Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4119-4128.doi: 10.3864/j.issn.0578-1752.2019.22.016

• CULTIVATION·PHYSIOLOGY • Previous Articles     Next Articles

Effects of Exogenous Nitric Oxide on Seed Germination and Starch Transformation of Sorghum Seeds Under Salt Stress

YIN MeiQiang,WANG Dong,WANG JinRong,LAN Min,ZHAO Juan,DONG ShuQi,SONG Xi’E,ALAM Sher,YUAN XiangYang,WANG YuGuo,WEN YinYuan()   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2019-06-10 Accepted:2019-08-17 Online:2019-11-16 Published:2019-11-16
  • Contact: YinYuan WEN E-mail:wenyinyuan@126.com

Abstract:

【Objective】To discuss the physiological and biochemical regulation of exogenous Nitric Oxide (NO) on the germination of sorghum seeds under salt stress, which provided a theoretical basis for revealing the germination physiology and chemical regulation of sorghum seeds. 【Method】Sorghum (variety: Jintian 08-1) seeds were cultivated with 0, 50, 100, 150, 200, 300, and 400 mmol·L -1 NaCl solution. According to the germination rate under different concentrations of NaCl, the suitable salt tolerance concentration, semi-lethal concentration, and limiting concentration of sorghum seeds at the germination stage were defined. Sorghum seeds pretreated with 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8 mmol·L -1 sodium nitroprusside (SNP, NO donor) for 12 h at 25℃ in dark, then were cultured in salt solution of 150 mmol·L -1 NaCl. The germination potential and germination rate were counted at cultured 36 h and 72 h, respectively. Proline content, malondialdehyde content and starch transformation related indexes were determined at cultured 5 days. Dinitrosalicylic acid is used in colorimetric determination of reducing sugars and to analyze amylase activity by quantitation of enzymatically released reducing sugar. The content of soluble sugar and starch were determined by anthrone method. Proline content and malondialdehyde (MDA) content were measured by acid-ninhydrin method and thiobarbituric acid method, respectively. The germination rate, germination energy, water absorption capacity of seeds, amylase activity, starch and sugar content, proline and other indexes were determined and analyzed to investigate the effects of exogenous NO on sorghum seed germination and starch transformation under salt stress. 【Result】The germination of sorghum seeds was obviously inhibited by more than 100 mmol·L -1 NaCl. When NaCl concentration was 150 mmol·L -1, the germination rate of sorghum seeds was 63.17%. 400 mmol·L -1 NaCl completely inhibited sorghum seeds germination. Pretreatment with SNP greatly relieves the inhibitory effect of the following salt stress to sorghum seeds germination, especially during the early stage of germination (36 h). 0.05 mmol·L -1 SNP alleviated the inhibition of salt stress on seed germination, seed germination potential, germination rate and germination index were 14.44%, 12.22% and 18.07% higher than those of the control, respectively (P<0.05). SNP increased the content of proline and soluble sugar in sorghum seeds by 18.97% and 41.43% respectively, which reduced osmotic potential, promoted water absorption and alleviated osmotic stress caused by NaCl. At the same time, the content of MDA decreased by 17.79% compared with NaCl treatment alone. Further investigations showed that pretreatment with NO donor dramatically stimulated the activities of amylase under salt stress by 17.20% compared with NaCl on the first day after treatment, and accelerated the degradation of starch, increased the content of reducing sugar. By the 5th day of SNP+NaCl treatment, the starch content decreased by 19.17%, and the content of soluble sugar and reducing sugar increased by 41.4% and 41.0%, respectively, compared to NaCl treatment. These newly produced substances provided energy for seed germination, and improved the salt resistance of sorghum seeds during germination period. 【Conclusion】According to our results, exogenous NO could regulate the amylase activity and osmotic regulation ability of sorghum seeds during germination period, improved their resistance to salt stress, and promoted seed germination.

Key words: sorghum, salt stress, nitric oxide, seed germination, starch conversion

Table 1

Experimental treatments"

处理Treatment NaCl浓度
NaCl concentration (mmol·L-1)
SNP浓度
SNP concentration
(mmol·L-1)
CK 0 0
S0 150 0
S1 150 0.05
S2 150 0.1
S3 150 0.2
S4 150 0.4
S5 150 0.6
S6 150 0.8

Fig. 1

Effects of salt stress on the germination rate of sorghum seeds Different letters indicate significant difference at 5 % level. The same as below"

Table 2

Effects of exogenous nitric oxide on sorghum seeds germination under NaCl stress"

处理
Treatment
发芽势
Germination energy (%)
发芽率
Germination rate (%)
发芽指数
Germination index
活力指数
Vigor index
CK 88.89±5.09a 90.00±5.77a 15.32±1.16a 0.83±0.08a
NaCl 65.56±1.92c 72.22±3.85bcd 9.35±0.18c 0.18±0.02cd
0.05 mmol·L-1SNP+NaCl 80.00±5.77b 84.44±9.62ab 11.04±1.01b 0.31±0.03b
0.1 mmol·L-1SNP+NaCl 70.00±3.33c 78.89±8.39abc 9.64±0.42c 0.19±0.02c
0.2 mmol·L-1SNP+NaCl 68.89±8.39c 78.89±9.62abc 8.61±0.58cd 0.16±0.01cd
0.4 mmol·L-1SNP+NaCl 63.33±3.33cd 67.78±8.39cd 7.66±1.11de 0.12±0.03de
0.6 mmol·L-1SNP+NaCl 55.56±3.85de 64.44±6.94d 7.16±0.38e 0.09±0.01e
0.8 mmol·L-1SNP+NaCl 53.33±3.33e 63.33±3.33d 6.61±0.76e 0.07±0.01e

Fig. 2

Effects of exogenous nitric oxide on the water content (A) and water absorption rate (B) of sorghum seeds after soaking for 24 h"

Fig. 3

Effects of exogenous nitric oxide on the proline content of sorghum seeds under salt stress"

Fig. 4

Effects of exogenous nitric oxide on the soluble sugar content of sorghum seeds under salt stress"

Fig. 5

Effects of exogenous nitric oxide on the contents of starch(A), soluble sugar(B), reducing sugar(C) and the activities of amylase(D)in germinating sorghum seeds under salt stress"

Fig. 6

Effects of exogenous nitric oxide on the MDA content of sorghum seeds under salt stress"

[1] 王春裕 . 论盐渍土之种稻生态改良. 土壤通报, 2002,33(2):94-95.
WANG C Y . The discussion on ecological amelioration of salt-effected soil under growing rice condition. Chinese Journal of Soil Science, 2002,33(2):94-95. (in Chinese)
[2] 马金虎, 王宏富, 王玉国, 李新基, 韦献果 . 种子引发对高粱幼苗耐盐性的生理效应. 中国农业科学, 2009,42(10):3713-3719.
MA J H, WANG H F, WANG Y G, LI X J, WEI X G . Physiological effects of seed priming on salt resistance of sorghum seedlings. Scientia Agricultura Sinica, 2009,42(10):3713-3719. (in Chinese)
[3] 高建明, 夏卜贤, 袁庆华, 罗峰, 韩芸, 桂枝, 裴忠有, 孙守钧 . 高粱种质材料幼苗期耐盐碱性评价. 应用生态学报, 2012,23(5):1303-1310.
GAO J M, XIA B X, YUAN Q H, LUO F, HAN Y, GUI Z, PEI Z Y, SUN S J . Salt-alkaline tolerance of sorghum germplasm at seedling stage. Chinese Journal of Applied Ecology, 2012,23(5):1303-1310. (in Chinese)
[4] 孙璐, 周宇飞, 汪澈, 肖木辑, 陶冶, 许文娟, 黄瑞冬 . 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012,45(9):1714-1722.
SUN L, ZHOU Y F, WANG C, XIAO M J, TAO Y, XU W J, HUANG R D . Screening and identification of sorghum cultivars for salinity tolerance during germination. Scientia Agricultura Sinica, 2012,45(9):1714-1722. (in Chinese)
[5] 朱广龙, 宋成钰, 于林林, 陈许兵, 智文芳, 刘家玮, 焦秀荣, 周桂生 . 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制. 作物学报, 2018,44(11):1713-1724.
ZHU G L, SONG C Y, YU L L, CHEN X B, ZHI W F, LIU J W, JIAO X R, ZHOU G S . Alleviation effects of exogenous growth regulators on seed germination of sweet sorghum under salt stress and its physiological basis. Acta Agronomica Sinica, 2018,44(11):1713-1724. (in Chinese)
[6] PINHEIRO C L, ARAÚJO H T N, de BRITO S F, VIANA J da S, FILHO S M . Seed priming and tolerance to salt and water stress in divergent grain sorghum genotypes. American Journal of Plant Sciences, 2018,9(4):606-616.
[7] 邵瑞鑫, 李蕾蕾, 郑会芳, 信龙飞, 苏小雨, 冉午玲, 杨青华 . 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响. 中国农业科学, 2016,49(2):251-259.
SHAO R X, LI L L, ZHENG H F, XIN L F, SU X Y, RAN W L, YANG Q H . Effects of exogenous nitric oxide on photosynthesis of maize seedlings under drought stress. Scientia Agricultura Sinica, 2016,49(2):251-259. (in Chinese)
[8] 杨美森, 王雅芳, 干秀霞, 罗宏海, 张亚黎, 张旺锋 . 外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响. 中国农业科学, 2012,45(15):3058-3067.
YANG M S, WANG Y F, GAN X X, LUO H H, ZHANG Y L, ZHANG W F . Effects of exogenous nitric oxide on growth, antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress. Scientia Agricultura Sinica, 2012,45(15):3058-3067. (in Chinese)
[9] 孟威, 文景芝, 吴茂森, 何晨阳 . 两种黄单胞病菌诱导水稻一氧化氮产生和防卫基因表达的比较研究. 中国农业科学, 2007,40(6):1159-1165.
MENG W, WEN J Z, WU M S, HE C Y . Comparative analysis of nitric oxide generation and induction of defense gene expression byXanthomonas campestris pv. Vesicatoria and X. Oryzae pv. Oryzae of rice suspension-cultured cells. Scientia Agricultura Sinica, 2007,40(6):1159-1165. (in Chinese)
[10] ZHAO X F, CHEN L, MUHAMMAD I A R, WANG Q S, WANG S H, HOU P F, LI G H, DING Y F . Effect of nitric oxide on alleviating cadmium toxicity in rice ( Oryza sativa L.). Journal of Integrative Agriculture, 2013,12(9):1540-1550.
[11] 汤绍虎, 周启贵, 孙敏, 毛薇 . 外源NO对渗透胁迫下黄瓜种子萌发、幼苗生长和生理特性的影响. 中国农业科学, 2007,40(2):419-425.
TANG S H, ZHOU Q G, SUN M, MAO W . Effects of exogenous nitric oxide on seed germination, seedling growth and physiological characteristics of cucumber under osmotic pressure. Scientia Agricultura Sinica, 2007,40(2):419-425. (in Chinese)
[12] ZHANG H, SHEN W B, XU L L . Effect of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolism under osmotic stress. Journal of Integrative Plant Biology, 2003,45(8):901-905.
[13] 王旺田, 谢光辉, 刘文瑜, 王宝强, 郑凯翔, 魏晋梅 . 外源NO对盐胁迫下甜高粱种子萌发和幼苗生长的影响. 核农学报, 2019,33(2):363-371.
WANG W T, XIE G H, LIU W Y, WANG B Q, ZHENG K X, WEI J M . Effect of exogenous nitric oxide on seed germination and seedling growth of sorghum under salt stress. Journal of Nuricultural Sciences, 2019,33(2):363-371. (in Chinese)
[14] 贺慧, 燕玲, 郑彬 . 5种荒漠植物种子萌发特性及其吸水特性的研究. 干旱区资源与环境, 2008,22(1):184-188.
HE H, YAN L, ZHENG B . Study on morphological structure and germination character of five desert plants. Journal of Arid Land Resources and Environment, 2008,22(1):184-188. (in Chinese)
[15] 王晶英, 敖红, 张杰, 曲桂琴 . 植物生理生化实验技术与原理. 哈尔滨: 东北林业大学出版社, 2003: 35-38.
WANG J Y, AO H, ZHANG J, QU G Q. Experimental Techniques and Principles of Plant Physiology and Biochemistry. Harbin: Northeast Forestry University Press, 2003: 35-38. (in Chinese)
[16] 李合生 . 植物生理生化实验技术. 北京: 高等教育出版社, 2000.
LI H S. Experimental Techniques of Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. (in Chinese)
[17] CARO A, PUNTARULO S . Nitric oxide generation by soybean embryonic axes: Possible effect on mitochondrial function. Free Radical Research, 1999,31(sup1):205-212.
[18] SIMONTACCHI M, JASID S, PUNTARULO S . Nitric oxide generation during early germination of sorghum seeds. Plant Science, 2004,167(4):839-847.
[19] DEMECSOVÁ L, BOČOVÁ B, ZELINOVÁ V, TAMÁS L . Enhanced nitric oxide generation mitigates cadmium toxicity via superoxide scavenging leading to the formation of peroxynitrite in barley root tip. Journal of Plant Physiology, 2019,238(16):20-28.
[20] 周永斌, 殷有, 苏宝玲, 陈志坚, 刘立伟 . 外源一氧化氮供体对几种植物种子的萌发和幼苗生长的影响. 植物生理学通讯, 2005,41(3):316-318.
ZHOU Y B, YIN Y, SU B L, CHEN Z J, LIU L W . Effects of exogenous nitric oxide donor on seed germination and seedling growth of several plant species. Plant Physiology Journal, 2005,41(3):316-318. (in Chinese)
[21] IBRAHIM E A . Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 2016,192(3):38-46.
[22] 谢德意, 王惠萍, 王付欣, 冯复全 . 盐胁迫对棉花种子萌发及幼苗生长的影响. 种子, 2000,27(3):12-13.
XIE D Y, WANG H P, WANG F X, FENG F Q . Effects of cotton seeds germination and seeds growth under salt stress. Seed, 2000,27(3):12-13. (in Chinese)
[23] KUBALA S, WOJTYLA Ł, QUINET M, LECHOWSKA K, LUTTS S, GARNCZARSKA M . Enhanced expression of the proline synthesis gene in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Journal of Plant Physiology, 2015,183(1):1-12.
[24] 张福锁 . 环境胁迫与植物营养. 北京: 北京大学出版社, 1993: 25-48.
ZHANG F S. Environmental Stress and Plant Nutrition. Beijing: Peking University Press, 1993: 25-48. (in Chinese)
[25] SAMI F, YUSUF M, FAIZAN M, FARAZ A, HAYAT S . Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 2016,109(12):54-61.
[26] 张华, 孙永刚, 张帆, 聂理, 沈文飚, 徐朗莱 . 外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响. 植物生理与分子生物学学报, 2005,31(3):241-246.
ZHANG H, SUN Y G, ZHANG F, NIE L, SHEN W B, XU L L . Effects of exogenous nitric oxide donor on germination and activities of hydrolytic enzymes in wheat seed under osmotic stress. Physiology and Molecular Biology of Plants, 2005,31(3):241-246. (in Chinese)
[27] BELIGNI M V, LAMATTINA L . Nitric oxide stimulates seed germination and de-etiolation and inhibits hypocotyls elongation, three light inducible responses in plants. Planta, 2000,210(2):215-221.
[28] 凌腾芳, 宣伟, 樊颖瑞, 孙永刚, 徐晟, 黄本开, 黄思睿, 沈文飚 . 外源葡萄糖、果糖和NO供体(SNP)对盐胁迫下水稻种子萌发的影响. 植物生理与分子生物学学报, 2005(2):205-212.
LING T F, XUAN W, FAN Y R, SUN Y G, XU S, HUANG B K, HANG S R, SHEN W B . The effect of exogenous glucose, fructose and no donor sodium nitroprusside (snp) on rice seed germination under salt stress. Physiology and Molecular Biology of Plants, 2005(2):205-212. (in Chinese)
[29] UCHIDA A, JAGENDORF AT, HIBINO T, TAKABE T, TAKABE T . Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002,163(3):515-523.
[30] 阮海华, 沈文飚, 叶茂炳, 徐朗莱 . 一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应. 科学通报, 2001(23):1993-1997.
RUAN H H, SHEN W B, YE M B, XU L L . Protective effect of no on oxidative damage of wheat leaves under salt stress. Chinese Science Bulletin, 2001(23):1993-1997. (in Chinese)
[31] 宿梅飞, 魏小红, 辛夏青, 岳凯, 赵颖, 韩厅, 马文静, 骆巧娟 . 外源cGMP调控盐胁迫下黑麦草种子萌发机制. 生态学报, 2018,38(17):6171-6179.
SU M F, WEI X H, XIN X Q, YUE K, ZHAO Y, HAN T, MA W J, LUO Q J . Exogenous cGMP regulates seed germination of ryegrass under salt stress. Acta Ecologica Sinica, 2018,38(17):6171-6179. (in Chinese)
[32] JASID S, SIMONTACCHI M, PUNTARULO S . Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes. Journal of Experimental Botany, 2008,59(14):3953-3962.
[33] 陈少良, 李金克, 毕望富, 王沙生 . 盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化. 植物学通报, 2001(5):587-596.
CHEN S L, LI J K, BI W F, WANG S S . Genotypic variation in accumulation of salt ions, betaine and sugars in poplar under conditions of salt stress. Chinese Bulletin of Botany, 2001(5):587-596. (in Chinese)
[34] HU K D, HU L Y, LI Y H, ZHANG F Q, ZHANG H . Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regulation, 2007,53(3):173-183.
[1] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[2] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[3] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[4] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[5] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[6] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[7] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[8] ZHANG GuiYun,ZHU JingWen,SUN MingFa,YAN GuoHong,LIU Kai,WAN BaiJie,DAI JinYing,ZHU GuoYong. Analysis of Differential Metabolites in Grains of Rice Cultivar Changbai 10 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(4): 675-683.
[9] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[10] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[11] WANG Jie,WU XiaoYu,YANG Liu,DUAN QiaoHong,HUANG JiaBao. Genome-Wide Identification and Expression Analysis of ACA Gene Family in Brassica rapa [J]. Scientia Agricultura Sinica, 2021, 54(22): 4851-4868.
[12] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] KONG YaLi,ZHU ChunQuan,CAO XiaoChuang,ZHU LianFeng,JIN QianYu,HONG XiaoZhi,ZHANG JunHua. Research Progress of Soil Microbial Mechanisms in Mediating Plant Salt Resistance [J]. Scientia Agricultura Sinica, 2021, 54(10): 2073-2083.
[15] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!