Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3546-3558.doi: 10.3864/j.issn.0578-1752.2019.20.006

• SPECIAL FOCUS: HIGH-YIELDING AND HIGH NUTRIENT EFFICIENT SPRING MAIZE IN NORTHEAST CHINA • Previous Articles     Next Articles

Characteristics of Grain Yield and Nutrient Accumulation for Spring Maize Under Different Agronomic Management Practices

JingChao YUAN1,JianZhao LIU1,Yao LIANG1,WenJie ZHAN1,2,HongXi ZHANG1,ZiHao ZENG1,2,HongGuang CAI1(),Jun REN1()   

  1. 1 Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Agro-Environment in Northeast Region, Ministry of Agriculture, Changchun 130033
    2 Jilin Agricultural University, Changchun 130118
  • Received:2019-03-19 Accepted:2019-07-01 Online:2019-10-16 Published:2019-10-28
  • Contact: HongGuang CAI,Jun REN E-mail:caihongguang1981@163.com;renjun557@163.com

Abstract:

【Objective】 This research aimed to investigate the characteristics of grain yield, nutrient accumulation and transport of spring maize before and after flowering under different agronomic management practices, so as to provide theoretical and technical support for high yield and efficient production of spring maize. 【Method】 The field experiment was conducted from 2009 to 2012 in Gongzhuling of Jilin province. The hybrid “Xianyu335” was used as research material. During three consecutive years, five different agronomic management practices (CK, FP, Opt-1, Opt-2, and Opt-3) were set under the field conditions. The characteristics of dry matter accumulation, nutrient absorbing and transport were monitored before and after flowering of spring maize. The influence of grain yield was studied under different agronomic management practices. 【Result】 Reasonable densification, nutrient management and deep scarification were the key measures for high yield of spring maize. The result indicated Opt-3 was optimal under five different agronomic management practices. Compared with FP, the grain yield and dry matter accumulation of Opt-3 increased 13.9% and 22.4%, respectively. The number of maize ears in harvest stage contributed yield mostly, and the yield under Opt-3 was 34.3% higher than that under FP. Under the condition of same amount of fertilizer input between Opt-3 and FP, N, P and K accumulation of Opt-3 increased by 9.5%, 28.1% and 23.9% than that of FP, respectively. N, P and K translocation rate of Opt-3 increased by 47.7%, 21.7% and 45.0%, respectively. Partial productivity of N, P fertilizer increased by 14.0% and 4.4%, respectively. Compared with Opt-1, the grain yield of Opt-3 was further augmented by increasing planting density. When planting density was increased by 10 000 plant/hm 2, the grain yield increased 56-346 kg·hm -2. Compared with Opt-2, the efficiency of Opt-3 was improved through further optimization of fertilizer, and ANUE of Opt-3 increased 29.5%. Through fertilizer cost accounting, compared with FP, Opt-3 increased income by 2 218 yuan/hm 2. Compared with Opt-1, Opt-3 increased income by 290 yuan/hm 2. Compared with Opt-2, Opt-3 saved 367 yuan/hm 2.【Conclusion】 By reasonable densification to 70 000 plant/hm 2, optimized fertilizer (N 225 kg·hm -2-P2O5 90 kg·hm -2-K2O 90 kg·hm -2) and application period, organic fertilizer (1 500 kg·hm -2), added microelement fertilizer (150 kg·hm -2), combined with soil deep tillage, it was a relatively optimized integrated agronomic management mode, which could realize the synergistic improvement of spring maize yield and efficiency in the middle of northeast China.

Key words: agronomic management practices, spring maize, grain yield, nutrient accumulation and transport, partial productivity

Fig. 1

Precipitation in experiment field during maize growth stage from 2009 to 2011"

Table 1

Cultivation of different integrated agronomic management practices"

处理
Treatment
种植密度
Plant density
(×104 plants/hm2)
耕作
Tillage
肥料
Fertilizer
肥料施用量 Fertilizer application amount (kg·hm-2)
施肥量
Fertilizing amount
播前
Before seeding
拔节期
V6
抽雄期
VT
CK 6.0 灭茬旋耕
Stubble rotary tillage
N 0
P 0
K 0
微量肥Microelement 0
有机肥Organic 0
FP 5.0 灭茬旋耕
Stubble rotary tillage
N 225 225
P 82.5 82.5
K 67.5 67.5
微量肥Microelement 0
有机肥Organic 0
Opt-1 6.0 灭茬旋耕
Stubble rotary tillage
N 195 78 117
P 75 75
K 82.5 82.5
微量肥Microelement 60 60
有机肥Organic 15000 15000
Opt-2 7.0 6展叶深松
V6-subsoiling
N 300 120 120 60
P 120 96 24
K 120 96 24
微量肥Microelement 150 150
有机肥Organic 15000 15000
Opt-3 7.0 6展叶深松
V6-subsoiling
N 225 90 90 45
P 90 72 18
K 90 72 18
微量肥Microelement 150 150
有机肥Organic 15000 15000

Table 2

The grain yield and its components under different agronomic management practices"

年份
Year
处理
Treatment
产量
Grain yield (kg·hm-2)
收获穗数
Ear number (hm-2)
穗粒数
Kernel number
百粒重
100-kernel weight (g)
增产
Increase (%)
2009 CK 5991.6b 53000c 389b 29.8b
FP 8356.6a 45000d 503a 37.2a
Opt-1 9108.0a 63000a 521a 29.9b 9.0
Opt-2 9142.0a 61000b 504a 30.4b 9.4
Opt-3 9163.7a 63000a 501a 29.8b 9.7
2010 CK 7526.1c 58000b 398c 33.9c
FP 8945.6b 51000c 479a 37.9b
Opt-1 10019.9a 57000b 455a 40.7a 12.0
Opt-2 10390.4a 67000a 388c 41.7a 16.2
Opt-3 10102.5a 64000a 401b 41.0a 12.9
2011 CK 4457.0c 57000b 288c 27.6b
FP 9253.0b 47000c 638a 35.2ab
Opt-1 10639.0a 57000b 558b 32.6a 15.0
Opt-2 11077.9a 62000a 504b 33.5ab 19.7
Opt-3 10985.0a 65000a 504b 32.5b 18.7
变异来源 Sources of variance
年份 Year (Y) 15.77** 15.81** 28.55** 104.26**
处理 Treatment (T) 85.66** 3.23** 45.64** 21.85**
年份×处理 Y×T 8.09** 11.90** 11.78** 6.87**

Fig. 2

Accumulation of dry matter and absorption of N,P and K under different agronomic management practices"

Table 3

Dry matter accumulation and contribution to grain of spring maize under different agronomic management practices"

年份
Year
处理
Treatment
积累量
Accumulation of dry matter (kg·hm-2)
积累率
Accumulation rate (%)
对籽粒贡献率
Accumulation rate (%)
转运效率
Translocation rate (%)
吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS
2009 CK 6312.0c 8235.0a 43.4 56.6 2.8 97.2 3.3
FP 8384.5b 7832.4a 51.7 48.3 19.4 80.6 19.3
Opt-1 9976.0a 9696.2a 50.7 49.3 13.6 86.4 13.3
Opt-2 11514.3a 9293.9a 55.3 44.7 25.4 74.6 23.2
Opt-3 11239.2a 8579.4a 56.7 43.3 25.9 74.1 22.8
2010 CK 6028.0b 6480.8d 48.2 51.8 14.2 85.8 15.2
FP 7850.0b 8985.1c 46.6 53.4 6.2 93.8 6.6
Opt-1 10154.0a 8739.8c 53.7 46.3 21.3 78.7 19.9
Opt-2 10920.0a 14267.1a 43.4 56.6 1.1 98.9 1.3
Opt-3 9906.0a 11906.0b 45.4 54.6 6.9 93.1 7.8
2011 CK
FP 11468.0ab 10453.3c 52.3 47.7 14.7 85.3 13.6
Opt-1 9433.3b 15800.7a 37.4 62.6 1.8 98.2 2.6
Opt-2 12480.0a 12831.3b 49.3 50.7 12.5 87.5 12.8
Opt-3 13408.5a 13097.0b 49.1 50.9 11.9 88.1 12.2

Table 4

N accumulation and contribution to grain of spring maize under different agronomic management practices"

年份
Year
处理
Treatment
积累量
Accumulation of dry matter (kg·hm-2)
积累率
Accumulation rate (%)
对籽粒贡献率
Accumulation rate (%)
转运效率
Translocation rate (%)
吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS
2009 CK 46.8c 78.0a 37.5 62.5 19.4 80.6 37.7
FP 115.9b 61.3a 65.4 34.6 54.3 45.7 57.8
Opt-1 141.8a 69.2a 67.2 32.8 57.6 42.4 60.4
Opt-2 159.5a 57.4a 73.5 26.5 67.7 32.3 65.9
Opt-3 144.6a 63.7a 69.4 30.6 61.8 38.2 63.9
2010 CK
FP 149.7b 65.4a 69.6 30.4 52.3 47.7 42.8
Opt-1 170.7a 48.5b 77.9 22.1 70.9 29.1 57.9
Opt-2 186.3a 78.2a 70.4 29.6 57.5 42.5 49.9
Opt-3 166.1a 67.9a 71.0 29.0 59.0 41.0 51.0
2011 CK
FP 113.3bc 130.7a 46.4 53.6 7.4 92.6 8.6
Opt-1 136.5b 117.8b 53.7 46.3 26.5 73.5 28.9
Opt-2 161.0a 102.2b 61.2 38.8 41.9 58.1 42.0
Opt-3 179.4a 75.2c 70.5 29.5 55.7 44.3 46.3

Table 5

P accumulation and contribution to grain of spring maize under different agronomic management practices"

年份
Year
处理
Treatment
积累量
Accumulation of dry matter (kg·hm-2)
积累率
Accumulation rate (%)
对籽粒贡献率
Accumulation rate (%)
转运效率
Translocation rate (%)
吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS
2009 CK 26.6b 40.4c 39.7 60.3 29.2 70.8 60.1
FP 35.3b 63.3b 35.8 64.2 19.0 81.0 40.6
Opt-1 38.4b 82.1a 31.9 68.1 19.5 80.5 50.6
Opt-2 53.5a 66.2b 44.7 55.3 38.5 61.5 74.3
Opt-3 50.9a 67.1b 43.1 56.9 37.1 62.9 75.1
2010 CK
FP 52.8b 18.8ab 73.8 26.2 64.0 36.0 59.6
Opt-1 65.4a 22.2a 74.7 25.3 68.4 31.6 66.2
Opt-2 73.5a 27.0a 73.1 26.9 67.1 32.9 69.2
Opt-3 59.2b 33.9a 63.6 36.4 51.5 48.5 58.9
2011 CK
FP 38.8b 44.8b 46.4 53.6 31.3 68.7 51.1
Opt-1 49.3b 65.2a 43.1 56.9 24.9 75.1 42.0
Opt-2 61.2a 59.5ab 51.6 48.4 34.2 65.8 45.6
Opt-3 62.8a 52.6ab 53.9 46.1 38.4 61.6 50.0

Table 6

K accumulation and contribution to grain of spring maize under different agronomic management practices"

年份
Year
处理
Treatment
积累量
Accumulation of dry matter (kg·hm-2)
积累率
Accumulation rate (%)
对籽粒贡献率
Accumulation rate (%)
转运效率
Translocation rate (%)
吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS 吐丝前BS 吐丝后AS
2009 CK 78.1b 27.5b 74.0 26.0 35.3 64.7 14.7
FP 117.9b 60.9a 65.9 34.1 22.1 77.9 12.2
Opt-1 163.8ab 22.0b 88.2 11.8 76.1 23.9 26.9
Opt-2 188.4a 19.6b 90.6 9.4 81.9 18.1 25.9
Opt-3 173.8a 13.7c 92.7 7.3 89.0 11.0 29.1
2010 CK
FP 112.6b 3.4c 97.0 3.0 85.7 14.3 23.0
Opt-1 134.9a 5.3c 96.2 3.8 77.9 22.1 9.9
Opt-2 148.7a 29.9a 83.3 16.7 50.6 49.4 15.5
Opt-3 145.5a 15.3b 90.5 9.5 67.2 32.8 16.9
2011 CK
FP 84.6c 45.2a 65.2 34.8 21.8 78.2 13.3
Opt-1 114.1b 47.7a 70.5 29.5 40.2 59.8 24.5
Opt-2 156.2a 26.4b 85.5 14.5 63.8 36.2 25.0
Opt-3 156.1a 21.9b 87.7 12.3 69.2 30.8 24.4

Table 7

Partial factor productivity of N, P, and K under different agronomic management practices"

年份
Year
处理
Treatment
氮肥偏生产力
Partial factor productivity of N
磷肥偏生产力
Partial factor productivity of P
钾肥偏生产力
Partial factor productivity of K
2009 CK
FP 37.1d 101.3b 123.8a
Opt-1 46.7a 121.4a 110.4b
Opt-2 30.5c 76.2c 76.2d
Opt-3 40.7b 101.8b 101.8c
2010 CK
FP 39.8c 108.4c 132.5a
Opt-1 51.4a 133.6a 121.4b
Opt-2 34.6cd 86.6d 86.6d
Opt-3 44.9b 112.2b 112.3c
2011 CK
FP 41.1c 112.2c 137.1a
Opt-1 54.6a 141.9a 129.0ab
Opt-2 36.9d 92.3d 92.3c
Opt-3 48.8b 122.1b 122.1b
[1] 颜鹏 . 支撑夏玉米高产高效群体的根层氮素调控机制与途径[D]. 北京: 中国农业大学, 2015.
YAN P . The mechanisms of root-zone N management regulates maize canopy development with high yield and high N use efficiency[D]. Beijing: China Agricultural University, 2015. ( in Chinese)
[2] 卜令铎 . 旱地春玉米高产高效栽培体系构建、评价及区域模拟[D]. 杨凌: 西北农林科技大学, 2013.
BU L D . The cultivation system establishment and assessment contributing to yield and efficiency improvement of dryland maize, and regional simulation[D]. Yangling: Northwest A&F University, 2013. ( in Chinese)
[3] 李伟波, 张效朴 . 吉林中部玉米高产施肥与提高化肥利用率研究. 玉米科学, 1998,6(2):65-68.
LI W B, ZHANG X P . Study on high yield fertilization and fertilizer utilization of maize in central Jilin province. Maize Sciences, 1998,6(2):65-68. (in Chinese)
[4] 张梅, 任军, 郭金瑞, 闫孝贡, 刘剑钊, 蔡红光, 边秀芝 . 吉林中部黑土区玉米高产栽培土壤培肥技术研究. 玉米科学, 2011,19(6):101-104.
ZHANG M, REN J, GUO J R, YAN X G, LIU J Z, CAI H G, BIAN X Z . Study on the technology of soil fertility for high yielding cultivation of maize plant in Jilin province. Journal of Maize Sciences, 2011,19(6):101-104. (in Chinese)
[5] 任军, 边秀芝, 郭金瑞, 闫孝贡, 刘剑钊 . 黑土区高产土壤培肥与玉米高产田建设研究. 玉米科学, 2008,16(4):147-151,157.
REN J, BIAN X Z, GUO J R, YAN X G, LIU J Z . Building up fertility for high yield soil and construction of high-yield field in the black soil regions. Journal of Maize Sciences, 2008,16(4):147-151,157. (in Chinese)
[6] 边秀芝, 郭金瑞, 闫孝贡, 刘剑钊, 任军 . 吉林西部半干旱区玉米高产氮磷钾肥适宜用量研究. 中国土壤与肥料, 2010(2):63-65.
BIAN X Z, GUO J R, YAN X G, LIU J Z, REN J . Study on optimum rate of NPK fertilizer application for corn at western semiarid area of Jilin. Soil and Fertilizer Sciences in China, 2010(2):63-65. (in Chinese)
[7] 边秀芝, 郭金瑞, 闫孝贡, 刘剑钊, 任军 . 吉林中部玉米高产施肥模式研究. 吉林农业科学, 2008,33(6):41-43.
BIAN X Z, GUO J R, YAN X G, LIU J Z, REN J . Fertilization model of high yield of maize in middle Jilin province. Journal of Jilin Agricultural Sciences, 2008,33(6):41-43. (in Chinese)
[8] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆 . 密度对玉米产量(>15000 kg·hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45(16):3437-3445.
doi: 10.3864/j.issn.0578-1752.2012.16.025
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K . Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012,45(16):3437-3445. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.16.025
[9] 赵营, 同延安, 赵护兵 . 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006,12(5):622-627.
doi: 10.11674/zwyf.2006.0504
ZHAO Y, TONG Y A, ZHAO H B . Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutrition and Fertilizer Science, 2006,12(5):622-627. (in Chinese)
doi: 10.11674/zwyf.2006.0504
[10] 王帅, 王楠, 张溪, 杨锡财, 权振贵, 冷冰原 . 玉米栽培模式对暗棕壤微生物学特性及养分状况的影响. 水土保持学报, 2016,30(1):165-170, 195.
WANG S, WANG N, ZHANG X, YANG X C, QUAN Z G, LENG B Y . Effect of different corn cultivation modes on the microbiological characteristics and nutrient conditions of dark-brown soil. Journal of Soil and Water Conservation, 2016,30(1):165-170, 195. (in Chinese)
[11] 于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书 . 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 2015,35(9):2092-2909.
YU W Y, JI R P, FENG R, ZHAO X L, ZHANG Y S . Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage. Acata Ecologica Sinca, 2015,35(9):2902-2909. (in Chinese)
[12] 靳立斌, 张吉旺, 李波, 崔海岩, 董树亭, 刘鹏, 赵斌 . 高产高效夏玉米的冠层结构及其光合特性. 中国农业科学, 2013,46(12):2430-2439.
doi: 10.3864/j.issn.0578-1752.2013.12.004
JIN L B, ZHANG J W, LI B, CUI H Y, DONG S T, LIU P, ZHAO B . Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize. Scientia Agricultura Sinica, 2013,46(12):2430-2439. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.004
[13] 李秀芳, 李淑文, 和亮, 文宏达 . 水肥配合对夏玉米养分吸收及根系活性的影响. 水土保持学报, 2011,25(1):188-191, 233.
LI X F, LI S W, HE L, WEN H D . Effects of water and fertilizer cooperation on plant nutrient accumulation and root activity of summer maize. Journal of Soil and Water Conservation, 2011,25(1):188-191, 233. (in Chinese)
[14] 王海燕, 高聚林, 王志刚, 于晓芳, 孙继颖, 崔超, 高鑫 . 密度对超高产春玉米氮素积累、运转、利用及叶片衰老的影响. 内蒙古农业大学学报(自然科学版), 2011,32(3):194-198.
WANG H Y, GAO J L, WANG Z G, YU X F, SUN J Y, CUI C, GAO X . Effects of planting density on nitrogen accumulation, operation, use and leaves senescence of super-high yield spring maize. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2011,32(3):194-198. (in Chinese)
[15] 王宜伦, 李潮海, 何萍, 金继运, 韩燕来, 张许, 谭金芳 . 超高产夏玉米养分限制因子及养分吸收积累规律研究. 植物营养学报, 2010,16(3):559-566.
WANG Y L, LI C H, HE P, JIN J Y, HAN Y L, ZHANG X, TAN J F . Nutrient restrictive factors and accumulation of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2010,16(3):559-566. (in Chinese)
[16] 龚海清, 付海美, 徐明岗, 郜红建, 朱平, 高洪军 . 长期施肥下黑土有机肥替代率变化特征. 中国生态农业学报, 2018,26(9):1398-1406.
GONG H Q, FU H M, XU M G, GAO H J, ZHU P, GAO H J . Substitution rate of organic fertilizer under long-term fertilization in black soils. Chinese Journal of Eco-Agriculture, 2018,26(9):1398-1406. (in Chinese)
[17] 蔡红光, 张秀芝, 闫孝贡, 刘剑钊, 盖嘉慧, 张洪喜, 袁静超, 周康, 任军 . 吉林省春玉米土壤中、微量元素“潜缺乏”初探. 玉米科学, 2013,21(3):71-75.
CAI H G, ZHANG X Z, YAN X G, LIU J Z, GAI J H, ZHANG H X, YUAN J C, ZHOU K, REN J . Preliminary study on hidden deficiency of secondary and trace elements in spring maize in Jilin province. Journal of Maize Sciences, 2013,21(3):71-75. (in Chinese)
[18] 刘武仁, 郑金玉, 罗洋, 郑洪兵, 李瑞平, 李伟堂, 李征, 胡庆生, 杨秀梅 . 不同耕作方式对玉米叶片冠层光合特性的影响. 玉米科学, 2012,20(6):103-106, 111.
LIU W R, ZHENG J Y, LUO Y, ZHENG H B, LI R P, LI W T, LI Z, HU Q S, YANG X M . Effects of different tillage methods on the photosynthetic traits of maize leaf. Maize Science, 2012,20(6):103-106, 111. (in Chinese)
[19] 隽英华, 汪仁, 孙文涛, 邢月华, 隋世江, 鲁东, 毛佰传 . 施氮模式对春玉米养分累积特性的影响. 核农学报, 2011,25(1):143-148.
JUAN Y H, WANG R, SUN W T, XING Y H, SUI S J, LU D, MAO B C . Effects of models of applying nitrogen fertilizer on nutrition accumulation of spring maize. Journal of Nuclear Agricultural Sciences, 2011,25(1):143-148. (in Chinese)
[20] 高伟, 金继运, 何萍, 李书田 . 我国北方不同地区玉米养分吸收及累积动态研究. 植物营养与肥料学报, 2008,14(4):623-629.
doi: 10.11674/zwyf.2008.0402
GAO W, JIN J Y, HE P, LI S T . Dynamics of maize nutrient uptake and accumulation in different regions of northern China. Plant Nutrition and Fertilizer Science, 2008,14(4):623-629. (in Chinese)
doi: 10.11674/zwyf.2008.0402
[21] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D. Analysis of Soil Agronomization. Beijing: China Agriculture Press, 2000. (in Chinese)
[22] 杨恒山, 张玉芹, 徐寿军, 李国红, 高聚林, 王志刚 . 超高产春玉米干物质及养分积累与转运特征. 植物营养与肥料学报, 2012,18(2):315-323.
doi: 10.11674/zwyf.2012.11296
YANG H S, ZHANG Y Q, XU S J, LI G H, GAO J L, WANG Z G . Characteristics of dry matter and nutrient accumulation and translocation of super-high-yield maize. Plant Nutrition and Fertilizer Science, 2012,18(2):315-323. (in Chinese)
doi: 10.11674/zwyf.2012.11296
[23] 齐文增, 陈晓璐, 刘鹏, 刘惠惠, 李耕, 邵立杰, 王飞飞, 董树亭, 张吉旺, 赵斌 . 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点. 植物营养与肥料学报, 2013,19(1):26-36.
doi: 10.11674/zwyf.2013.0103
QI W Z, CHEN X L, LIU P, LIU H H, LI G, SHAO L J, WANG F F, DONG S T, ZHANG J W, ZHAO B . Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize. Plant Nutrition and Fertilizer Science, 2013,19(1):26-36. (in Chinese)
doi: 10.11674/zwyf.2013.0103
[24] 张福锁, 王激清, 张卫峰, 崔振玲, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):918-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):918-924. (in Chinese)
[25] WANG Y L, LIANG Z Y, YANG Z P, GUO J L, GUO C X, WANG Q . Study on matter production and population photosynthetic characteristics of high-yielding spring maize under different modes. Agricultural Science & Technology, 2016,17(12):2779-2783.
[26] 靳立斌, 崔海岩, 李波, 杨今胜, 董树亭, 赵斌, 刘鹏, 张吉旺 . 综合农学管理对夏玉米氮效率和土壤硝态氮的影响. 作物学报, 2013,39(11):2009-2015.
doi: 10.3724/SP.J.1006.2013.02009
JIN L B, CUI H Y, LI B, YANG J S, DONG S T, ZHAO B, LIU P, ZHANG J W . Effects of integrated agronomic practices on nitrogen efficiency and soil nitrate nitrogen of summer maize. Acta Agronomica Sinica, 2013,39(11):2009-2015. (in Chinese)
doi: 10.3724/SP.J.1006.2013.02009
[27] JAT S L, PARIHAR C M, SINGH A K, KUMAR B, SINGH B, SAVEIPUNE D . Plant density and fertilization in hybrid quality protein maize (Zea mays): Effects on the soil nutrient status and performance of succeeding wheat (Triticum aestivum) and productivity of cropping system. Indian Journal of Agricultural Sciences, 2017,87(1):23-28.
[28] Amanullah. Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L.) planted at low and high densities on calcareous soil in northwest Pakistan. Journal of Plant Nutrition, 2016,39(5):683-690.
[29] 杨晓卡, 米慧玲, 高韩钰, 辛思颖, 马文奇, 魏静 . 不同栽培模式对冬小麦-夏玉米轮作系统产量、氮素累积和平衡的影响. 应用生态学报, 2016,27(6):1935-1941.
YANG X K, MI H L, GAO H Y, XIN S Y, MA W Q, WEI J . Effects of different cultivation patterns on yield, nitrate accumulation and nitrogen balance in winter wheat and summer maize rotation system. Chinese Journal of Applied Ecology, 2016,27(6):1935-1941. (in Chinese)
[30] 张平良, 郭天文, 刘晓伟, 李书田, 曾骏, 谭雪莲, 董博 . 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响. 植物营养与肥料学报, 2019,25(4):579-590.
ZHANG P L, GUO T W, LIU X W, LI S T, ZENG J, TAN X L, DONG B . Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. Journal of Plant Nutrition and Fertilizers, 2019,25(4):579-590. (in Chinese)
[31] 佟桐, 李彩凤, 顾万荣, 王明泉, 张立国, 刘笑鸣, 王彬, 赵猛 . 氮肥和密度对黑龙江春玉米物质积累、抗倒伏及产量的影响. 西北农业学报, 2019,28(3):377-387.
TONG T, LI C F, GU W R, WANG M Q, ZHANG L G, LIU X M, WANG B, ZHAO M . Effects of nitrogen fertilizer and planting density on dry matter accumulation, lodging resistance and yield of spring maize in Heilongjiang province. Acta Agriculturae Boreali-Occidentails Sinica, 2019,28(3):377-387. (in Chinese)
[32] 罗方, 杨恒山, 张玉芹, 柳宝林 . 春玉米根系特征对种植密度的响应. 内蒙古民族大学学报(自然科学版), 2017,32(6):494-498.
LUO F, YANG H S, ZHANG Y Q, LIU B L . Response of root system characteristics of spring maize to planting density. Journal of Inner Mongolia University for Nationalities(Natural Sciences), 2017,32(6):494-498. (in Chinese)
[33] CAI H G, MA W, ZHANG X Z, PING J Q, YAN X G, LIU J Z, YUAN J C, WANG L C, REN J . Effect of subsoil tillage depth on nutrient accumulation root distribution and grain yield in spring maize. The Crop Journal, 2014,2(5):297-307.
[34] 袁静超, 刘剑钊, 闫孝贡, 张洪喜, 梁尧, 蔡红光, 任军 . 春玉米连作体系高产栽培模式优化研究. 植物营养与肥料学报, 2018,24(1):53-62.
YUAN J C, LIU J Z, YAN X G, ZHANG H X, LIANG Y, CAI H G, REN J . Optimization of agronomic management mode for high-yield continuous spring maize cropping system. Journal of Plant Nutrition and Fertilizers, 2018,24(1):53-62. (in Chinese)
[35] 蔡红光, 袁静超, 闫孝贡, 刘剑钊, 张洪喜, 梁尧, 任军 . 不同培肥措施对土壤物理性状及无机氮的影响. 土壤通报, 2017,48(2):14-22.
CAI H G, YUAN J C, YAN X G, LIU J Z, ZHANG H X, LIANG Y, REN J . Characteristics of soil physical property and mineral nitrogen in different soil fertility managements. Chinese Journal of Soil Science, 2017,48(2):14-22. (in Chinese)
[1] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[2] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[3] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[4] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[5] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[6] HOU HuiZhi,ZHANG XuCheng,YIN JiaDe,FANG YanJie,WANG HongLi,YU XianFeng,MA YiFan,ZHANG GuoPing,LEI KangNing. Effects of Deep and Layered Application of Reduced Chemical Nitrogen Fertilizer on Water, Nutrient Utilization and Yield of Spring Wheat in Rain-Fed Arid Area [J]. Scientia Agricultura Sinica, 2022, 55(17): 3289-3302.
[7] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[8] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[9] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[10] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[11] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[12] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[13] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[14] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[15] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!