Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1930-1941.doi: 10.3864/j.issn.0578-1752.2019.11.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Drip Fertigation on Summer Maize in North China

LI Ge,BAI YouLu(),YANG LiPing,LU YanLi,WANG Lei,ZHANG JingJing,ZHANG YinJie   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Nutrition and Fertilization, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2018-12-17 Accepted:2019-02-26 Online:2019-06-01 Published:2019-06-11
  • Contact: YouLu BAI E-mail:baiyoulu@caas.cn

Abstract:

【Objective】 The experiment was carried out to study the fertilizer effects of different nitrogen, phosphorus and potassium fertilizer application rates on summer maize under low-yield soil conditions in North China, and provided a theoretical basis for high-efficiency drip fertigation of summer maize, in order to optimize drip fertigation system and promote the technology of water and fertilizer integration. 【Method】 Maize variety “Zhengdan 958” was used as materials in the two-year field experiment. Under the condition of one tube with two rows of drip fertigation belts, the experiment was subjected to four treatments for nitrogen, phosphorus and potassium respectively, of which nitrogen fertilizer treatments were 0, 144, 180, and 216 kg·hm -2(denoted as N0, N1, N2, and N3, respectively), phosphate fertilizer treatments were 0, 72, 90, and 108 kg·hm -2(denoted as P0, P1, P2, and P3, respectively) and potassium fertilizer treatments were 0, 72, 90, and 108 kg·hm -2 (denoted as K0, K1, K2, and K3, respectively). The nitrogen, phosphorus and potassium fertilizers were divided into four times by drip fertigation. The study analyzed the effects of different nitrogen, phosphate and potassium application rates on crop yield and the dry matter in different growing stages of summer maize, and analyzed the fertilizer use efficiency. 【Result】 (1) The yield of summer maize under the conditions of low-yield field in North China showed a parabolic linear change with the rates of nitrogen and phosphorus fertilizer. The crop yield was the highest when the nitrogen application was 180 kg·hm -2 and the phosphorus application was 90 kg·hm -2. When the nitrogen and phosphorus fertilizer application exceeded the maximum yield fertilization amount, the crop yield decreased with the increase of nitrogen and phosphorus application, but the difference of nitrogen fertilizer treatment was not significant. And when the application rate of phosphate fertilizer exceeded 90 kg·hm -2, the yield of crop decreased significantly with the increase of phosphorus application (P<0.05). In this treatment, the yield of summer maize increased with the amount of potassium applied. (2) Different fertilization treatments had little effect on the dry matter accumulation of summer maize in the early growth stage. The change of crop yield and the dry matter accumulation showed the same parabolic linear change along with the increase of nitrogen application rate and phosphorus application rate in the filling period and harvesting period. (3) The use efficiencies of nitrogen, phosphorus and potassium fertilizers were 33.39%-58.44%, 14.15%-28.88% and 54.70%-65.75%, respectively. The nitrogen, phosphorus and potassium fertilizer average use efficiencies were 51.21%, 28.88% and 65.75%, respectively, when the yield of summer maize was the highest. The average agronomic efficiency of nitrogen, phosphorus and potassium fertilizers were 8.08 kg·kg -1, 11.41 kg·kg -1 and 8.83 kg·kg -1, respectively, under the highest yield conditions. At this point, the average partial factor productivity of nitrogen, phosphorus and potassium fertilizers were 59.88 kg·kg -1, 119.75 kg·kg -1 and 100.65 kg·kg -1, respectively. 【Conclusion】 Under the conditions of drip fertigation in low-yield soil in North China, the optimum nitrogen and phosphorus application were 180 kg·hm -2 and 90 kg·hm -2, respectively. The yield of summer maize would decrease when nitrogen application exceeded 180 kg·hm -2or phosphorus application rate surpassed 90 kg·hm -2, but the yield of summer maize would increase along with the increase of potassium application. Drip fertigation could obtain higher nitrogen, phosphorus and potassium fertilizer use efficiency, which was 51.21%, 28.88% and 65.75%, respectively.

Key words: summer maize, drip fertigation, fertilizer use efficiency, crop yield, dry matter accumulation

Table 1

Soil basic chemical properties"

土层
Soil layer
(cm)
硝态氮
NO3--N (mg·L-1)
铵态氮
NH4+-N (mg·L-1)
有效磷
Available phosphorus
(mg·L-1)
有效钾
Available potassium
(mg·L-1)
碱溶
有机质
OM
(%)
有效硫
Available sulphur
(mg·L-1)
有效硼
Available boron
(mg·L-1)
有效铁
Available iron (mg·L-1)
有效锰Available manganese
(mg·L-1)
有效铜Available copper (mg·L-1) 有效锌Available zinc (mg·L-1) 有效钙Available
calcium (mg·L-1)
有效镁Available magnesium (mg·L-1)
0-20 21.8 12.9 22.7 96.4 0.75 17.2 2.9 5.3 12.8 0.9 3.5 1788.4 139.4
20-40 21.7 10.2 8.5 60.3 0.69 41.5 2.4 6.3 12.8 0.8 1.9 1862.1 131.2

Table 2

Treatments in this study"

处理
Treatment
肥料种类
Type of fertilizer
肥料用量
Fertilizer application rate (kg·hm-2)
N0 N(P90、K90)


0
N1 144
N2 180
N3 216
P0 P (N180、K90)


0
P1 72
P2 90
P3 108
K0 K(N180、P90)


0
K1 72
K2 90
K3 108

Table 3

Summer maize yield and its yield components among different fertilizer treatments"

年份
Year
处理
Treatment
穗粒数(粒)
Grain per ear
百粒重
100 grain weight (g)
产量
Grain yield (kg·hm-2)
增产率
Increased rate (%)
平均增产率
Average increased rate (%)
2017 N0 490.53c 35.02b 10434.44c -
N1 562.81b 37.40a 10864.07b 4.12
N2 577.87a 37.75a 11774.73a 12.84 9.34
N3 564.40b 35.23b 11588.69a 11.06
P0 536.78c 35.43c 10985.38d -
P1 553.03bc 36.58b 11233.70c 2.26
P2 577.87a 37.75a 11774.73a 7.19 4.51
P3 559.83b 37.65a 11433.06b 4.08
K0 544.86b 35.62b 11128.57b -
K1 563.20ab 36.68ab 11690.40a 5.05
K2 577.87a 37.75a 11774.73a 5.81 5.77
K3 580.49a 37.52a 11844.73a 6.44
2018 N0 542.39b 32.00a 8212.74c -
N1 551.80b 33.48a 9344.20b 13.78
N2 575.89a 33.89a 9780.53a 19.09 16.70
N3 560.48ab 34.05a 9627.33a 17.22
P0 538.61b 33.31a 8516.97c -
P1 537.63b 34.10a 8866.98b 4.11
P2 575.89a 33.89a 9780.53a 14.84 8.35
P3 588.57a 32.99a 9037.52b 6.11
K0 547.20a 32.70b 8704.89b -
K1 553.02a 33.55ab 9747.54a 11.98
K2 575.89a 33.89ab 9780.53a 12.36 12.67
K3 579.87a 34.45a 9894.91a 13.67

Fig. 1

Effect of different nitrogen application rates on dry matter accumulation of summer maize"

Fig. 2

Effect of different phosphorus application rates on dry matter accumulation of summer maize"

Fig. 3

Effect of different potassium application rates on dry matter accumulation of summer maize"

Table 4

Nitrogen fertilizer use efficiency of summer maize"

年份Year 处理Treatment 氮肥利用率NFUE (%) 氮肥农学效率NAE(kg·kg-1) 氮肥偏生产力NPFP (kg·kg-1)
2017 N0 - - -
N1 68.66a 2.98b 75.44a
N2 55.37b 7.45a 65.42b
N3 37.60c 5.34a 53.65c
2018 N0 - - -
N1 48.23a 7.86ab 64.89a
N2 47.05a 8.71a 54.34b
N3 29.18b 6.55b 44.57c

Table 5

Phosphorus fertilizer use efficiency of summer maize"

年份Year 处理Treatment 磷肥利用率PFUE (%) 磷肥农学效率PAE(kg·kg-1) 磷肥偏生产力PPFP (kg·kg-1)
2017 P0 - - -
P1 15.67b 3.45b 156.02a
P2 26.54a 8.77a 130.83b
P3 27.87a 4.15b 105.86c
2018 P0 - - -
P1 12.63b 4.86b 123.15a
P2 31.21a 14.04a 108.67b
P3 19.40ab 4.82b 83.68c

Table 6

Potassium fertilizer use efficiency of summer maize"

年份Year 处理Treatment 钾肥利用率KFUE (%) 钾肥农学效率KAE (kg·kg-1) 钾肥偏生产力KPFP (kg·kg-1)
2017 K0 - - -
K1 61.44a 7.80a 162.37a
K2 67.08a 7.18a 130.83b
K3 73.19a 6.63a 109.67c
2018 K0 - - -
K1 47.96a 14.48a 135.38a
K2 57.13a 11.95a 108.67b
K3 58.30a 11.02a 91.62c
[1] 赵秉强, 林治安, 刘增兵 . 中国肥料产业未来发展道路—提高肥料利用率减少肥料用量. 磷肥与复肥, 2008,23(6):1-4. DOI: 10.3969/ j.issn.1007-6220.2008.06.001.
doi: 10.3969/j.issn.1007-6220.2008.06.001
ZHAO B Q, LIN Z A, LIU Z B . The future developing route for China's fertilizer industry-increasing the use efficiency and decreasing the consumption of fertilizer. Phosphate & Compound Fertilizer, 2008,23(6):1-4. DOI: 10.3969/j.issn.1007-6220.2008.06.001. (in Chinese)
doi: 10.3969/j.issn.1007-6220.2008.06.001
[2] 朱兆良, 孙波, 杨林章, 张林秀 . 我国农业面源污染的控制政策和措施. 科技导报, 2005,23(4):47-51. DOI: 10.3321/j.issn:1000-7857. 2005.04.015.
ZHU Z L, SUN B, YANG L Z, ZHANG L X . Policy and countermeasures to control non-point pollution of agricultural in China. Science & Technology Review, 2005,23(4):47-51. DOI: 10. 3321/j.issn:1000-7857.2005.04.015. (in Chinese)
[3] AYARS J E, FULTON A, TAYLOR B . Subsurface drip irrigation in California—Here to stay? Agricultural Water Management, 2015,157:39-47.
doi: 10.1016/j.agwat.2015.01.001
[4] 杨晓宏, 严程明, 张江周, 石伟琦 . 中国滴灌施肥技术优缺点分析与发展对策. 农学学报, 2014,4(1):76-80.
YANG X H, YAN C M, ZHANG J Z, SHI W Q . The analysis of advantages and disadvantages of fertigation technology and development strategies in China. Chinese Countryside Well-off Technology, 2014,4(1):76-80. (in Chinese)
[5] MUKHORTOVA T, POLUKHINA E, VLASENKO M . Efficiency of sweet pepper cultivation in the lower Volga area using drip irrigation and fertilizers. Russian Agricultural Sciences, 2016,42:26-30.
doi: 10.3103/S1068367416010146
[6] NARAYANAMOORTHY A, DEVIKA N, BHATTARAI M K, VENKATACHALAM L . More crop and profit per drop of water: Drip irrigation for empowering distressed small farmers. IIM Kozhikode Society & Management Review, 2016,5(1):83-90. DOI: 10.1177/2277975215617270.
[7] LIU R H, KANG Y H, ZHANG H C, PEI L, WAN S Q, JIANG S F, LIU S P, REN Z Y, YANG Y . Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutrient Cycling in Agroecosystems, 2014,98(3):295-307.
doi: 10.1007/s10705-014-9612-2
[8] COLEMAN M . Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil, 2007,299(1/2):195-273. DOI: 10.1007/s11104-007-9375-5.
doi: 10.1007/s11104-007-9375-5
[9] URIBE R M, GAVA G C, SAAD J C , KÖLLN O. Ratoon sugarcane yield integrated drip-irrigation and nitrogen fertilization. Engenharia Agrícola, 2013,33(6):1124-1133. DOI: 10.1590/S0100- 69162013000600005.
doi: 10.1590/S0100-69162013000600005
[10] VOLPIN F, GONZALES R R, LIM S, PATHAK N, PHUNTSHO S, SHON H K . GreenPRO: A novel fertiliser-driven osmotic power generation process for fertigation. Desalination, 2018,447:158-166. DOI: 10.1016/j.desal.2018.09.013.
doi: 10.1016/j.desal.2018.09.013
[11] BRYAN B B, THOMAS E L . Distribution of fertilizer materials applied through sprinkler irrigation system. Fayetteville: University of Arkansas, 1958.
[12] EISSA M A, REKABY S A, HEGAB S A, RAGHEB H M . Optimum rate of nitrogen fertilization for drip-irrigated wheat under semi-arid conditions. Journal of Plant Nutrition, 2018,41(11):1414-1424. DOI: 10.1080/01904167.2018.145495.
doi: 10.1080/01904167.2018.1454956
[13] 张经廷, 吕丽华, 张丽华, 姚艳荣, 董志强, 贾秀领 . 不同肥料滴灌配施夏玉米产量与氮磷钾吸收利用特性. 玉米科学, 2017,25(2):123-129.
ZHANG J T, LÜ L H, ZHANG L H, YAO Y R, DONG Z Q, JIA X L . Yield and NPK uptake and utilization characteristics of summer maize under drip fertigation. Journal of Maize Sciences, 2017,25(2):123-129. (in Chinese)
[14] 邓兰生, 张承林 . 滴灌施氮肥对盆栽玉米生长的影响. 植物营养与肥料学报, 2007,13(1):81-85.
doi: 10.11674/zwyf.2007.0114
DENG L S, ZHANG C L . Effect of drip nitrogen fertigation on growth of maize. Plant Nutrition and Fertilizer Science, 2007,13(1):81-85. (in Chinese)
doi: 10.11674/zwyf.2007.0114
[15] 白有帅, 贾生海, 雒天峰 . 覆膜滴灌条件下灌水量对玉米根系分布特征的影响. 节水灌溉, 2016 ( 11):19-22.
BAI Y S, JIA S H, LUO T F . Effect of irrigation on root distribution characteristics of maize under film drip irrigation. Water S ving Irrigation, 2016(11):19-22. (in Chinese)
[16] 乔健, 黄志银, 翟乃家, 张超 . 滴灌施肥对夏玉米生长发育和产量构成的影响. 农业科技通讯, 2017(12):65-67. DOI: 10.3969/j.issn. 1000-6400.2017.12.023.
QIAO J, HUANG Z Y, ZHAI N J, ZHANG C . Effect of drip irrigation on growth and yield components of summer maize. Bulletin of Agricultural Science and Technology, 2017(12):65-67. DOI: 10.3969/j.issn.1000-6400.2017.12.023. (in Chinese)
[17] 张志刚, 李宏, 李疆, 程平, 刘帮, 李长城 . 地表滴灌条件下滴头流量对土壤水分入渗—再分布过程的影响. 干旱地区农业研究, 2016,34(2):224-231.
ZHANG Z G, LI H, LI J, CHENG P, LIU B, LI C C . Effects of different dripper discharges on soil water infiltration/redistribution under drip irrigation. Agricultural Research in the Arid Areas, 2016,34(2):224-231. (in Chinese)
[18] 蔡利华, 陈玲, 贡万辉, 张玉萍, 水涌, 刘红, 张冬梅 . 滴灌棉田根系与土壤氮磷钾养分的分布特征. 中国土壤与肥料, 2015(2):44-48.
CAI L H, CHEN L, GONG W H, ZHANG Y P, SHUI Y, LIU H, ZHANG D M . Distribution characteristics of drip irrigation cotton roots system and N P K nutrient in soil. Soil and Fertilizer Sciences in China, 2015(2):44-48. (in Chinese)
[19] 杨明达, 关小康, 白田田, 张鹏钰, 韩静丽, 王静丽, 王同朝 . 不同滴灌模式对土壤水分空间变异及夏玉米生长的影响. 河南农业大学学报, 2016,50(1):1-7.
YANG M D, GUAN X K, BAI T T, ZHANG P Y, HAN J L, WANG J L, WANG T C . Effect of different drip irrigation variance of soil water and modes on spatial distribution summer maize growth. Journal of Henan Agricultural University, 2016,50(1):1-7. (in Chinese)
[20] 李金鑫, 余鹏, 李明珠, 廖强, 刘爱菊 . 滴灌下水肥耦合对夏玉米产量及肥料利用率的影响. 山东化工, 2017,46(11):53-54, 62. DOI: 10.3969/j.issn.1008-021X.2017.11.020.
LI J X, YU P, LI M Z, LIAO Q, LIU A J . Effects of water and fertilizer coupling on plant height and yield of summer corn with drip irrigation. Shandong Chemical Industry, 2017,46(11):53-54, 62. DOI: 10.3969/j.issn.1008-021X.2017.11.020. (in Chinese)
[21] SONG T, XU F Y, YUAN W, ZHANG Y J, LIU T Y, CHEN M X, HU Q J, TIAN Y, XU W F, ZHANG J Z . Comparison on physiological adaptation and phosphorus use efficiency of upland rice and lowland rice under alternate wetting and drying irrigation. Plant Growth Regulation, 2018,86(2):195-210. DOI: 10.1007/ s10725 -018 -0421-5.
doi: 10.1007/s10725-018-0421-5
[22] 万能涵, 杨晓光, 刘志娟, 何斌, 孙爽 . 气候变化背景下中国主要作物农业气象灾害时空分布特征(Ⅲ): 华北地区夏玉米干旱. 中国农业气象, 2018,39(4):209-219. DOI: 10.3969/j.issn.1000-6362. 2018.04.001.
WANG N H, YANG X G, LIU Z J, HE B, SUN S . Temporal and spatial variations of agro-meteorological disasters of main crops in China in a changing climate(Ⅲ):drought of summer maize in north China plain. Chinese Journal of Agrometeorology, 2018,39(4):209-219. DOI: 10.3969/j.issn.1000-6362.2018.04.001. (in Chinese)
[23] 金继运, 白由路, 杨俐苹 . 高效土壤养分测试技术与设备. 北京: 中国农业出版社, 2006: 74-87.
JIN J Y, BAI Y L, YANG L P. High Efficiency Soil Nutrient Testing Technology and Equipment. Beijing: China Agriculture Press, 2006: 74-87. (in Chinese)
[24] 张英利, 许安民, 尚浩博, 马爱生 . AA3型连续流动分析仪测定土壤和植物全氮的方法研究. 西北农林科技大学学报(自然科学版), 2006,34(10):128-132. DOI: 10.3321/j.issn:1671-9387.2006.10.026.
ZHANG Y L, XU A M, SHANG H B, MA A S . Determination study of total nitrogen in soil and plant by continuous flow analytical system. Journal of Northwest A & F University(Natural Science Edition) , 2006,34(10):128-132. DOI: 10.3321/j.issn:1671-9387.2006.10.026. (in Chinese)
[25] 刘云霞, 温云杰, 黄金莉, 李桂花, 柴晓, 汪洪 . AA3型连续流动分析仪与钒钼黄比色法测定玉米植株全磷含量之比较. 农业资源与环境学报, 2015(6):577-582. DOI: 10.13254/j.jare.2015.0030.
LIU Y X, WEN Y J, HUANG J L, LI G H, CHAI X, WANG H . Determination total phosphour of maize plant samples by continuous flow analyzer in comparison with vanadium molybdate yellow colorimetric method. Journal of Agricultural Resources and Environment, 2015(6):577-582. DOI: 10.13254/j.jare.2015.0030.(in Chinese)
[26] TIAN D, ZHANG Y Y, ZHOU Y Z, MU Y J, LIU J F, ZHANG C L, LIU P F . Effect of nitrification inhibitors on mitigating N2O and NO emissions from an agricultural field under drip fertigation in the North China Plain. Science of the Total Environment, 2017,598:87-96.
doi: 10.1016/j.scitotenv.2017.03.220
[27] 华瑞, 李俊华, 王立坤, 李丹, 冯丽萍, 董有鹏 . 不同滴灌施肥策略对玉米产量、养分吸收及效益的影响. 新疆农业科学, 2016,53(1):68-76.
HUA R, LI J H, WANG L K, LI D, FENG L P, DONG Y P . Effects of different fertigation strategies on maize yield, nutrient uptake, and economic benefit. Xinjiang Agricultural Sciences, 2016,53(1):68-76. (in Chinese)
[28] 朱金龙, 危常州, 张书捷, 赵红华, 张新疆 . 不同供氮水平对膜下滴灌春玉米干物质及养分累积的影响. 新疆农业科学, 2014,51(9):1569-1576.
ZHU J L, WEI C Z, ZHANG S J, ZHAO H H, ZHANG X J . Effects of different N rates on spring maize dry matter and nutrients accumulation under drip irrigation and film mulch. Xinjiang Agricultural Sciences, 2014,51(9):1569-1576. (in Chinese)
[29] 侯云鹏, 孔丽丽, 李前, 尹彩侠, 秦裕波, 于雷, 王立春, 谢佳贵 . 滴灌施氮对春玉米氮素吸收、土壤无机氮含量及氮素平衡的影响. 水土保持学报, 2018,32(1):238-245. DOI: 10.13870/j.cnki.stbcxb. 2018.01.037.
HOU Y P, KONG L L, LI Q, YIN C X, QIN Y B, YU L, WANG L C, XIE J G . Effects of drip irrigation with nitrogen on nitrogen uptake, soil inorganic nitrogen content and nitrogen balance of spring maize. Journal of Soil and Water Conservation, 2018,32(1):238-245. DOI: 10.13870/j.cnki.stbcxb.2018.01.037. (in Chinese)
[30] 郭丽, 史建硕, 王丽英, 李若楠, 任燕利, 张彦才 . 滴灌水肥一体化条件下施氮量对夏玉米氮素吸收利用及土壤硝态氮含量的影响. 中国生态农业学报, 2018,26(5):668-676. DOI: 10.13930/j.cnki.cjea. 170416.
GUO L, SHI J S, WANG L Y, LI R N, REN Y L, ZHANG Y C . Effects of nitrogen application rate on nitrogen absorption and utilization in summer maize and soil NO3-N content under drip fertigation. Chinese Journal of Eco-Agriculture, 2018,26(5):668-676. DOI: 10.13930/j.cnki.cjea.170416. (in Chinese)
[31] 张国桥, 王静, 刘涛, GALE William, 褚贵新 . 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响. 植物营养与肥料学报, 2014(5):1103-1109. DOI: 10.11674/zwyf.2014.0506.
ZHANG G Q, WANG J, LIU T, GALE W, CHU G X . Effect of water and P fertilizer coupling on corn yield, P uptake, and P utilization efficiency with drip irrigation in a calcareous soil. Journal of Plant Nutrition and Fertilizer, 2014(5):1103-1109. DOI: 10.11674/zwyf. 2014.0506. (in Chinese)
[32] 刘凯, 张吉旺, 郭艳青, 裴书君, 董树亭, 刘鹏, 杨今胜, 赵斌 . 施磷量对高产夏玉米产量和磷素利用的影响. 山东农业科学, 2016,48(4):61-65. DOI: 10.14083/j.issn.1001-4942.2016.04.015.
LIU K, ZHANG J W, GUO Y Q, PEI S J, DONG S T, LIU P, YANG J S, ZHAO B . Effects of phosphorus fertilization on yield and phosphorus use efficiency of high-yielding summer maize. Shandong Agricultural Sciences, 2016,48(4):61-65. DOI: 10.14083/j.issn.1001- 4942.2016.04.015. (in Chinese)
[33] 王宜伦, 谭金芳, 韩燕来, 苗玉红 . 不同施钾量对潮土夏玉米产量、钾素积累及钾肥效率的影响. 西南农业学报, 2009,22(1):110-113.
doi: 10.3969/j.issn.1001-4829.2009.01.027
WANG Y L, TAN J F, HAN Y L, MIAO Y H . Effects of different potassium fertilizer application rates on yield, plant K accumulation of summer maize and K-efficiency in alluvial soil. Southwest China Journal of Agricultural Sciences, 2009,22(1):110-113. (in Chinese)
doi: 10.3969/j.issn.1001-4829.2009.01.027
[34] 周丽平, 杨俐苹, 白由路, 卢艳丽, 王磊, 倪露 . 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响. 植物营养与肥料学报, 2016,22(6):1449-1457. DOI: 10.11674/zwyf.16039.
ZHOU L P, YANG L P, BAI Y L, LU Y L, WANG L, NI L . Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. Journal of Plant Nutrition and Fertilizer, 2016,22(6):1449-1457. DOI: 10.11674/zwyf.16039.(in Chinese)
[35] 倪露, 白由路, 杨俐苹, 卢艳丽, 王磊, 周丽平 . 不同组分脲甲醛缓释肥的夏玉米肥料效应研究. 中国农业科学, 2016,49(17):3370-3379. DOI: 10.3864/j.issn.0578-1752.2016.17.011.
NI L, BAI Y L, YANG L P, LU Y L, WANG L, ZHOU L P . The effect of urea-formaldehyde fertilizer under different components by summer maize. Scientia Agricultura Sinica, 2016,49(17):3370-3379. DOI: 10.3864/j.issn.0578-1752.2016.17.011. (in Chinese)
[36] MI G H, CHEN F J, WU Q P, LAI N W, YUAN L P, ZHANG F S . Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences, 2010,53(12):1369-1373. DOI: 10.1007/s11427-010-4097-y.
doi: 10.1007/s11427-010-4097-y
[37] 李青军, 张炎, 胡伟, 胡国智 . 滴灌磷钾肥基追比对滴灌玉米干物质积累、产量及养分吸收的影响. 中国土壤与肥料, 2016(6):74-80.
LI Q J, ZHANG Y, HU W, HU G Z . Effects of base to dressing ratios of drip phosphorus and potassium on dry matter accumulation, yield and nutrient uptake of maize under drip irrigation. Soil and Fertilizer Sciences in China, 2016(6):74-80. (in Chinese)
[38] 王志勇, 白由路, 高进华, 王磊, 卢艳丽, 杨俐苹 . 秸秆还田与施钾对华北低产潮土区作物产量及土壤钾素的影响. 中国土壤与肥料, 2013(2):46-50.
WANG Z Y, BAI Y L, GAO J H, WANG L, LU Y L, YANG L P . Effect of straw returned to soil and application of potassium fertilizer on crops yield and soil potassium in the low fertility of fluvo-aquic soil in North China. Soil and Fertilizer Sciences in China, 2013(2):46-50. (in Chinese)
[39] XUE X R, MAI W X, ZHAO Z Y, ZHANG K, TIAN C Y . Optimized nitrogen fertilizer application enhances absorption of soil nitrogen and yield of castor with drip irrigation under mulch film. Industrial Crops & Products, 2017,95:156-162. DOI: 10.1016/j.indcrop.2016.09.049.
[40] 湛静, 陈发波 . 玉米低磷胁迫研究现状. 现代农业科技, 2014(4):14-15. DOI: 10.3969/j.issn.1007-5739.2014.04.004.
ZHAN J, CHEN F B . Research situation of low phosphorus stress in zea mays. Xiandai Nongye Keji, 2014(4):14-15. DOI: 10.3969/j.issn. 1007-5739.2014.04.004. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[4] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[5] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[6] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[7] LI YuHao,WANG HongYe,CUI ZhenLing,YING Hao,QU XiaoLin,ZHANG JunDa,WANG XinYu. Spatial-Temporal Variation of Cultivated Land Soil Basic Productivity for Main Food Crops in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3960-3969.
[8] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[9] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[10] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[11] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[12] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[13] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[14] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[15] HU DanDan,LI RongFa,LIU Peng,DONG ShuTing,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Mixed-Cropping Improved on Grain Filling Characteristics and Yield of Maize Under High Planting Densities [J]. Scientia Agricultura Sinica, 2021, 54(9): 1856-1868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!