Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4398-4405.doi: 10.3864/j.issn.0578-1752.2019.23.020

• SPECIAL FOCUS: PREVENTION AND CONTROL OF WATERFOWL INFECTIOUS DISEASE • Previous Articles     Next Articles

Construction of a Recombinant Duck Enteritis Virus Expressing Hemagglutinin of H9N2 Avian Influenza Virus

SUN Ying,ZHANG Bing,LI Ling,HUANG XiaoJie,HOU LiDan,LIU Dan,LI QiHong,LI JunPing,WANG LeYuan,LI HuiJiao,YANG ChengHuai()   

  1. China Institute of Veterinary Drug Control, Beijing 100081
  • Received:2019-04-23 Accepted:2019-07-22 Online:2019-12-01 Published:2019-12-01
  • Contact: ChengHuai YANG E-mail:ychenghuai@163.com

Abstract:

【Background】The H9N2 avian influenza virus (AIV) pathogenicity and transmissibility have recently showed an increasing trend. Moreover, it donates partial or even whole cassette of internal genes to generate novel reassortants, which is serious threat to poultry industry and public health. Waterfowls are considered as the natural host and reservoirs of AIVs and play an important role in the spread and mutation of AIV. Therefore, successful control of the spread of H9N2 in waterfowls contributes significantly to poultry industry and public health. Duck enteritis virus (DEV) taxonomically belongs to family Herpesviridae and infects ducks, geese, and swans, which results in high mortality and decreased egg production in domestic and wild waterfowl. DEV may be a promising candidate viral vector for aquatic poultry vaccination because it has a large genome and good immunogenicity. 【Objective】 In this study, we constructed a recombinant DEV expressing the hemagglutinin (HA) gene of a H9N2 virus that was inserted into the deleted viral gE gene, and then its characterization to explore the feasibility of the recombinant DEV as a live vectored vaccine was studied.【Method】 The HA gene of H9N2 was cloned to construct the transfer vector pT-gE-HA. Plasmid pT-gE-HA and rDEV-△gE-GFP were co-transfected into CEF cells. After plaque-purification, we obtained a pure recombinant virus which expressed H9N2 AIV HA protein, and named as rDEV-△gE-HA; PCR and sequencing assay were used to identify the recombinant virus. The recombinant virus was passaged in primary CEF 20 times to evaluate the genetic stability of the foreign gene in the recombinant virus. Ducks were inoculated with 10 3EID50 rDEV-△gE-HA, then challenged with lethal DEV. Ducks were vaccinated intramuscularly with 10 3-10 6 TCID50 of rDEV-△gE-HA. At 14, 21, and 28 days post-vaccination (d.p.v.), sera were obtained from all ducks to monitor HI antibody against H9N2 AIV. At 28 d.p.v. all ducks were challenged with 10 8 EID50 H9N2 (A/duck/GD/08) by intravenous injection. Oropharyngeal swabs were collected from H9N2 virus challenged ducks to detect viral shedding.【Result】The recombinant expression vector pT-gE-HA was constructed and transfected with rDEV-△gE-GFP in chicken embryo fibroblasts (CEF). After 3 rounds of plaque-purification, the purified rDEV-△gE-HA was obtained. The results of the PCR and sequencing indicated that the HA expression cassette had already successfully been inserted into the DEV. The HA gene were stably maintained after the recombinant was passaged 20 times in CEF. Ducks inoculated with 10 3 TCID50 of rDEV-△gE-HA were protected against lethal DEV. HI antibody was detected in all vaccinated ducks at 14 d.p.v. and slightly increased at 21 d.p.v.. Challenge with H9N2 at 28 d.p.v., ducks inoculated with 10 3, 10 4 and 10 6TCID50 were completely protected from challenge, as evidenced by the finding that no virus was recovered from collected oropharyngeal swabs, while 80% ducks (4/5) inoculated with 10 5TCID50 were protected.【Conclusion】In this research, we successfully constructed a stable recombinant DEV expressing the HA of H9N2 AIV. The recombinant DEV remained the protective efficacy of the parental virus against lethal DEV parental virus. Moreover, it could induce HI antibody in ducks and protect no less 80% ducks against H9N2 AIV challenge, although the titer of HI antibody was not too high. This study laid a foundation for developing bivalent vaccine controlling DEV and AIV infection.

Key words: duck enteritis virus, H9 subtype AIV, HA, recombinant virus

Table 1

Primers for amplification and identification of target gene"

引物名称
Primer name
序列(5′-3′)
Sequence (5′-3′)
H9Nhe I-F CAGCTAGC CGCCACCATGGAGACAGTATCACTA ATAACTA
H9BHI-R CGGGATCCTTATATACATATGTTGCATCTGC
Re-JD-F TCAGGATGTAACGCTGGAG
Re-JD-R GGCATCGCAGTCGGTTTT

Fig. 1

Construction of recombinant DEV a: Map of the DEV genome, which consists of long (UL) and short (US) unique regions with inverted repeat sequences (IRS,TRS) flanking the US region; b: Construction of rDEV-△gE-GFP-gpt. An expression cassette encoding GFP was inserted in DEV genome; c: Plasmid pT-gE-HA was used to generate rDEV-△gE-HA by recombination with rDEV-△gE-GFP-gpt"

Fig. 2

Identification of stability of the recombinant DEV M: DL15000 DNA Marker. The numbers show the passages of the recombinant viruses"

Fig. 3

Efficacy of the recombinant virus against lethal DEV challenge"

Fig. 4

HI antibody induced by the recombinant virus in ducks"

[1] 于康震, 陈化兰 . 禽流感. 北京: 中国农业出版社, 2015.
YU K Z CHEN H L . Avian Influenza. Beijing, China Agriculture Press, 2015. (in Chinese)
[2] SUN Y, LIU J . H9N2 influenza virus in China: A cause of concern. P rotein and Cell, 2015,6(1):18-25. doi: 10.1007/s13238-014-0111-7
doi: 10.1007/s13238-014-0111-7 pmid: 25384439
[3] ZHANG P, TANG Y, LIU X, PENG D, LIU W, LIU H, LU S, LIU X . Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002). Journal of General Virology, 2008,89(Pt 12):3102-3112. doi: 10.1099/vir.0.2008/005652-0.
doi: 10.1099/vir.0.2008/005652-0 pmid: 19008399
[4] GU M, CHEN H, LI Q, HUANG J, ZHAO M, GU X, JIANG K, WANG X, PENG D, LIU X . Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Veterinary Microbiology, 2014,174(3/4):309-315. doi: 10.1016/j.vetmic.2014. 09.029.
doi: 10.1016/j.vetmic.2014.09.029 pmid: 25457363
[5] GUAN Y, SHORTRIDGE K F, KRAUSS S, CHIN P S, DYRTING K C, ELLIS T M, WEBSTER R G, PEIRIS M . H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. Journal of Virology, 2000,74(20):9372-9380. doi: 10.1128/jvi.74.20.9372- 9380.2000.
doi: 10.1128/jvi.74.20.9372-9380.2000 pmid: 11000205
[6] SHEN Y Y, KE C W, LI Q, YUAN R Y, XIANG D, JIA W X, YU Y D, LIU L, HUANG C, QI W B, SIKKEMA R, WU J, KOOPMANS M, LIAO M . Novel Reassortant Avian Influenza A(H5N6) viruses in humans, Guangdong, China, 2015. Emerging Infectious Diseases, 2016,22(8):1507-1509. doi: 10. 3201/eid2208.160146.
doi: 10.3201/eid2208.160146 pmid: 27331418
[7] ZHANG Z, LI R, JIANG L, XIONG C, CHEN Y, ZHAO G, JIANG Q . The complexity of human infected AIV H5N6 isolated from China. BMC Infectious Diseases, 2016,16(1):600. doi: 10.1186/s12879-016- 1932-1.
doi: 10.1186/s12879-016-1932-1 pmid: 27782815
[8] RAHIMIRAD S, ALIZADEH A, ALIZADEH E, HOSSEINI S M . The avian influenza H9N2 at avian-human interface: A possible risk for the future pandemics. Journal of Research in Medical Sciences, 2016,21:51. doi: 10. 4103/1735-1995.187253.
doi: 10.4103/1735-1995.187253 pmid: 28083072
[9] GU M, XU L, WANG X, LIU X . Current situation of H9N2 subtype avian influenza in China. Veterinary Research, 2017,48(1):49. doi: 10.1186/ s13567-017-0453-2.
doi: 10.1186/s13567-017-0453-2 pmid: 28915920
[10] ROCHE B, LEBARBENCHON C, GAUTHIER-CLERC M, CHANG C M, THOMAS F, RENAUD F, VAN DER WERF S, GUEGAN J F . Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005-2006 epidemics in the Camargue area. Infection, Genetics and Evolution, 2009, 9(5):800-805. doi: 10.1016/j. meegid.2009.04.009.
doi: 10.1016/j.meegid.2009.04.009 pmid: 19379841
[11] BARBER M R, ALDRIDGE J R, JR., WEBSTER R G, MAGOR K E , Association of RIG-I with innate immunity of ducks to influenza. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13):5913-5918. doi: 10.1073/pnas. 1001755107.
doi: 10.1073/pnas.1001755107 pmid: 20308570
[12] MARKWELL D D, SHORTRIDGE K F . Possible waterborne transmission and maintenance of influenza viruses in domestic ducks. Applied and Environmental Microbiology, 1982,43(1):110-115.
pmid: 7055370
[13] SANDHU T S, METWALLY S A. Duck virus enteritis(Duck Plague) //SAIF Y M. Diseases of Poultry. Singapore; Blackwell Publishing. 2008: 384-393.
[14] KING A M Q, ADAMS M J, CARSTENS E B, LEFKOWITZ E J . Virus taxonomy: Classification and nomenclature of viruses//Ninth Report of the International Committee on Taxonomy of Viruses San Diego,CA: Elsevier Academic Press, 2012.
[15] WANG J, HOPER D, BEER M, OSTERRIEDER N . Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Research, 2011,160(1-2):316-325. doi: 10.1016/ j.virusres.2011.07.004.
doi: 10.1016/j.virusres.2011.07.004 pmid: 21802458
[16] YANG C, LI Q, LI J, ZHANG G, LI H, XIA Y, YANG H, YU K . Comparative genomic sequence analysis between a standard challenge strain and a vaccine strain of duck enteritis virus in China. Virus Genes, 2014,48(2):296-303. doi: 10.1007/s11262-013-1009-9.
doi: 10.1007/s11262-013-1009-9 pmid: 24287923
[17] YANG C, LI J, LI Q, LI L, SUN M, LI H, XIA Y, YANG H, YU K . Biological properties of a duck enteritis virus attenuated via serial passaging in chick embryo fibroblasts. Archives of Virology, 2015, 160(1):267-274. doi: 10.1007/s00705-014-2275-0.
doi: 10.1007/s00705-014-2275-0 pmid: 25392272
[18] YANG C, LI J, LI Q, LI H, XIA Y, GUO X, YU K, YANG H . Complete genome sequence of an attenuated duck enteritis virus obtained by in vitro serial passage. Genome Announc, 2013, 1(5): 10.1128/genomeA.00685-3.
doi: 10.1128/genomeA.00919-13 pmid: 24179116
[19] LI Y, HUANG B, MA X, WU J, LI F, AI W, SONG M, YANG H . Molecular characterization of the genome of duck enteritis virus. Virology, 2009, 391(2):151-161. doi: 10.1016/j.virol.2009.06.018.
doi: 10.1016/j.virol.2009.06.018 pmid: 19595405
[20] WU Y, CHENG A, WANG M, YANG Q, ZHU D, JIA R, CHEN S, ZHOU Y, WANG X, CHEN X . Complete genomic sequence of Chinese virulent duck enteritis virus. Journal of Virology, 2012, 86(10):5965. doi: 10.1128/ JVI.00529-12.
doi: 10.1128/JVI.00529-12
[21] WANG J, OSTERRIEDER N . Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Research, 2011,159(1):23-31. doi: 10.1016 /j.virusres.2011.04.013.
doi: 10.1186/s12985-015-0354-9 pmid: 26263920
[22] LIU J, CHEN P, JIANG Y, WU L, ZENG X, TIAN G, GE J, KAWAOKA Y, BU Z, CHEN H . A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks. Journal of Virology, 2011,85(21):10989-10998. doi: 10.1128/JVI. 05420-11.
doi: 10.1128/JVI.05420-11 pmid: 21865383
[23] LIU X, WEI S, LIU Y, FU P, GAO M, MU X, LIU H, XING M, MA B, WANG J . Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus. Vaccine, 2013,31(50):5953-5959. doi: 10.1016/j.vaccine.2013.10.035.
doi: 10.1016/j.vaccine.2013.10.035 pmid: 24144474
[24] ZOU Z, HU Y, LIU Z, ZHONG W, CAO H, CHEN H, JIN M . Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Veterinary Research, 2015,46(1):42. doi: 10.1186/s13567-015-0174-3.
doi: 10.1186/s13567-015-0174-3 pmid: 25889564
[25] SUN Y, YANG C, LI J, LI L, CAO M, LI Q, LI H . Construction of a recombinant duck enteritis cirus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks. Archives of Virology, 2017,162(1):9. doi: DOIhttps://doi.org/10.1007/ s00705-016-3077-3.
doi: 10.1007/s00705-016-3077-3 pmid: 27709401
[26] GE J, DENG G, WEN Z, TIAN G, WANG Y, SHI J, WANG X, LI Y, HU S, JIANG Y, YANG C, YU K, BU Z, CHEN H . Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. Journal of Virology, 2007,81(1):150-158. doi: 10.1128/jvi.01514-06.
doi: 10.1128/JVI.01514-06 pmid: 17050610
[27] QIAO C, YU K, JIANG Y, LI C, TIAN G, WANG X, CHEN H . Development of a recombinant fowlpox virus vector-based vaccine of H5N1 subtype avian influenza. Developments in Biologicals, 2006,124:127-132.
pmid: 16447503
[28] 陈柳, 余斌, 倪征, 华炯钢, 叶伟成, 云涛, 张存 . 表达小鹅瘟病毒VP2蛋白重组鸭瘟病毒的构建及其生物学特性. 中国农业科学, 2016,49(14):2813-2821.
doi: 10.3864/j.issn.0578-1752.2016.14.015
CHEN L, YU B, NI Z, HUA J G, YE W C, YUN T, ZHANG C . Construction and characterization of a recombinant duck enteritis virus expressing VP2 gene of goose parvovirus. Scientia Agricultura Sinica, 2016,49(14):2813-2821.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.14.015
[29] ZOU Z, LIU Z, JIN M . Efficient strategy to generate a vectored duck enteritis virus delivering envelope of duck tembusu virus. Viruses, 2014, 6(6):2428-2443. doi: 10.3390/v6062428.
doi: 10.3390/v6062428 pmid: 24956180
[30] CHEN P, LIU J, JIANG Y, ZHAO Y, LI Q, WU L, HE X, CHEN H . The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus. Vaccine, 2014, 32(41):5271-5277. doi: 10.1016/j.vaccine. 2014.07.082.
doi: 10.1016/j.vaccine.2014.07.082
[31] LI H, WANG Y, HAN Z, WANG Y, LIANG S, JIANG L, HU Y, KONG X, LIU S . Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens. Antiviral Research, 2016, 130:19-26. doi: 10.1016/j.antiviral.2016.03. 003.
doi: 10.1016/j.antiviral.2016.03.003 pmid: 26946113
[32] 孙莹, 李俊平, 黄小洁, 李岭, 曹明慧, 李启红, 李慧姣, 杨承槐 . 表达绿色荧光蛋白重组鸭肠炎病毒构建. 中国农业科学, 2016,49(14):2805-2812.
doi: 10.3864/j.issn.0578-1752.2016.14.014
SUN Y, LI J P, HUANG X J, LI L, CAO M H, LI Q H, LI H J, YANG C H . Construction and characterization of recombinant duck enteritis virus expressing the green fluorescent protein. Scientia Agricultura Sinica, 2016, 49(14):2805-2812.(in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.14.014
[33] BUBLOT M, PRITCHARD N, LE GROS F X, GOUTEBROZE S . Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody. Journal of Comparative Pathology, 2007, 137(Suppl 1):S81-84. doi: 10.1016/j. jcpa.2007.04.017.
doi: 10.1016/j.jcpa.2007.04.017 pmid: 17560594
[34] MATSUMURA T, KONDO T, SUGITA S, DAMIANI A M, O'CALLAGHAN D J, IMAGAWA H , An equine herpesvirus type 1 recombinant with a deletion in the gE and gI genes is avirulent in young horses. Virology, 1998,242(1):68-79. doi: 10.1006/viro.1997. 8984.
doi: 10.1006/viro.1997.8984 pmid: 9501037
[35] DAMIANI A M, MATSUMURA T, YOKOYAMA N, MIKAMI T, TAKAHASHI E . A deletion in the gI and gE genes of equine herpesvirus type 4 reduces viral virulence in the natural host and affects virus transmission during cell-to-cell spread. Virus Research, 2000,67(2):189-202. doi: 10.1016/ S0168-1702(00)00146-5.
doi: 10.1016/s0168-1702(00)00146-5 pmid: 10867198
[36] JOHNSON D C, WEBB M, WISNER T W, BRUNETTI C . Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread. Journal of Virology, 2001,75(2):821-833. doi: 10.1128/ jvi.75.2.821-833.2001.
doi: 10.1128/JVI.75.2.821-833.2001 pmid: 11134295
[37] JACOBS L, RZIHA H J, KIMMAN T G, GIELKENS A L, VAN OIRSCHOT J T . Deleting valine-125 and cysteine-126 in glycoprotein gI of pseudorabies virus strain NIA-3 decreases plaque size and reduces virulence in mice. Archives of Virology, 1993,131(3/4):251-264.
doi: 10.1007/bf01378630 pmid: 8394068
[38] TRAPP S, OSTERRIEDER N, KEIL G M, BEER M . Mutagenesis of a bovine herpesvirus type 1 genome cloned as an infectious bacterial artificial chromosome: analysis of glycoprotein E and G double deletion mutants. Journal of General Virology, 2003, 84(Pt 2):301-306.
doi: 10.1099/vir.0.18682-0 pmid: 12560561
[39] SUSSMAN M D, MAES R K, KRUGER J M, SPATZ S J, VENTA P J . A feline herpesvirus-1 recombinant with a deletion in the genes for glycoproteins gI and gE is effective as a vaccine for feline rhinotracheitis. Virology, 1995,214(1):12-20. doi: 10.1006/viro.1995.9959.
doi: 10.1006/viro.1995.9959 pmid: 8525607
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[3] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[6] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[10] LI Hui,YIN ShiCai,GUO ZongXiang,MA HaoYun,REN ZiQi,SHE DongMei,MEI XiangDong,NING Jun. Synthesis and Bioactivity of Sex Pheromone Analogues of Protoschinia scutosa [J]. Scientia Agricultura Sinica, 2022, 55(9): 1790-1799.
[11] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[12] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[13] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[14] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[15] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!