Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1918-1929.doi: 10.3864/j.issn.0578-1752.2019.11.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Variation in Rice Yield Response to Fertilization in China: Meta-analysis

HAN TianFu1,MA ChangBao2,HUANG Jing1,3,LIU KaiLou1,4,XUE YanDong2,LI DongChu1,3,LIU LiSheng1,3,ZHANG Lu1,3,LIU ShuJun1,3,ZHANG HuiMin1,3()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
    2 Center of Arable Land Quality Monitoring and Protection, Ministry of Agriculture and Rural Affairs, Beijing 100125
    3 Red Soil Experimental Station of CAAS in Hengyang/National Observation and Research Station of Farmland Ecosystem in Qiyang, Qiyang 426182, Hunan
    4 Jiangxi Institute of Red Soil/ National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 330046
  • Received:2018-12-04 Accepted:2019-01-18 Online:2019-06-01 Published:2019-06-11
  • Contact: HuiMin ZHANG E-mail:zhanghuimin@caas.cn

Abstract:

【Objective】 A meta study was conducted to investigate the comprehensive effect of fertilization on rice yield in Chinese paddy soils during the past 30 years, and to provide a theoretical basis for the scientific correct application of fertilizers in rice cultivation areas. 【Method】 Based on the long-term paddy soil monitoring sites from Ministry of Agriculture and Rural Affairs, we conducted meta-analysis to investigate the rice yield response to no fertilization versus fertilization in different agro-climatic regions. 【Result】 Rice yield in the past 10 years (2008-2017) was significantly higher than the corresponding rice yield in 1988-1997 and 1998-2007, regardless of fertilization. The increase of rice yield with fertilization in southwest of China was by 98.5%, which was significantly higher than that of in north of China (70.3%). Fertilization increased rice yield by 99.1%, 84.2% and 78.1% during 1988-1997, 1998-2007 and 2008-2017, respectively. For the cropping system, the increase of rice yield under triple cropping system (92.0%) was significantly higher than that under single cropping system (76.2%) and double cropping system (81.9%). Fertilization increased rice yield by 85.9% under double rice cropping system, by 75.9% under single cropping system, and by 79.5% under other cropping system. Compared with no fertilizer, chemical plus organic fertilizer application increased rice yield by 88.3%, which was higher than that of single chemical fertilizer application (76.6%). Fertilization significantly increased rice yield in clay soil by 92.0%, compared with no fertilization, which significantly higher than that in sandy soil (58.0%) and loam soil (77.5%). With the increase of soil organic matter and available phosphorus, the increasing trend of fertilization on rice yield was decreased compared with no fertilization. Under higher soil pH (>7.5) and lower soil total nitrogen (<1.5 g·kg -1) and slow available potassium (<150 mg·kg -1), the rice yield increasing was more than that of corresponding the rest of level. Random forest analysis showed that the region, soil total nitrogen and cropping system had greater impact on the response ratio (RR) of rice yield. In addition, the agronomic efficiency of fertilizer was positively correlated with rice yield RR. 【Conclusion】 Although the trend of increasing rice yield by fertilization was decreasing at present, but combined appropriate chemical plus organic fertilizer, especially in southwest of China, were important measures to improve and maintain high rice yield. Base on the cropping system, combining soil texture, soil nitrogen and potassium content should be the main basis for fertilizer input in different rice cultivation areas.

Key words: fertilization, rice yield, Meta-analysis, response ratio, agronomic efficiency

Table 1

Descriptive statistics for sample size"

样本量
Number
均值
Mean (t·hm-2)
标准差
SD
极小值
Min (t·hm-2)
极大值
Max (t·hm-2)
偏度
Skewness
峰度
Kurtosis
Q PQ
924 7.6 3.1 0.9 17.3 0.61 0.104 2.029 0.001

Fig. 1

The yield of rice under different treatments CK means no fertilizer treatment, F means conventional fertilizer treatment. Different lowercases indicate significantly different (P<0.05); The solid line in the box represents the median value, and dash line represents the average value. The upper and lower of the box represent 75% and 25% of total data, respectively. The upper and lower of the lines represent 95% and 5% of total data, respectively. The upper and lower of the solid points represent the vertical outliers. The values in parentheses represent the number of rice yield data of each treatment"

Fig. 2

Response ratio (RR++) of rice yield in response to fertilization practices in different regions, times, and cropping systems Dots with error bars denote the overall mean response ratio and 95% CI, respectively. The 95% CI that do not go across the zero line mean significant difference between treatment and control. The values in parentheses represent independent sample size. The same as below"

Fig. 3

Response ratio (RR++) of rice yield in response to fertilization practices in different crops, fertilizers, and soil textures"

Fig. 4

Response ratio (RR++) of rice yield in response to fertilization practices in different the soil pH, organic matter, and total nitrogen levels SOM: Soil organic matter; STN: Soil total nitrogen. The same as below"

Fig. 5

Response ratio (RR++) of rice yield in response to fertilization practices in different the soil available phosphorus, available potassium and slowly available potassium levels AP: Soil available phosphorus; AK: Soil available potassium; SAK: Soil slowly available potassium. The same as below"

Fig. 6

Variable importance"

Fig. 7

Relationship between the response ratio (RR++) of rice yield and fertilizer agricultural efficiency CF: Chemical fertilizer; CMF: Chemical and organic fertilizer"

[1] PATEL D P, DAS A, MUNDA G C, GHOSH P K, BORDOLOI J S, KUMAR M . Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem. Agricultural Water Management, 2010,97:1269-1276.
doi: 10.1016/j.agwat.2010.02.018
[2] ZHANG H M, XU M G, SHI X J, LI Z Z, HUANG Q H, WANG X J . Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Nutrient Cycling in Agroecosystems, 2010,88:341-349.
doi: 10.1007/s10705-010-9359-3
[3] 曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊 . 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012,45(14):2886-2894.
doi: 10.3864/j.issn.0578-1752.2012.14.011
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L . Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012,45(14):2886-2894. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.14.011
[4] HAIDER I K . Appraisal of biofertilizers in rice: To supplement inorganic chemical fertilizer. Rice Science, 2018,25(6):357-362.
[5] 孙浩燕, 李小坤, 任涛, 丛日环, 鲁剑巍 . 浅层施肥对水稻苗期根系生长及分布的影响. 中国农业科学, 2014,47(12), 2476-2484.
doi: 10.3864/j.issn.0578-1752.2014.12.020
SUN H Y, LI X K, REN T, CONG R H, LU J W . Effects of fertilizer in shallow soils on growth and distribution of rice roots at seedling stage. Scientia Agricultura Sinica, 2014,47(12):2476-2484. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.12.020
[6] 张国荣, 李菊梅, 徐明岗, 高菊生, 谷思玉 . 长期不同施肥对水稻产量及土壤肥力的影响. 中国农业科学, 2009,42(2):543-551.
ZHANG G R, LI J M, XU M G, GAO J S, GU Si Y . Effects of chemical fertilizer and organic manure on rice yield and soil fertility. Scientia Agricultura Sinica, 2009,42(2):543-551. (in Chinese)
[7] YADAV R L . Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Research, 2003,81(1):39-51.
doi: 10.1016/S0378-4290(02)00198-3
[8] HAEFELE S M, WOPEREIS M C S . Spatial variability of indigenous supplies for N, P and K and its impact on fertilizer strategies for irrigated rice in West Africa. Plant and Soil, 2005,270(1):57-72.
doi: 10.1007/s11104-004-1131-5
[9] 吴萍萍, 刘金剑, 周毅, 谢小立, 沈其荣, 郭世伟 . 长期不同施肥制度对红壤稻田肥料利用率的影响. 植物营养与肥料学报, 2008,14(2):277-283.
doi: 10.3321/j.issn:1008-505X.2008.02.012
WU P P, LIU J J, ZHOU Y, XIE X L, SHEN Q R, GUO S W . Effects of different long term fertilizing systems on fertilizer use efficiency in red paddy soil. Journal of Plant Nutrition and Fertilizer, 2008,14(2):277-283. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2008.02.012
[10] 苑俊丽, 梁新强, 李亮, 叶玉适, 傅朝栋, 宋清川 . 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析. 中国农业科学, 2014,47(17):3414-3423.
doi: 10.3864/j.issn.0578-1752.2014.17.009
YUAN J L, LIANG X Q, LI L, YE Y S, FU C D, SONG Q C . Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China: A meta-analysis. Scientia Agricultura Sinica, 2014,47(17):3414-3423. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.17.009
[11] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)
[12] 胡建利, 王德建, 王灿, 孙瑞娟 . 不同施肥方式对水稻产量构成及其稳定性的影响. 中国生态农业学报, 2009,17(1):48-53.
doi: 10.3724/SP.J.1011.2009.00048
HU J L, WANG D J, WANG C, SUN R J . Effect of different fertilization systems on rice yield components and their stability. Chinese Journal of Eco-Agriculture, 2009,17(1):48-53. (in Chinese)
doi: 10.3724/SP.J.1011.2009.00048
[13] 包耀贤, 徐明岗, 吕粉桃, 黄庆海, 聂军, 张会民, 于寒青 . 长期施肥下土壤肥力变化的评价方法. 中国农业科学, 2012,45(20):4197-4204.
doi: 10.3864/j.issn.0578-1752.2012.20.009
BAO Y X, XU M G, LÜ F T, HUANG Q H, NIE J, ZHANG H M, YU H Q . Evaluation method on soil fertility under long-term fertilization. Scientia Agricultura Sinica, 2012,45(20):4197-4204. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.20.009
[14] 吴良泉, 武良, 崔振岭, 陈新平, 张福锁 . 中国水稻区域氮磷钾肥推荐用量及肥料配方研究. 中国农业大学学报, 2016,21(9):1-13.
WU L Q, WU L, CUI Z L, CHEN X P, ZHANG F S . Studies on recommended nitrogen, phosphorus and potassium application rates and special fertilizer formulae for different rice production regions in China. Journal of China Agricultural University, 2016,21(9):1-13. (in Chinese)
[15] 方畅宇, 屠乃美, 张清壮, 易镇邪 . 不同施肥模式对稻田土壤速效养分含量及水稻产量的影响. 土壤, 2018,50(3):462-468.
FANG C Y, TU N M, ZHANG Q Z, YI Z X . Effects of fertilization modes on available nutrient contents of reddish paddy soils and rice yields. Soils, 2018,50(3):462-468. (in Chinese)
[16] 银敏华, 李援农, 陈朋朋, 徐路全, 申胜龙, 王星壵 . 基于Meta-analysis的中国北方地区免耕玉米产量效应研究. 中国农业科学, 2018,51(5):843-854.
doi: 10.3864/j.issn.0578-1752.2018.05.004
YIN M H, LI Y N, CHEN P P, XU L Q, SHEN S L, WANG X Y . Effect of no-tillage on maize yield in northern region of China: A meta-analysis. Scientia Agricultura Sinica, 2018,51(5):843-854. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.05.004
[17] MELLOR A, HAYWOOD A, STONE C, JONES S . The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sensing, 2013,5(6):2838-2856.
doi: 10.3390/rs5062838
[18] 全国农业技术推广服务中心. 土壤分析技术规范. 2版. 北京: 中国农业出版社, 2006.
National Agricultural Technology Extension and Service Center. Technical Specification for Soil Analysis. 2nd ed. Beijing: China Agriculture Press, 2006. ( in Chinese)
[19] CURTIS P S, WANG X . A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 1998,113(3):299-313.
doi: 10.1007/s004420050381
[20] 任凤玲, 张旭博, 孙楠, 徐明岗, 柳开楼 . 施用有机肥对中国农田土壤微生物量影响的整合分析. 中国农业科学, 2018,51(1):119-128.
REN F L, ZHANG X B, SUN N, XU M G, LIU K L . A meta-analysis of manure application impact on soil microbial biomass across China's croplands. Scientia Agricultura Sinica, 2018,51(1):119-128. (in Chinese)
[21] LUO Y Q, HUI D F, ZHANG D Q . Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology, 2006,87(1):53-63.
doi: 10.1890/04-1724
[22] HEDGES L V, GUREVITCH J, CURTIS P S . The meta-analysis of response ratios in experimental ecology. Ecology, 1999,80(4):1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[23] 蔡岸冬, 张文菊, 杨品品, 韩天富, 徐明岗 . 基于meta-analysis研究施肥对中国农田土壤有机碳及其组分的影响. 中国农业科学, 2015,48(15):2995-3004.
CAI A D, ZHANG W J, YANG P P, HAN T F, XU M G . Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China-based on meta-analysis. Scientia Agricultura Sinica, 2015,48(15):2995-3004. (in Chinese)
[24] CHEN Y, CAMPS-ARBESTAIN M, SHEN Q H, SINGH B, CAYUELA M L . The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutrient Cycling in Agroecosystems, 2018,111(2/3):103-125.
[25] WANG J Z, WANG X J, XU M G, FENG G, ZHANG W J, LU C A . Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 2015,102(3):371-381.
doi: 10.1007/s10705-015-9710-9
[26] 徐霞, 赵亚南, 黄玉芳, 闫军营, 叶优良 . 不同地力水平下的小麦施肥效应. 中国农业科学, 2018,51(21):4076-4086.
XU X, ZHAO Y L, HUANG Y F, YAN J Y, YE Y L . Fertilization effect of wheat under different soil fertilities. Scientia Agricultura Sinica, 2018,51(21):4076-4086. (in Chinese)
[27] RODRIGUEZ-GALIANO V F, GHIMIRE B, ROGAN J, CHICA- OLMO M, RIGLI-SANCHEZ J P . An assessment of the effectiveness of a random forest classifier for land-cover classification. Isprs Journal of Photogrammetry & Remote Sensing, 2012,67(1):93-104.
[28] LARSON B A, FRISVOLD G B . Fertilizers to support agricultural development in sub-Saharan Africa: What is needed and why. Food Policy, 1996,21(6):509-525.
doi: 10.1016/0306-9192(96)00021-8
[29] MUELLER N D, GERBER J S, JOHNSTON M, RAY D K, RAMANKUTTY N, FOLEY J A . Closing yield gaps through nutrient and water management. Nature, 2012,490(7419):254-257.
[30] CHIANU J N, CHIANU J N, MAIRURA F . Mineral fertilizers in the farming systems of sub-Saharan Africa. A review. Agronomy for Sustainable Development, 2012,32(2):545-566.
doi: 10.1007/s13593-011-0050-0
[31] 石元亮, 王玲莉, 刘世彬, 聂鸿光 . 中国化学肥料发展及其对农业的作用. 土壤学报, 2008,45(5):852-864.
doi: 10.3321/j.issn:0564-3929.2008.05.012
SHI Y L, WANG L L, LIU S B, NIE H G . Development of chemical fertilizer industry and its effect on agriculture of China. Acta Pedologica Sinica, 2008,45(5):852-864. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2008.05.012
[32] ALLEY M M, VANLAUWE B . The role of fertilizers in integraded plant nutrient management. International Fertilizer Industry Association, 2009,15:1-59.
[33] ZHANG W F, CAO G X, LI X L, ZHANG H Y, WANG C, LIU Q Q, CHEN X P, CUI Z L, SHEN J B, JIANG R F, MI G H, MIAO Y X, ZHANG F S, DOU Z X . Closing yield gaps in China by empowering smallholder farmers. Nature, 2016,537(7622):671-674.
[34] CHEUNG F . Yield: The search for the rice of the future. Nature, 2014,514(7524):S60-S61.
[35] 黄耀, 孙文娟 . 近20年来中国大陆农田表土有机碳含量的变化趋势. 科学通报, 2007,51:750-763.
HUANG Y, SUN W J . Change trend of organic carbon in farmland surface soil of main land China during the past 20 years. Science Bulletin, 2007,51:750-763. (in Chinese)
[36] 张智, 王伟妮, 李昆, 马红菊, 苟曦, 鲁剑巍, 李小坤, 丛日环 . 四川省不同区域水稻氮肥施用效果研究. 土壤学报, 2015,52(1):234-241.
ZHANG Z, WANG W N, LI K, MA H J, GOU X, LU J W, LI X K, CONG R H . Effects of nitrogen fertilization on rice in different regions of Sichuan Province. Acta Pedologica Sinica, 2015,52(1):234-241. (in Chinese)
[37] 任意, 张淑香, 穆兰, 田有国, 卢昌艾 . 我国不同地区土壤养分的差异及变化趋势. 中国土壤与肥料, 2009(6):13-17.
REN Y, ZHANG S X, MU L, TIAN Y G, LU C A . Change and difference of soil nutrients for various regions in China. Soil and Fertilizer Sciences in China, 2009(6):13-17 . (in Chinese)
[38] YANG X L, GAO W S, ZHANG M, CHEN Y Q, SUI P . Reducing agricultural carbon footprint through diversified crop rotation systems in the north China plain. Journal of Cleaner Production, 2014,76:131-139.
doi: 10.1016/j.jclepro.2014.03.063
[39] 汤勇华, 黄耀 . 中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征. 农业环境科学学报, 2009,28(5):1070-1078.
TANG Y H, HUANG Y . Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in mainland China. Journal of Agro-Environment Science, 2009,28(5):1070-1078. (in Chinese)
[40] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHEISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S . Significant acidification in major Chinese croplands. Science, 2010,327(5968):1008-1010.
doi: 10.1126/science.1182570
[41] YOUSAF M, LI J F, LU J W, REN T, CONG R H, FAHAD S, LI X K . Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports, 2017,7(1):1-9.
doi: 10.1038/s41598-016-0028-x pmid: 5428335
[42] 黄欠如, 胡锋, 李辉信, 赖涛, 袁颖红 . 红壤性水稻土施肥的产量效应及与气候、地力的关系. 土壤学报, 2006,43(6):926-929.
HUANG Q R, HU F, LI H X, LAI T, YUAN Y H . Crop yield response to fertilization and its relations with climate and soil fertility in red paddy soil. Acta Pedologica Sinica, 2006,43(6):926-929. (in Chinese)
[43] 徐明岗, 李冬初, 李菊梅, 秦道珠, 八木一行, 宝川靖和 . 化肥有机肥配施对水稻养分吸收和产量的影响. 中国农业科学, 2008,41(10):3133-3139.
XU M G, LI D C, LI J M, QIN D Z, KAZUYUKI Y, YASUKAZU H . Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in Hunan of Southern China. Scientia Agricultura Sinica, 2008,41(10):3133-3139. (in Chinese)
[44] LIN Y R, WATTS D B, SANTEN E V, CAO G Q . Influence of poultry litter on crop productivity under different field conditions: A meta-analysis. Agronomy Journal, 2018,110(3):807-818.
doi: 10.2134/agronj2017.09.0513
[45] 吕贻忠, . 土壤学. 北京: 中国农业出版社, 2006.
LÜ Y Z . Soil Science. Beijing: China Agricultural Press, 2006. (in Chinese)
[46] TIROLPADRE A, LADHA J K, REGMI A P, BHANDARI A L, INUBUSHI K . Organic amendments affect soil parameters in two long-term rice-wheat experiments. Soil Science Society of America Journal, 2007,71(2):442-452.
doi: 10.2136/sssaj2006.0141
[47] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, ROLAND B, CHRISTIAN W . 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002,35(9):1095-1103.
PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZHOU Y B, ZHANG F S, ZHU Q S, ROLAND B, CHRISTIAN W . Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002,35(9):1095-1103. (in Chinese)
[48] 冯洋, 陈海飞, 胡孝明, 蔡红梅, 徐芳森 . 高、中、低产田水稻适宜施氮量和氮肥利用率的研究. 植物营养与肥料学报, 2014,20(1):7-16.
doi: 10.11674/zwyf.2014.0102
FENG Y, CHEN H F, HU X M, CAI H M, XU F S . Optimal nitrogen application rates on rice grain yield and nitrogen use efficiency in high, middle and low-yield paddy fields. Journal of Plant Nutrition and Fertilizer, 2014,20(1):7-16. (in Chinese)
doi: 10.11674/zwyf.2014.0102
[49] 冀建华, 侯红乾, 刘益仁, 刘秀梅, 冯兆滨, 刘光荣, 杨涛, 李文娟 . 长期施肥对双季稻产量变化趋势、稳定性和可持续性的影响. 土壤学报, 2015,52(3):607-619.
JI J H, HOU H Q, LIU Y R, LIU X M, FENG Z B, LIU G R, YANG T, LI W J . Effects of long-term fertilization on yield variation trend, yield stability and sustainability in the double cropping rice system. Acta Pedologica Sinica, 2015,52(3):607-619. (in Chinese)
[50] 白由路 . 高效施肥技术研究的现状与展望. 中国农业科学, 2018,51(11):2116-2125.
BAI Y L . The situation and prospect of research on efficient fertilization. Scientia Agricultura Sinica, 2018,51(11):2116-2125. (in Chinese)
[1] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[2] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[3] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[4] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[5] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[6] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[7] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[8] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[9] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[10] MENG Yi,WENG WenAn,CHEN Le,HU Qun,XING ZhiPeng,WEI HaiYan,GAO Hui,HUANG Shan,LIAO Ping,ZHANG HongCheng. Effects of Water-Saving Irrigation on Grain Yield and Quality: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(11): 2121-2134.
[11] WU TianQi,LI YaFei,SHI JiangLan,NING Peng,TIAN XiaoHong. Effects of Basal Nitrogen and Foliar Zinc Application at the Early Filling Stage on Zinc Enrichment and Protein Components Content in Wheat Grain [J]. Scientia Agricultura Sinica, 2022, 55(10): 1971-1986.
[12] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[13] WANG Cong,SUN HuiFeng,XU ChunHua,WANG ZhanFu,ZHANG JiNing,ZHANG XianXian,CHEN ChunHong,ZHOU Sheng. Effects of Fertilization Methods on Ammonia Volatilization from Vegetable Field Under Greenhouse Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(1): 123-133.
[14] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[15] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!