Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (9): 1856-1868.doi: 10.3864/j.issn.0578-1752.2021.09.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Mixed-Cropping Improved on Grain Filling Characteristics and Yield of Maize Under High Planting Densities

HU DanDan(),LI RongFa,LIU Peng(),DONG ShuTing(),ZHAO Bin,ZHANG JiWang,REN BaiZhao   

  1. College of Agriculture, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2020-07-08 Accepted:2020-09-27 Online:2021-05-01 Published:2021-05-10
  • Contact: Peng LIU,ShuTing DONG E-mail:hudandan0110@163.com;liupengsdau@126.com;stdong@sdau.edu.cn

Abstract:

【Objective】The aim of this study was to evaluate the effects of mixed planting of maize varieties on grain filling characteristics and yield under close planting conditions. 【Method】Zhengdan 958 (ZD958) and Denghai 605 (DH605) were used as experimental materials. Three planting densities (D1, 67 500 plants/hm2; D2, 82 500 plants/hm2; D3, 97 500 plants/hm2), and two different mixed-cropping planting patterns (mixture (M), random sowing after mixing seeds of the two varieties in the same proportion; I, one row of ZD958 and one row of DH605) were arranged, with the same density of Zhengdan 958 (SZD958) and Denghai 605 (SDH605) as controls. Effects of mixed planting of maize varieties on the dry matter accumulation and translocation, grain filling characteristics and yield of summer maize were investigated under close planting conditions. 【Result】With the increase of planting density, the dry matter accumulation of different planting methods after anthesis increased, while the dry matter accumulation per plant at maturity and the grain filling parameters decreased. Although the 1000-grain weight decreased, the population yield increased significantly. There were no significant differences in the grain yields among the different treatments at D1 density. The grain yields obtained under the M and I treatments were higher than those of the monoculture treatments at D2 and D3 densities. Under D2 density, the 2-year average data showed that the grain yields obtained under the M and I treatments increased by 8.70% and 8.09% than that of SZD958, and 6.92% and 6.32% than that of SDH605, respectively. At D3 density, the grain yields obtained under the M and I treatments increased by 7.24% and 7.55% than that of SZD958, and 4.98% and 5.28% than that of SDH605, respectively. At D2 and D3 densities, the Gmax (maximum grain-filling rate), Wmax (kernel weight at the maximum grain filling rate) and grain weight were increased under the M and I treatments. And the 100-kernel weight was extremely significantly positively correlated with the days needed for reaching the maximum grain-filling rate (Tmax), Wmax, Gmax, and active grain filling period (P) at P<0.01. At D2 density, the average Wmax for two years under M and I treatments increased significantly by 11.61% and 11.12% than that of SZD958, and 5.86% and 5.38% than that of SDH605, respectively. The average Wmax at M and I treatments at D3 density increased significantly by 10.32% and 9.75% than that of SZD958, and 5.63% and 5.08% than that of SDH605, respectively. The dry matter accumulation per plant at maturity, dry matter accumulation after anthesis, the transfer amount and translocation efficiency of dry matter for M and I treatments increased than those of SZD958 and SDH605. The 2-year average data showed that dry matter accumulation after anthesis obtained under the M and 1:1 treatments increased by 4.43% and 7.56% than that of SZD958, and 5.25% and 8.36% than that of SDH605 at D2 density, respectively. The dry matter accumulation after anthesis obtained under the M and I treatments increased by 3.85% and 4.68% than that of SZD958, and by 4.52% and 5.36% than that of SDH605 at D3 density, respectively. 【Conclusion】There were no significant differences in the grain yields among the different treatments at low density. Under 82 500 plant/hm2 and 97 500 plant/hm2 density, the mixed cropping significantly increased dry matter accumulation and transport after anthesis, improved the maximum grain filling rate of summer maize and weight of maximum grain filling rate, promoted grain filling, and finally increased the yield significantly.

Key words: summer maize, density, mixed-cropping, grain filling characteristics, yield

Table 1

Effects of mixed-cropping of maize varieties on grain yield and yield components during the 2017 and 2018 growing seasons under different planting densities"

年份
Year
密度
Planting
density
种植方式
Planting pattern
收获穗数
Harvest ear number (ears/hm2)
穗粒数
Grains
per ear
千粒重
1000-grain
weight (g)
空秆率
Barrenness
(%)
产量
Yield
(kg·hm-2)
2017 D1 SZD958 64400.8c 542.9a 357.0ef 2.86ef 10014.5e
SDH605 64377.5c 522.0c 388.7a 3.69cdef 10129.1e
M 64565.0c 541.7a 376.3b 2.64def 10315.0e
I 65012.5c 536.0b 366.4cd 3.27ef 10155.3e
D2 SZD958 78953.3b 462.5e 343.5gh 3.18bc 10850.2d
SDH605 79314.2b 464.8e 363.0de 3.97b 11064.8d
M 79279.2b 484.8d 372.3bc 2.81f 11928.5c
I 79354.6b 479.7d 368.8bcd 2.97cde 11798.3c
D3 SZD958 94190.0a 430.7g 314.2j 4.11b 12419.8b
SDH605 94379.3a 418.4h 333.4i 4.80a 12692.3b
M 94210.8a 445.4f 348.2fg 2.91bc 13234.2a
I 94293.8a 431.9g 336.6hi 3.15bcd 13424.2a
2018 D1 SZD958 64476.7c 504.1bc 345.8bc 3.15b 10278.1e
SDH605 63365.0c 496.4cd 358.0ab 3.34ab 10455.7e
M 65032.5c 518.5a 361.6a 3.21b 10594.1e
I 64754.6c 509.5ab 354.2abc 3.11ab 10391.2e
D2 SZD958 78928.3b 461.5f 332.4de 4.08ab 11036.0d
SDH605 78372.5b 449.1g 353.9abc 4.66ab 11184.3d
M 79484.2b 482.9e 358.3ab 2.97b 11859.9c
I 79206.3b 486.8de 355.0abc 3.77b 11857.0c
D3 SZD958 94491.7a 425.6h 319.1f 4.68ab 12662.9b
SDH605 93935.8a 416.2h 326.2ef 5.69a 12929.9b
M 95603.3a 451.4fg 344.0cd 3.95ab 13665.0a
I 94769.6a 444.1g 343.8cd 4.04b 13550.0a
年份Year (Y) NS *** *** ** ***
密度Density (D) *** *** *** *** ***
种植方式
Planting pattern (T)
NS *** *** *** ***
Y×D NS *** *** NS NS
Y×T NS NS NS NS NS
D×T NS * ** NS ***
Y×D×T NS NS NS NS NS

Fig. 1

Effects of mixed-cropping of maize varieties on grain dry weight under different planting densities S represented monoculture; M represented random sowing at the same proportion; I represented raw ratio of ZD958 to DH605 is 1:1. The same as below"

Fig. 2

Effects of mixed-cropping of maize varieties on grain filling rate under different planting densities"

Table 2

Effects of different mixed-cropping of maize varieties on grain-filling parameters"

年份
Year
密度
Planting
density
种植方式
Planting pattern
R A B C Tmax
(d)
Wmax
(g)
Gmax
(g·d-1)
P
(d)
2017 D1 SZD958 0.9965 31.29 63.80 0.15 28.27abc 15.65cd 1.15abc 40.87abc
SDH605 0.9964 32.76 64.05 0.14 28.76a 16.38ab 1.18a 41.52ab
M 0.9957 33.06 58.82 0.14 28.58ab 16.53a 1.18a 42.11a
I 0.9965 32.67 65.17 0.15 28.65a 16.34ab 1.19a 41.20ab
D2 SZD958 0.9973 28.76 64.58 0.15 27.68cde 14.38fg 1.08d 39.86bcd
SDH605 0.9966 29.84 65.04 0.15 27.74cde 14.92ef 1.12bcd 40.01bcd
M 0.9973 31.63 62.93 0.15 27.75bcde 15.82bc 1.18a 40.20abcd
I 0.9969 31.25 68.92 0.15 28.09abcd 15.62cd 1.18a 39.83bcd
D3 SZD958 0.9973 27.89 75.93 0.16 27.09e 13.94g 1.11cd 37.57e
SDH605 0.9973 29.00 70.99 0.16 27.37de 14.50fg 1.13bcd 38.58de
M 0.9974 30.30 74.29 0.16 27.72cde 15.15de 1.18a 38.66de
I 0.9978 30.25 69.65 0.15 27.66cde 15.13de 1.16ab 39.12de
2018 D1 SZD958 0.9988 33.81 54.35 0.14 28.03ab 16.91b 1.20abc 42.34ab
SDH605 0.9983 34.32 53.40 0.14 28.04ab 17.16ab 1.21ab 42.42ab
M 0.9988 34.56 53.75 0.14 27.97ab 17.28ab 1.23a 42.21ab
I 0.9989 35.13 53.27 0.14 28.33a 17.57a 1.23a 42.83a
D2 SZD958 0.9977 29.78 53.21 0.14 27.53b 14.89d 1.07ef 41.81ab
SDH605 0.9984 31.96 52.56 0.14 27.77ab 15.98c 1.14bcde 42.13ab
M 0.9991 33.75 53.36 0.14 27.93ab 16.87b 1.20abc 42.39ab
I 0.9992 33.79 51.32 0.14 27.94ab 16.89b 1.19abcd 42.80a
D3 SZD958 0.9990 28.09 51.65 0.14 27.33b 14.05e 1.01f 41.62b
SDH605 0.9988 29.51 54.12 0.14 27.63ab 14.75d 1.06ef 41.59b
M 0.9994 31.42 54.41 0.14 27.85ab 15.71c 1.13cde 41.90ab
I 0.9993 31.09 51.54 0.14 27.63ab 15.55c 1.11de 42.18ab

Fig. 3

Effects of mixed-cropping of maize varieties on dry matter accumulation of per plant under different planting densities at maturity stage The different small letters are significantly different at 5% probability level"

Table 3

Effects of mixed-cropping of maize varieties on dry matter distribution of per plant under different densities at maturity stage"

年份
Year
密度
Planting
density
种植方式
Planting pattern
干物质积累比例 Dry matter partitioning rate (%)
茎秆
Stem
叶片
Leaf
穗轴
Rachis
雄穗
Tassel
苞叶
Husk
籽粒
Grain
2017 D1 SZD958 18.90 11.66 3.10 0.75 6.80 58.79
SDH605 18.81 11.83 2.86 0.42 6.65 59.42
M 18.49 11.60 2.75 0.89 6.78 59.49
I 18.65 11.55 2.83 0.68 6.51 59.79
D2 SZD958 18.85 11.52 2.68 1.14 6.90 58.30
SDH605 18.96 11.44 2.47 0.55 6.78 59.80
M 18.75 11.94 2.48 0.54 5.65 60.65
I 18.64 11.96 2.70 0.73 6.12 60.15
D3 SZD958 19.08 11.49 2.65 0.56 6.44 57.17
SDH605 18.66 11.41 3.01 0.64 6.66 59.63
M 18.31 11.12 2.67 0.45 6.59 60.87
I 18.30 11.16 2.68 0.62 6.73 60.51
2018 D1 SZD958 18.12 12.60 4.15 0.96 6.72 57.44
SDH605 17.68 12.50 3.98 0.63 5.96 59.25
M 17.54 12.20 3.48 0.94 6.71 59.13
I 17.52 12.11 3.63 0.82 6.79 59.14
D2 SZD958 18.64 11.93 4.29 0.87 6.90 57.64
SDH605 18.44 11.98 3.37 0.63 7.16 58.99
M 18.2 12.16 3.64 1.04 5.99 59.58
I 18.35 11.67 3.55 0.93 6.35 59.68
D3 SZD958 18.71 11.57 3.68 0.75 7.46 57.83
SDH605 19.16 11.84 2.56 0.47 7.04 58.93
M 18.51 11.57 3.06 0.90 5.89 60.08
I 18.50 11.42 3.15 0.78 6.14 60.02

Table 4

Effects of different mixed-cropping of maize varieties on dry matter accumulation and transport after anthesis"

年份
Year
密度
Planting density
种植方式
Planting pattern
花后干物质积累量
Dry matter accumulation
after anthesis (kg·hm-2)
干物质转运量
Transfer amount of
dry matter (kg·hm-2)
干物质转运率
Translocation efficiency of
dry matter (%)
花后干物质转运对籽粒的贡献率
Contribution rate to grain of
dry matter transportation (%)
2017 D1 SZD958 13078.6gh 1762. 6d 21.4d 14.0b
SDH605 12699.4h 1755.7d 21.6d 14.2ab
M 12936.8gh 1847.9d 22.5bcd 14.7ab
I 12895.7gh 1819.6d 22.1cd 14.5ab
D2 SZD958 13706.5ef 1838.7d 21.3d 14.1ab
SDH605 13386.8fg 1986.9cd 22.8bcd 15.0ab
M 14172.4d 2335.6ab 24.1ab 16.1ab
I 14100.9de 2192.4bc 23.1bcd 15.5ab
D3 SZD958 15012.1c 2231. 8bc 22.7bcd 15.4ab
SDH605 15220.2bc 2312.3ab 23.5abc 15.5ab
M 15562.9ab 2512.6a 25.0a 16.3a
I 15773.9a 2397.2ab 24.0ab 15.7ab
2018 D1 SZD958 12636.2ef 1836.2g 22.8e 15.3e
SDH605 12327.3f 1879.2fg 23.5de 15.5de
M 12614.0ef 2063.0ef 24.7bcde 17.0abcd
I 12929.2ef 1842.5g 23.0e 15.4de
D2 SZD958 13247.6e 2096.3de 23.5de 15.9cde
SDH605 12773.2ef 2187.4de 23.8cde 16.7bcde
M 13976.9d 2411.2bc 25.3abcd 17.2abc
I 14335.6cd 2282.4cd 25.1bcd 16.3cde
D3 SZD958 15477.8ab 2445.6bc 23.8cde 17.2abc
SDH605 14992.9bc 2600.3ab 25.8abc 18.2ab
M 16148.3a 2790.8a 26.4ab 18.4a
I 16157.2a 2774.9a 27.1a 18.1ab

Table 5

Correlation analysis of grain filling parameters, dry matter accumulation and transfer rate and yield"

相关系数
Correlation coefficient
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 1
A2 0.632** 1
A3 0.375** 0.729** 1
A4 0.466** 0.655** 0.063 1
A5 -0.450** -0.345** -0.276* -0.149 1
A6 -0.299* 0.016 0.006 0.121 0.858** 1
A7 -0.204 -0.326** -0.271* -0.165 0.298* 0.236* 1
A8 0.362** 0.503** 0.472** 0.204 -0.359** -0.217 -0.687** 1
A9 0.631** 0.958** 0.815** 0.504** -0.391** -0.045 -0.536** 0.815** 1
A10 -0.273* -0.390** -0.340** -0.184 0.376** 0.264* 0.926** -0.777** -0.513** 1
[1] TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world. Science, 2010,327(5967):818-822.
[2] AINSWORTH E A, YENDREK C R, SKONECZKA K A, LONG S P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell and Environment, 2012,35(1):38-52.
[3] ALEXANDRATOS N, BRUINSMA J. World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Papers, 2012.
[4] WART J V, KERSEBAUM K C, PENG S B, MILNER M, CASSMAN K G. Estimating crop yield potential at regional to national scales. Field Crops Research, 2013,143(1):34-43.
[5] TILMAN D, CLARK M. Food, agriculture & the environment: Can we feed the world and save the earth? Daedalus, 2015,144(4):8-23.
[6] SANGOI L, GRACIETTI M A, RAMPAZZOV C, BIANCHETTI P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Research, 2002,79(1):39-51.
[7] TOKATLIDIS I S, KOUTROUBAS S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004,88(2/3):103-114.
[8] MENG Q F, HOU P, WU L, CHEN X P, CUI Z L, ZHANG F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013,143(1):91-97.
[9] 吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008,34(3):447-455.
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008,34(3):447-455. (in Chinese)
[10] 陈晨, 董树亭, 刘鹏, 张吉旺, 赵斌. 种植密度对玉米自交系产量和灌浆特性的影响. 玉米科学, 2012,20(6):107-111.
CHEN C, DONG S T, LIU P, ZHANG J W, ZHAO B. Effects of planting density on grain filling characteristics of different maize inbred lines. Journal of Maize Sciences, 2012,20(6):107-111. (in Chinese)
[11] FATEMEH F, MANI M, SHAHRAM L. The effect of source-sink restriction and plant density changes on the role of assimilate remobilization in corn grain yield. International Journal of Agriculture and Crop Sciences, 2013,5(20):2459-2465.
[12] XUE J, GOU L, ZHAO Y S, YAO M N, YAO H S, TIAN J S, ZHANG W F. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 2016,188:133-141.
[13] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020,46(4):614-630.
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020,46(4):614-630. (in Chinese)
[14] ZHU Y Y, CHEN H R, FAN J H, WANG Y Y, CHEN J B, FAN J X, YANG S S, HU L P. Genetic diversity and disease control in rice. Nature, 2000,406(6797):718-722.
[15] 苏新宏. 不同基因型玉米间作效应研究[D]. 郑州: 河南农业大学, 2001.
SU X H. Studies on intercropping effects of different genotypes maize[D]. Zhengzhou: Henan Agricultural University, 2001. (in Chinese)
[16] DAELLENBACH G C, KERRIDGE P C, WOLFE M S, FROSSARD E, FINCKH M R. Plant productivity in cassava-based mixed cropping systems in Colombian hillside farms. Agriculture Ecosystems & Environment, 2005,105(4):595-614.
[17] 赵亚丽, 康杰, 刘天学, 李潮海. 不同基因型玉米间混作优势带型配置. 生态学报, 2013,33(12):3855-3864.
ZHAO Y L, KANG J, LIU T X, LI C H. Optimum stripe arrangement for inter-cropping and mixed-cropping of different maize genotypes. Acta Ecologica Sinica, 2013,33(12):3855-3864. (in Chinese)
[18] 苏新宏, 李潮海, 孙敦立, 张怀志. 不同基因型玉米间作研究初报. 玉米科学, 2000,8(4):57-60.
SU X H, LI C H, SUN D L, ZHANG H Z. Preliminary report on intercropping with different genotypes of maize. Journal of Maize Sciences, 2000,8(4):57-60. (in Chinese)
[19] 刘天学, 李潮海, 马新明, 赵霞, 刘士英. 不同基因型玉米间作对叶片衰老、籽粒产量和品质的影响. 植物生态学报, 2008,32(4):914-921.
LIU T X, LI C H, MA X M, ZHAO X, LIU S Y. Effects of maize intercropping with different genotypes on leaf senescence and grain yield and quality. Chinese Journal of Plant Ecology, 2008,32(4):914-921. (in Chinese)
[20] 王小林, 张岁岐, 王淑庆, 王志梁. 黄土源区不同品种玉米间作群体生长特征的动态变化. 生态学报, 2012,32(23):7383-7390.
WANG X L, ZHANG S Q, WANG S Q, WANG Z L. The dynamic variation of maize (Zea mays L.) population growth characteristics under cultivars intercropped on the Loess Plateau. Acta Ecologica Sinica, 2012,32(23):7383-7390. (in Chinese)
[21] 张三坤, 陈文平. 玉米间混作增产又减灾. 河南农业, 2005(6):26.
ZHANG S K, CHEN W P. Corn intercropping increases yield and reduces disaster. Agriculture of Henan, 2005(6):26. (in Chinese)
[22] LIU Y E, LIU P, DONG S T, ZHANG J W. Hormonal changes caused by the Xenia effect during grain filling of normal corn and high-oil corn crosses. Crop Science, 2010,50(1):215-221.
[23] 周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012,32(13):4123-4131.
ZHOU L, WANG Z H, LI F C, MENG X Y, LI K Y, LI S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland. Acta Ecologica Sinica, 2012,32(13):4123-4131. (in Chinese)
[24] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988,14(3):182-193.
ZHU Q S, CAO X Z, LUO Y Q. Growth analysis on the process of grain filling in rice. Acta Agronomica Sinica, 1988,14(3):182-193. (in Chinese)
[25] 顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料子粒灌浆特性的分析. 作物学报, 2001,27(1):7-14.
GU S L, ZHU Q S, YANG J C, PENG S B. Analysis on grain filling characteristics for different rice types. Acta Agronomica Sinica, 2001,27(1):7-14. (in Chinese)
[26] 段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005,13(4):51-54.
DUAN M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. Journal of Maize Sciences, 2005,13(4):51-54. (in Chinese)
[27] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017,50(12):2238-2246.
ZHANG R H, WANG B X, YANG Y H, YANG X J, MA X F, ZHANG X H, HAO Y C, XUE J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Scientia Agricultura Sinica, 2017,50(12):2238-2246. (in Chinese)
[28] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45(12):1868-1879.
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019,45(12):1868-1879. (in Chinese)
[29] MUHAMMAD K, SU W, AHMAD I, MENG X, CUI W, ZHANG X, MOU S, AAQIL K, HAN Q, LIU T. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports, 2018,8(1):4818.
[30] JIANG Q, DU Y, TIAN X, WANG Q, XIONG R, XU G, YAN C, DING Y. Effect of panicle nitrogen on grain filling characteristics of high-yielding rice cultivars. European Journal of Agronomy, 2016,74:185-192.
[31] OKAMURA M, ARAI-SANOH Y, YOSHIDA H, MUKOUYAMA T, ADACHI S, YABE S, NAKAGAWA H, TSUTSUMI K, TANIGUCHI Y, KOBAYASHI N, KONDO M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Research, 2018,219:139-147.
[32] 李轶冰, 逄焕成, 李华, 李玉义, 杨雪, 董国豪, 郭良海, 王湘峻. 粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响. 中国农业科学, 2013,46(14):3055-3064.
LI Y B, PANG H C, LI H, LI Y Y, YANG X, DONG G H, GUO L H, WANG X J. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in North Huang-Huai-Hai region. Scientia Agricultura Sinica, 2013,46(14):3055-3064. (in Chinese)
[33] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014,47(18):3557-3565.
WANG X H, ZHANG L, LIU S L, CAO Y J, WEI W W, LIU C G, WANG Y J, BIAN S F, WANG L C. Grain filling characteristics of maize hybrids differing in maturities. Scientia Agricultura Sinica, 2014,47(18):3557-3565. (in Chinese)
[34] 徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015,41(2):297-307.
XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015,41(2):297-307. (in Chinese)
[35] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51(10):1878-1889.
LI L L, MING B, GAO S, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Scientia Agricultura Sinica, 2018,51(10):1878-1889. (in Chinese)
[36] JIA Q M, SUN L F, MOU H Y, ALI S, LIU D H, ZHANG Y, ZHANG P, REN X L, JIA Z K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agricultural Water Management, 2018,201:287-298.
[37] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018,44(6):920-930.
HU D D, ZHANG J W, LIU P, ZHAO B, DONG S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agronomica Sinica, 2018,44(6):920-930. (in Chinese)
[38] 史振声, 朱敏, 李凤海, 王志斌. 玉米不同品种间作的增产效果研究. 玉米科学, 2008,16(2):112-114.
SHI Z S, ZHU M, LI F H, WANG Z B. Research on yield- increasing of different kinds of maize. Journal of Maize Sciences, 2008,16(2):112-114. (in Chinese)
[39] 陶静静, 王海标, 朱宗瑛, 谭金芳, 王宜伦. 不同基因型夏玉米间作对产量及氮素吸收利用的影响. 华北农学报, 2016,31(6):185-191.
TAO J J, WANG H B, ZHU Z Y, TAN J F, WANG Y L. Effect of different genotype summer maize intercropping on yield and nitrogen absorption and utilization. Acta Agriculturae Boreali-Sinica, 2016,31(6):185-191. (in Chinese)
[40] 杨耿斌, 王屾, 谭福忠, 韩翠波, 刘兴焱, 何长安, 纪春学, 王辉. 两个玉米品种混种对产量及产量构成因素的影响. 玉米科学, 2009,17(4):104-106.
YANG G B, WANG S, TAN F Z, HAN C B, LIU X Y, HE C A, JI C X, WANG H. Effects of mixed planting of two maize varieties on maize yield and component factors. Journal of Maize Sciences, 2009,17(4):104-106. (in Chinese)
[41] ECHARTE L, LUQUE S, ANDRADE F H, SADRAS V O, CIRILO A, OTEGUI M E, VEGA C R C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1995. Field Crops Research, 2000,68:1-8.
[42] ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016,108(1):196-204.
[43] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018,44(3):104-112.
XU T J, LÜ T F, ZHAO J R, WANG R H, CHEN C Y, LIU Y E, LIU X Z, WANG Y D, LIU C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agronomica Sinica, 2018,44(3):104-112. (in Chinese)
[44] 刘天学, 李潮海, 付景, 闫成辉. 不同基因型玉米间作的群体质量. 生态学报, 2009,29(11):6302-6309.
LIU T X, LI C H, FU J, YAN C H. Population quality of different maize (Zea mays L.) genotypes intercropped. Acta Ecologica Sinica, 2009,29(11):6302-6309. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!