this study could be divided into four groups; B: The population genetic structure of the 102 millet materials"

Fig. 3

Linkage disequilibrium patterns among 70 SSR markers The squared correlation coefficients (R2) for each pair of markers are presented in the upper triangle and their corresponding P values in the lower triangle"

Table 3

Association analysis results of GLM and MLM models at four geographical environments"

性状
Traits
关联标记
Associated markers
染色体
Chromosome
显著性检验值(P
Significance test value (P)
表型贡献率(R2
Phenotypic variation (R2)
环境
Environments
年份
Years
模型
Model
GW

SW

PL
b115 2 9.99E-04
0.021
9.99E-04
0.013
0.0317
1.54E-04
0.4355
0.2456
0.4661
0.2521
0.0807
0.2421
吉林Jilin
公主岭Gongzhuling
吉林Jilin
公主岭Gongzhuling
吉林Jilin
公主岭Gongzhuling
2015
2016
2015
2016
2015
2016
GLM


MLM
NL MPGC13 7 9.99E-04
9.99E-04
0.24
0.3156
吉林Jilin
公主岭Gongzhuling
2015
2016
GLM
PL

PH

NL

SN
p6 8 9.99E-04
0.025
0.0057
0.0118
0.0123
8.46E-04
0.033
0.0171
0.0127
0.015
0.1958
0.1712
0.0718
0.1109
0.0701
0.1591
0.0778
0.0774
0.0943
0.1031
吉林Jilin
公主岭Gongzhuling
吉林Jilin
公主岭Gongzhuling
吉林Jilin
公主岭Gongzhuling
吉林Jilin
公主岭Gongzhuling
洛阳Luoyang
洛阳Luoyang
2015
2016
2015
2016
2015
2016
2015
2016
2015
2016
GLM

MLM
PL sigms9034 6 9.99E-04
0.009
0.2361
0.1898
洛阳Luoyang
洛阳Luoyang
2015
2016
GLM
PL

SN
b125 5 0.026
0.014
0.0094
0.0073
0.2717
0.2409
0.1405
0.1645
洛阳Luoyang
洛阳Luoyang
洛阳Luoyang
洛阳Luoyang
2015
2016
2015
2016
GLM

MLM
HS b227 1 9.99E-04
9.99E-04
0.0372
0.0308
0.2460
0.3075
0.0999
0.0811
吉林Jilin
公主岭Gongzhuling
吉林Jilin
公主岭Gongzhuling
2015
2016
2015
2016
GLM

MLM
HS b194 9 0.01
0.032
0.1537
0.0874
吉林Jilin
公主岭Gongzhuling
2015
2016
MLM
HS p56 2 0.0215
0.0204
0.1202
0.0936
吉林Jilin
公主岭Gongzhuling
2015
2016
MLM
SW P18 5 0.0117
0.0039
0.0861
0.1044
乐东Ledong
乐东Ledong
2015
2016
MLM
SW p59 未知
Unknown
0.0452
0.016
0.0894
0.1171
乐东Ledong
乐东Ledong
2015
2016
MLM

Fig. 4

Allele effect analysis of associated markers"

[1] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民 . 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016,42(1):19-30.
WANG H G, JIA G Q, ZHI H, WEN Q F, DONG J L, CHEN L, WANG J J, CAO X N, LIU S C, WANG L, QIAO Z J, DIAO X M . Phenotypic diversity evaluations of foxtail millet core collections. Acta Agronomica Sinica, 2016,42(1):19-30. (in Chinese)
[2] MARGARITA M H, WANG X W, BARBIER H, BRUTNELL T P, DEVOS K M, AND DOUST A N . Genetic control and comparative genomic analysis of flowering time in setaria (Poaceae). Genes Genomes Genetics, 2013,3:283-295.
[3] DOUST A N, DEVOS K M, GADBERRY M D, GALE M D, KELLOGG E A . Genetic control of branching in foxtail millet. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(24):9045-9050.
[4] DOUST A N, MAURO-HERRERA M, HODGEAND J G, STROMSK J . The C4 model grass setaria is a short day plant with secondary long day genetic regulation. Frontiers in Plant Science, 2017,8:1-10.
[5] ZHANG K, FAN G Y, ZHANG X X, ZHAO F, WEI W, DU G H, FENG X L, WANG X M, WANG F, SONG G L, ZOU H F, ZHANG X L, LI S D, NI X M, ZHANG G Y, ZHAO Z H . Identification of QTLs for 14 agronomically important traits inSetaria italica based on SNPs generated from high-throughput sequencing. Genes Genomes Genetics, 2017,7(5):1587-1594.
[6] JIA G Q, HUANG X H, ZHI H, ZHAO Y, ZHAO Q, LI W J, CHAI Y, YANG L F, LIU K Y, LU H Y, ZHU C R, LU Y Q, ZHOU C C, FAN D L, WENG Q J, GUO Y L, HUANG T, ZHANG L, LU T T, FENG Q, HAO H F, LIU H K, LU P, ZHANG N, LI Y H, GUO E H, WANG S J, WANG S Y, LIU J R, ZHANG W F, CHEN G Q, ZHANG B J, LI W, WANG Y F, LI H Q, ZHAO B H, LI J Y, DIAO X M, HAN B . A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 2013,45(8):957-961.
[7] NI X M, XIA Q J, ZHANG H B, CHENG S, LI H, FAN G Y, GUO T, HUANG P, XIANG H T, CHEN Q C, LI N, ZOU H F, CAI X M, LEI X J, WANG X M, ZHOU C S, ZHAO Z H, ZHANG G Y, DU G H, CAI W, QUAN Z W . Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience, 2017,6(2):1-8.
[8] 谢丽莉 . 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012.
XIE L L . QTL mapping and analysis of the photoperiod-sensitive traits in foxtail millet[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese)
[9] 贾小平, 李剑峰, 全建章, 王永芳, 董志平, 张博, 袁玺垒 . 不同光周期条件下谷子农艺性状的光周期敏感性评价. 植物遗传资源学报, 2018,19(5):919-924.
JIA X P, LI J F, QUAN J Z, WANG Y F, DONG Z P, ZHANG B, YUAN X L . Evaluation of photoperiod sensitivity of agronomic traits of foxtail millet varieties (Setaria italica) under different photoperiod conditions. Journal of Plant Genetic Resources, 2018,19(5):919-924. (in Chinese)
[10] 贾小平, 袁玺垒, 李剑峰, 张博, 张小梅, 郭秀璞, 陈春燕 . 不同光温条件谷子资源主要农艺性状的综合评价. 中国农业科学, 2018,51(13):2429-2441.
JIA X P, YUAN X L, LI J F, ZHANG B, ZHANG X M, GUO X P, CHEN C Y . Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions. Scientia Agricultura Sinica, 2018,51(13):2429-2441. (in Chinese)
[11] GAMAR Y A, BASHIR E M, KIMANI W, ALARAIDH I A, SHAIKHALDEIN H O, KYALLO M, NZUKI I, SKILTON R . Analysis of genetic difference within and between of wild relatives of sorghum in Sudan, using SSRs. Pakistan Journal of Botany, 2018,50(6):2231-2236.
[12] 王瑞, 王金胜, 张福耀, 程庆军, 田承华, 凌亮 . 1970s—2000s中国高粱杂交种亲本遗传距离演变的SSR分析. 中国农业科学, 2015,48(3):415-425.
WANG R, WANG J S, ZHANG F Y, CHENG Q J, TIAN C H, LING L . Evolution of genetic distance between parental lines of Chinese sorghum hybrids from1970s-2000s based on SSR analysis. Scientia Agricultura Sinica, 2015,48(3):415-425. (in Chinese)
[13] 赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊 . 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2013,46(2):233-242.
LAI Y, WANG P X, FAN G Q, SI E J, WANG J, YANG K, MENG Y X, LI B C, MA X L, SHANG X W, WANG H J . Genetic diversity and association analysis using SSR markers in barley. Scientia Agricultura Sinica, 2013,46(2):233-242. (in Chinese)
[14] 杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅 . 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018,51(17):3237-3248.
YANG Z B, WANG A B, LENG S F, GU Z Z, ZHOU Y M . Genetic analysis of the novel high-yielding wheat cultivar Huaimai33. Scientia Agricultura Sinica, 2018,51(17):3237-3248. (in Chinese)
[15] 孟亚雄, 孟祎林, 汪军成, 司二静, 张海娟, 任盼荣, 马小乐, 李葆春, 杨轲, 王化俊 . 青稞遗传多样性及其农艺性状与SSR标记的关联分析. 作物学报, 2016,42(02):180-189.
MENG Y X, MENG Y L, WANG J C, SI E J, ZHANG H J, REN P R, MA X L, LI B C, YANG K, WANG H J . Genetic diversity and association analysis of agronomic characteristics with SSR markers inHulless barley. Acta Agronomica Sinica, 2016,42(02):180-189. (in Chinese).
[16] 李新江, 范文忠, 王淑玲, 胡延生, 刘玉兰, 赵文若, 杨祥波 . 利用SSR标记对吉林省杂草稻遗传多样性的研究. 分子植物育种, 2018,16(3):1020-1026.
LI X J, FAN W Z, WANG S L, HU Y S, LIU Y L, ZHAO W R, YANG X B . Research on the genetic diversity of weedy rice in Jilin province by using SSR marker. Molecular Plant Breeding, 2018,16(3):1020-1026. (in Chinese)
[17] 金尚昆, 朱玉萍, 缪依琳, 孔可可, 孔杰杰, 赵团结 . 黄淮海地区新育成大豆品系SSR标记多样性分析. 大豆科学, 2018,37(2):173-178.
JIN S K, ZHU Y P, MIAO Y L, KONG K K, KONG J J, ZHAO T J . SSR Marker diversity of newly developed soybean breeding lines from Huang-Huai-Hai Region. Soybean Science, 2018,37(2):173-178. (in Chinese)
[18] 杨胜先, 牛远, 李梦, 魏世平, 刘晓芬, 吕海燕, 章元明 . 栽培大豆农艺性状的关联分析及优异等位变异挖掘. 中国农业科学, 2014,47(20):3941-3952.
YANG S X, NIU Y, LI M, WEI S P, LIU X F, LÜ H Y, ZHANG Y M . Association mapping of agronomic traits in soybean (Glycine max L. Merr.) and mining of novel alleles. Scientia Agricultura Sinica, 2014,47(20):3941-3952. (in Chinese)
[19] PARTHIBAN S, GOVINDARAJ P, SENTHILKUMAR S . Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. Biotech, 2018,8(3):144.
[20] 刘志斋, 吴迅, 李永祥, 丁晓雨, 王凤格, 石云素, 宋燕春, 赵久然, 黎裕, 王天宇 . 中国玉米地方品种种族的遗传变异评估. 中国农业科学, 2015,48(16):3101-3124.
LIU Z Z, WU X, LI Y X, DING X Y, WANG F G, SHI Y S, SONG Y C, ZHAO J R, LI Y, WANG T Y . Assessment of genetic variation in different races of maize landraces in China. Scientia Agricultura Sinica, 2015,48(16):3101-3111. (in Chinese)
[21] BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JENKINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X W, WU X M, THERESE MITROS T, TRIPLETT J, YANG X H, YE C Y, MAURO-HERRERA M, WANG L, LI P H, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M . Reference genome sequence of the model plant setaria. Nature biotechnology, 2012,30:555-564.
[22] ZHANG G Y, LIU X, QUAN Z W, CHENG S F, XU X, PAN S K, XIE M, ZENG P, YUE Z, WANG W L, TAO Y, BIAN C, HAN C L, XIA Q J, PENG X H, CAO R, YANG X H, ZHAN D L, HU J C, ZHANG Y X, LI H N, LI H, LI N, WANG J Y, WANG C C, WANG R Y, GUO T, CAI Y J, LIU C Z, XIANG H T, SHI Q X, HUANG P, CHEN Q C, LI Y R, WANG J, ZHAO Z H, WANG J . Genome sequence of foxtail millet (Setaria italica ) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30:549-556.
[23] JIA X P, ZHANG Z B, LIU Y H, ZHANG C W, SHI Y S, SONG Y C, WANG T Y, LI Y . Development and genetic mapping of SSR markers in foxtail millet [Setaria italica(L.) P. Beauv.]. Theoretical and Applied Genetics, 2009,118:821-829.
[24] OBIDIEGWU O N, OBIDIEGWU J E, PARZIES H . Development of SSR for foxtail millet (Setaria italica(L.) P. Beauv.) and its utility in genetic discrimination of a core set. Genes & Genomics, 2013,35(5):609-615.
[25] VENKATA S B, MUTHAMILARASAN M, MISRA G, PRASAD M . Fmmdb: A versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS ONE, 2013,8(8):e71418.
[26] GUPTA S, KUMARI K, MUTHAMILARASAN M, SUBRAMANIAN A, PRASAD M . Development and utilization of novel SSRs in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Breeding, 2013,132(4):367-374.
[27] ZHANG S, TANG C, ZHAO Q, LI J, YANG L, QIE L, FAN X, LI L, ZHANG N, ZHAO M, LIU X, CHAI Y, ZHANG X, WANG H, LI Y, LI W, ZHI H, JIA G, DIAO X . Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica(L.) P. Beauv.]. BMC Genomics, 2014,15(1):78.
[28] 朱学海, 张艳红, 宋燕春, 赵治海, 刘志斋, 石云素, 黎裕, 王天宇 . 基于SSR标记的谷子遗传多样性研究. 植物遗传资源学报, 2010(6):698-702.
ZHU X H, ZHANG Y, SONG Y C, ZHAO Z H, LIU Z Z, SHI Y S, LI Y, WANG T Y . Genetic diversity analysis of foxtail millet accessions revealed by SSR markers. Journal of Plant Genetic Resources, 2010(6):698-702. (in Chinese)
[29] 杨天育, 牟平, 孙万仓, 何继红, 董孔军 . 中国北部高原地区谷子品种遗传差异的SSR分析. 西北植物学报, 2010,30(09):1786-1791.
YANG T Y, MOU P, SUN W C, HE J H, DONG K J . Genetic variation of foxtail millet cultivars in North Plateau Region of China by SSR markers. Acta Botanica Boreali-Occidentalia Sinica, 2010,30(9):1786-1791. (in Chinese)
[30] 丁银灯, 胡相伟, 聂石辉, 王仙, 冯国郡, 耿洪伟, 郭丁 . 谷子种质资源表型及SSR遗传多样性分析. 植物遗传资源学报, 2018,19(06):1210-1221.
DING Y H, HU X W, NIE S H, WANG X, FENG G J, GENG H W, GUO D . Analysis of phenotypic traits and SSR genetic diversity of foxtail millet germplasms. Journal of Plant Genetic Resources, 2018,19(6):1210-1221. (in Chinese)
[31] LIU Z, BAI G, ZHANG D, ZHU C, XIA X, CHENG R, SHI Z . Genetic diversity and population structure of elite foxtail millet [Setaria italica(L.) P. Beauv.] germplasm in China. Crop Science, 2011,51(4):1655.
[32] WANG C, JIA G, ZHI H, NIU Z, CHAI Y, LI W, WANG Y, LI H, LU P, ZHAO B, DIAO X . Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 Genesgenetics, 2012,2(7):769-777.
[33] 杨坤 . 谷子SSR标记连锁图谱构建及几个主要性状QTL分析[D]. 石家庄: 河北师范大学, 2008.
YANG K . Construction of SSR based linkage map and QTL analysis of several important traits in foxtail millet, Setaria italica Beauv.[D]. Shijiazhuang: Hebei Normal University, 2008. (in Chinese)
[34] 王晓宇, 刁现民, 王节之, 王春芳, 王根全, 郝晓芬, 梁增浩, 王雪梅, 赵芳芳 . 谷子SSR分子图谱构建及主要农艺性状QTL定位. 植物遗传资源学报, 2013,14(5):871-878.
WANG X Y, DIAO X M, WANG J Z, WANG C F, WANG G Q, HAO X F, LIANG Z H, WANG X M, ZHAO F F . Construction of genetic map and QTL analysis of some main agronomic traits in millet. Journal of Plant Genetic Resources, 2013,14(5):871-878. (in Chinese)
[35] 李雯, 智慧, 张硕, 房雪娇, 王海龙, 贾冠清, 韩渊怀, 刁现民 . 谷子Si-SP1小穗突变基因的遗传分析和定位. 植物遗传资源学报, 2015,16(3):581-587.
LI W, ZHI H, ZHANG S, FANG X J, WANG H L, JIA G Q, HAN Y H, DIAO X M . Morphological effect and genomic mapping of Si-SP1 (small panicle 1) in foxtail millet. Journal of Plant Genetic Resources, 2015,16(3):581-587. (in Chinese)
[36] 王小勤 . 谷子高密度遗传图谱构建及产量和农艺性状QTL分析[D]. 重庆: 西南大学, 2017.
WANG X Q . Construction of high-density genetic map and QTL analysis of yield and agronomic traits in Foxtail millet[D]. Chongqing: Southwest University, 2017. (in Chinese)
[37] SATO K, MUKAINARI Y, NAITO K, FUKUNAGA K . Construction of a foxtail millet linkage map and mapping of spikelet-tipped bristles1(stb1) by using transposon display markers and simple sequence repeat markers with genome sequence information. Molecular Breeding, 2013,31(3):675-684.
[38] FANG X, DONG K, WANG X, LIU T, HE J, REN R, ZHANG L, LIU R, LIU X, LI M, HUANG M, ZHANG Z, YANG T . A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics, 2016,17(1):336.
[39] GUPTA S, KUMARI K, MUTHAMILARASAN M, PARIDA S K, PRASAD M . Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Reports, 2014,33(6):881-893.
[40] 姜洪真, 马伯军, 钱前, 高振宇 . 全基因组关联分析(GWAS)在作物农艺性状研究中的应用. 农业生物技术学报, 2018,26(7):1244-1257.
JIANG H Z, MA B J, QIAN Q, GAO Z Y . The application of genome-wide association study (GWAS) in crop agronomic traits. Journal of Agricultural Biotechnology, 2018,26(7):1244-1257. (in Chinese)
[41] 周丽, 姬向楠, 何非, 潘秋红, 段长青 . 植物胚胎发育晚期丰富蛋白的结构与功能. 热带生物学报, 2012,3(2):191-196.
ZHOU L, JI X N, HE F, PAN Q H, DUAN C Q . Structure and function of LEA Proteins in higher plants. Journal of South China University of Tropical Agriculture, 2012,3(2):191-196. (in Chinese)
[42] SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X . A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39(5):623-630.
[43] SU Z Q, HAO C Y, WANG L F, DONG Y C, ZHANG X Y . Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical & Applied Genetics, 2011,122(1):211-223.
[1] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[2] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[3] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[4] LIU Feng,JIANG JiaLi,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,ZHONG YingXin,DAI TingBo,CAO WeiXing,JIANG Dong. Analysis of American Soft Wheat Grain Quality and Its Suitability Evaluation According to Chinese Weak Gluten Wheat Standard [J]. Scientia Agricultura Sinica, 2022, 55(19): 3723-3737.
[5] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[6] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[7] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[8] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[11] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[12] WU YaRui,LIU XiJian,YANG GuoMin,LIU HongWei,KONG WenChao,WU YongZhen,SUN Han,QIN Ran,CUI Fa,ZHAO ChunHua. Genetic Analysis of Flag Leaf Traits in Wheat Under High and Low Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(1): 1-11.
[13] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[14] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[15] Ting ZHANG,GenPing WANG,YanJie LUO,Lin LI,Xiang GAO,RuHong CHENG,ZhiGang SHI,Li DONG,XiRui ZHANG,WeiHong YANG,LiShan XU. Color Difference Analysis in the Application of High Quality Foxtail Millet Breeding [J]. Scientia Agricultura Sinica, 2021, 54(5): 901-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!