Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (10): 1761-1771.doi: 10.3864/j.issn.0578-1752.2019.10.009

• HORTICULTURE • Previous Articles     Next Articles

Responses of Plant Nutrient and Photosynthesis in Greenhouse Tomato to Water-Fertilizer Coupling and Their Relationship with Yield

WANG HuBing,CAO HongXia(),HAO ShuXue,PAN XiaoYan   

  1. College of Water Conservancy and Architectural Engineering, Northwest A&F University/Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Yangling 712100, Shaanxi
  • Received:2018-12-14 Accepted:2019-02-18 Online:2019-05-16 Published:2019-05-23
  • Contact: HongXia CAO E-mail:nschx225@nwafu.edu.cn

Abstract:

【Objective】The objectives of the study were to explore the coupling effects of water and fertilizer on tomato plant nutrient absorption, photosynthetic parameters and their relationships, so as to provide a theoretical basis for water and fertilizer management of greenhouse tomato in Northwest China.【Method】The experiment was conducted in a solar greenhouse, and water volumes based on moisture evaporation were set as 1.00E (W1), 0.75E (W2) and 0.50E (W3). Fertilizer treatments of N-P2O5-K2O (F) included 320-160-320 kg?hm -2 (high fertilizer, F1), 240-120-240 kg?hm -2 (middle fertilizer, F2) and 160-80-160 kg?hm -2 (low fertilizer, F3), Besides, the local irrigation and fertilization was set as control (CK).【Result】The results showed that irrigation and fertilization had a significant effect on leaf area index (LAI) and chlorophyll content, as well as LAI and chlorophyll content increased with the increasing of irrigation and fertilization. LAI reached the maximum value at the ripening stage, while chlorophyll content firstly increased then decreased with plant growth, and reached the maximum value at the fruit expansion stage. The contents of N, P and K in leaves showed the N>K>P trend, and the content was 22.83-47.20, 4.45-7.08 and 22.00-34.92 g?kg -1, respectively. The increasing of irrigation and fertilization was beneficial to the increase of leaf nutrient content, plant nutrient accumulation and nutrient transfer to fruit, which reached the maximum value under W1F1 treatment except for the content of N at 51d and P at 89d in leaves and P accumulation in plant. Irrigation and fertilization had a significant effect on net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr). Pn, Gs and Tr increased with the increasing of irrigation amount and fertilizer amount. Among different fertilizer and water treatments, W1F1 treatment had the highest Pn, while CK had the highest Tr except for 90d. Pn reduced significantly under water stress during tomato ripening period. The Pn, Gs and Tr value did not enhance significantly when the irrigation continued to increase at W1 level. The contents of N, P and K in leaves were positively correlated with chlorophyll content and Pn at different growth stages. In addition, plant and fruit nutrient accumulation amount of tomato showed a significant positive correlation with net photosynthetic and yield. 【Conclusion】In conclusion, the W1F1 treatment (irrigation amount of 1.0E and fertilizer of N-P2O5-K2O 320-160-320 kg?hm -2) was considered as the optimal fertilizer and water treatment through the comprehensive consideration of leaf area index, chlorophyll content, photosynthetic parameters, plant nutrient accumulation and yield of tomato.

Key words: tomato, irrigation and fertilization coupling, leaf area index, plant nutrient, photosynthetic characteristics, yield

Table 1

Effect of different irrigation amount and fertilizer on LAI and chlorophyll content of tomato in different growth stage"

灌溉水平
Irrigation level
施肥水平
Fertilizer level
叶面积指数LAI 叶绿素含量Chl (g?kg-1)
51 d 63 d 89 d 117 d 52 d 6 5d 90 d 118 d
F1 1.39a 2.51a 3.77ab 4.48ab 2.16a 2.42a 3.14a 2.78a
W1 F2 1.38a 2.36b 3.60abc 4.08bc 2.14a 2.21b 3.03b 2.65abc
F3 1.25abc 2.19c 3.18bcd 3.80cd 2.00bc 2.10cd 2.84c 2.62bcd
F1 1.30abc 2.21c 2.92cde 3.59de 2.05ab 2.10c 2.95b 2.63bc
W2 F2 1.21abc 2.24bc 2.82de 3.42def 1.96bcd 2.07cd 2.79c 2.56cd
F3 1.04bc 2.00d 2.71de 3.12fg 1.90cd 2.00d 2.63d 2.39ef
F1 1.22abc 1.82e 2.91cde 3.20efg 1.85d 2.04cd 2.55de 2.54cde
W3 F2 1.05bc 1.99d 2.68de 3.10fg 1.92bcd 2.00cd 2.63d 2.47def
F3 1.01c 1.52f 2.41e 2.89g 1.69e 1.86e 2.51e 2.37f
CK 1.31ab 2.60a 3.96a 4.62a 2.05ab 2.35a 3.02b 2.75ab
灌溉 Irrigation * ** ** ** ** ** ** **
施肥 Fertilization * ** ns ** ** ** ** **
灌溉×施肥 Irrigation×Fertilization ns * ns ns ns * ** ns

Table 2

Effect of different irrigation amount and fertilizer on leaf N, P and K content of tomato in different growth stage"

灌溉水平
Irrigation level
施肥水平
Fertilizer level
叶片N含量 Leaf N content (g?kg-1) 叶片P含量 Leaf P content (g?kg-1) 叶片K含量 Leaf K content (g?kg-1)
51 d 63 d 89 d 117 d 51 d 63 d 89 d 117 d 51 d 63 d 89 d 117 d
F1 44.89ab 47.20a 42.95a 37.62a 6.65a 6.90a 6.83a 6.58a 32.98a 33.52a 34.92a 28.23a
W1 F2 45.59a 45.68ab 38.82abcd 35.68ab 6.22ab 6.84a 6.77a 5.70abc 30.45abc 31.52abc 31.57abc 26.32ab
F3 44.17abc 43.64abc 36.03cde 30.92bc 6.16abc 6.29abc 6.35ab 5.65bc 29.27bcd 29.62bcd 30.67abc 25.27abc
F1 44.32abc 44.39abc 39.94abc 35.08ab 6.14abc 6.52ab 6.80a 6.47ab 30.17bcd 32.03ab 32.95ab 26.37ab
W2 F2 41.74c 41.53bc 36.54bcde 33.80ab 5.31cd 6.31abc 6.23ab 5.60bc 28.10cd 30.52bc 28.37abc 22.95cd
F3 42.94abc 43.22abc 35.86cde 26.83cd 5.67bcd 6.49ab 6.32ab 4.45d 27.98cd 29.07bcd 28.30abc 23.38bcd
F1 42.05c 43.10abc 36.00cde 32.59b 6.10abc 6.37ab 6.24ab 6.46ab 28.55cd 30.12bcd 31.30abc 23.62bcd
W3 F2 42.37bc 41.00c 34.72de 25.62d 5.30cd 5.95bc 6.61ab 4.97cd 28.07cd 27.45d 27.20bc 25.00abcd
F3 36.32d 36.57d 33.76e 22.83d 5.06d 5.70c 5.64b 4.62d 27.48d 28.53cd 24.52c 22.00d
CK 44.09abc 41.40bc 40.96ab 34.45ab 6.38ab 6.59a 7.08a 5.70abc 31.40ab 30.63abc 34.35ab 26.23ab
灌溉 Irrigation ** ** ** ** ** ** ns ns ** * * *
施肥 Fertilization ** * * ** ** ns ns ** * * * *
灌溉×施肥 Irrigation×Fertilization * ns ns ns ns ns ns ns ns ns ns ns

Table 3

Effect of different irrigation amount and fertilizer on Pn, Gs and Tr of tomato plant in different growth stage"

灌溉水平
Irrigation level
施肥水平
Fertilizer level
净光合速率Pn (μmol?m-2?s-1) 气孔导度Gs (mol?m-2?s-1) 蒸腾速率Tr (mmol?m-2?s-1)
52 d 65 d 90 d 118 d 52 d 65 d 90 d 118 d 52 d 65 d 90 d 118 d
F1 22.92a 27.24a 25.46a 23.20a 1.31a 1.15b 1.16a 0.83a 8.54abc 15.89a 15.87a 13.81ab
W1 F2 21.71bc 26.22ab 22.34bc 20.79b 1.24a 1.06c 0.96bc 0.70b 7.97bc 14.49b 14.02b 13.15bc
F3 21.41c 24.35b 19.47de 18.53c 1.05b 1.02c 0.76d 0.63b 7.13cde 14.22b 12.11cd 12.83c
F1 20.70c 24.28b 20.96cd 19.35bc 1.01b 0.89d 0.89c 0.66b 7.42bcde 12.82c 12.42c 13.02bc
W2 F2 18.61d 20.90c 18.97de 18.20cd 0.99bc 0.86de 0.74d 0.62bc 8.90ab 12.54cd 11.59cde 12.44cd
F3 18.28d 19.50cd 18.81de 16.53d 0.90cd 0.84de 0.63e 0.53cd 7.60bcd 12.42cd 11.99cd 11.55de
F1 16.50e 19.01cd 18.24de 14.50e 0.61f 0.80ef 0.58e 0.44de 8.36bc 11.91cd 11.08def 10.83e
W3 F2 16.81e 18.45d 18.47de 14.65e 0.88d 0.73f 0.62e 0.48de 5.82e 11.71d 10.47ef 11.40e
F3 16.10e 18.14d 17.24e 14.32e 0.73e 0.63g 0.42f 0.42e 6.07de 10.24e 10.22f 10.62e
CK 22.87ab 25.45ab 24.83ab 23.18a 1.29a 1.37a 1.02b 0.83a 10.07a 16.54a 14.80ab 14.13a
灌溉 Irrigation ** ** ** ** ** ** ** ** ** ** ** **
施肥 Fertilization ** ** ** ** ** ** ** ** ns ** ** *
灌溉×施肥 Irrigation×Fertilization ns ns ns ns ** ns ** ns * ns ** ns

Table 4

Effects of irrigation water amounts and different fertilizer levels on plant and fruit nutrient accumulation amount on tomato"

灌溉水平
Irrigation level
施肥水平
Fertilizer level
植株养分累积量
Plant nutrient accumulation amount (kg?hm-2)
果实养分累积量
Fruit nutrient accumulation amount (kg?hm-2)
N P K N P K
F1 270.95a 74.80ab 330.36a 129.19a 38.01a 232.91a
W1 F2 239.46bc 71.16abc 298.19bc 113.54b 36.11abc 208.22bc
F3 225.29cd 68.37c 290.41cd 110.69b 35.00abcd 203.21bc
F1 236.92bc 69.54bc 294.82bcd 110.29b 33.19cde 203.30bc
W2 F2 217.40d 65.97cd 277.67de 103.18bcd 32.14de 194.94cd
F3 194.85e 58.06e 265.18e 92.48de 30.54e 186.08de
F1 217.00d 67.13cd 289.28cd 104.91bc 33.27bcde 204.92bc
W3 F2 197.88e 61.64de 276.11de 96.19cd 30.24e 198.93bcd
F3 173.31f 59.35e 245.06f 83.21e 30.59e 175.72e
CK 245.80b 76.26a 310.73b 113.20b 36.56ab 214.35b
灌溉 Irrigation ** ** ** ** ** **
施肥 Fertilization ** ** ** ** * **
灌溉×施肥 Irrigation×Fertilization ns ns ns ns ns ns

Table 5

Correlation of chlorophyll content and stomatal conductance with net photosynthetic and transpiration rate of greenhouse tomato"

指标
Index
叶绿素含量 Chl 气孔导度 Gs
52 d 65 d 90 d 118 d 52 d 65 d 90 d 118 d
净光合速率 Pn 0.890** 0.881** 0.921** 0.904** 0.939** 0.855** 0.958** 0.992**
蒸腾速率 Tr 0.504 0.956** 0.917** 0.915** 0.515 0.986** 0.951** 0.986**
气孔导度 Gs 0.880** 0.919** 0.981** 0.910**

Table 6

Correlation of chlorophyll content and net photosynthetic with leaf nutrient content of greenhouse tomato"

指标
Index
N P K
52 d 65 d 90 d 118 d 52 d 65 d 90 d 118 d 52 d 65 d 90 d 118 d
叶绿素含量 Chl 0.921** 0.683* 0.917** 0.879** 0.781** 0.832** 0.807** 0.742* 0.840** 0.773** 0.828** 0.835**
净光合速率 Pn 0.773** 0.716* 0.955** 0.776** 0.820** 0.813** 0.828** 0.473 0.886** 0.820** 0.861** 0.782**

Table 7

Regression relationship of chlorophyll content and net photosynthetic with leaf nutrient content of greenhouse tomato"

指标
Index
定植后天数
Days after transplanting (d)
回归方程
Regression equation
决定系数
Determination coefficient (R2)
显著性
Significance (P)
叶绿素含量
Chl
52d Y1=-0.843+0.0453XN-0.142XP+0.058XK 0.973 <0.001
65d Y1=-0.489-0.017XN+0.401XP+0.025XK 0.730 0.038
90d Y1=-0.270+0.049XN+0.024XP+0.034XK 0.906 0.002
118d Y1=1.502+0.011XN-0.026XP+0.029XK 0.867 0.005
净光合速率
Pn
52d Y2=-25.158+0.361XN-0.645XP+1.124XK 0.839 0.009
65d Y2=-31.593-0.056XN+4.446XP+0.921XK 0.727 0.039
90d Y2=-15.121+0.832XN+1.452XP-0.158XK 0.927 0.001
118d Y2=-3.789+0.537XN-3.864XP+0.887XK 0.867 0.005

Table 8

Correlation of plant and fruit nutrient accumulation amount with net photosynthetic and yield of greenhouse tomato"

指标
Index
植株养分累积量 Plant nutrient accumulation amount (kg?hm-2) 果实养分累积量Fruit nutrient accumulation amount (kg?hm-2)
N P K N P K
净光合速率 Pn 0.913** 0.894** 0.869** 0.874** 0.912** 0.809**
产量 Yield 0.892** 0.894** 0.860** 0.838** 0.844** 0.792**

Table 9

Regression relationship of yield with plant and fruit nutrient accumulation amount of greenhouse tomato"

指标 Index 回归方程 Regression equation 决定系数Determination coefficient (R2) 显著性Significance (P)
产量 Yield Y=36.354+0.238XN1+0.658XP1-0.142XK1 0.831 0.009
Y=23.798+0.320XN2+1.387XP2-0.057XK2 0.738 0.035
[1] POORTER H, NIINEMETS Ü, POORTER L, WRIGHT I J, VILLAR R . Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist, 2009,182(3):565-588.
doi: 10.1111/nph.2009.182.issue-3
[2] HIKOSAKA K . Interspecific difference in the photosynthesis-nitrogen relationship: Patterns, physiological causes, and ecological importance. Journal of Plant Research, 2004,117(6):481-494.
doi: 10.1007/s10265-004-0174-2
[3] 韦泽秀, 梁银丽, 周茂娟, 黄茂林, 贺丽娜, 高静, 吴燕 . 水肥组合对日光温室黄瓜叶片生长和产量的影响. 农业工程学报, 2010,26(3):69-74.
WEI Z X, LIANG Y L, ZHOU M J, HUANG M L, HE L N, GAO J, WU Y . Physiological characteristics of leaf growth and yield of cucumber under different watering and fertilizer coupling treatments in greenhouse. Transactions of the CSAE, 2010,26(3):69-74. (in Chinese)
[4] MUKHERJEE A, KUNDU M, SARKAR S . Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.). Agricultural Water Management, 2010,98(1):182-189.
[5] 裴芸, 别之龙 . 塑料大棚中不同灌水量下限对生菜生长和生理特性的影响. 农业工程学报, 2008,24(9):207-211.
PEI Y, BIE Z L . Effects of different irrigation minima on the growth and physiological characteristics of lettuce under plastic greenhouse. Transactions of the CSAE, 2008,24(9):207-211. (in Chinese)
[6] LUO Z, LIU H, LI W P, ZHAO Q, DAI J L, TIAN L W, DONG H Z . Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018,218:150-157.
[7] VERMA V, FOULKES M J, WORLAND A J, SYLVESTER- BRADLEY R, CALIGARI P D S, SNAPE J W . Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004,135(3):255-263.
doi: 10.1023/B:EUPH.0000013255.31618.14
[8] SHI J C, YASUOR H, YERMIYAHU U, ZUO Q, BEN-GAL A . Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles. Agricultural Water Management, 2014,146:163-172.
doi: 10.1016/j.agwat.2014.08.006
[9] LI D D, TIAN M Y, CAI J A, JIANG D, CAO W X, DAI T B . Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 2013,70(3):257-263.
doi: 10.1007/s10725-013-9797-4
[10] 李建明, 王平, 李江 . 灌溉量对亚低温下温室番茄生理生化与品质的影响. 农业工程学报, 2010,26(2):129-134.
LI J M, WANG P, LI J . Effect of irrigation amount on physiology, biochemistry and fruit quality of greenhouse tomato under sub-low temperatures. Transactions of the CSAE, 2010,26(2):129-134. (in Chinese)
[11] MATHOBO R, MARAIS D, STEYN J M . The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 2017,180:118-125.
[12] 刘瑞显, 王友华, 陈兵林, 郭文琦, 周治国 . 花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响. 作物学报, 2008,34(4):675-683.
doi: 10.3724/SP.J.1006.2008.00675
LIU R X, WANG Y H, CHEN B L, GUO W Q, ZHOU Z G . Effects of nitrogen levels on photosynthesis and chlorophyll fluorescence characteristics under drought stress in cotton flowering and boll-forming stage. Acta Agronomica Sinica, 2008,34(4):675-683. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00675
[13] RICHARDS R A . Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management, 2006,80(1):197-211.
doi: 10.1016/j.agwat.2005.07.013
[14] 陈凯利, 李建明, 贺会强, 胡晓辉, 姚勇哲, 孙三杰 . 水分对番茄不同叶龄叶片光合作用的影响. 生态学报, 2013,33(16):4919-4929.
doi: 10.5846/stxb201205170736
CHEN K L, LI J M, HE H Q, HU X H, YAO Y Z, SUN S J . Effects of water on photosynthesis in different age of tomato leaves. Acta Ecologica Sinica, 2013,33(16):4919-4929. (in Chinese)
doi: 10.5846/stxb201205170736
[15] FANG X M, LI Y S, NIE J, WANG C, HUANG K H, ZHANG Y K, ZHANG Y L, SHE H Z, LIU X B, RUAN R W . Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 2018,219:160-168.
[16] 袁宇霞, 张富仓, 张燕, 索岩松 . 滴灌施肥灌水下限和施肥量对温室番茄生长、产量和生理特性的影响. 干旱地区农业研究, 2013,31(1):76-83.
YUAN Y X, ZHANG F C, ZHANG Y, SUO Y S . Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse. Agricultural Research in the Arid Areas, 2013,31(1):76-83. (in Chinese)
[17] 倪纪恒, 罗卫红, 李永秀, 戴剑锋, 金亮, 徐国彬, 陈永山, 陈春宏, 卜崇兴, 徐刚 . 温室番茄叶面积与干物质生产的模拟. 中国农业科学, 2005,38(8):1629-1635.
NI J H, LUO W H, LI Y X, DAI J F, JIN L, XU G B, CHEN Y S, CHEN C H, BU C X, XU G . Simulation of leaf area and dry matter production in greenhouse tomato. Scientia Agricultura Sinica, 2005,38(8):1629-1635. (in Chinese)
[18] 张富仓, 高月, 焦婉如, 胡文慧 . 水肥供应对榆林沙土马铃薯生长和水肥利用效率的影响. 农业机械学报, 2017,48(3):270-278.
ZHANG F C, GAO Y, JIAO W R, HU W H . Effect of water and fertilizer supply on growth, water and nutrient use efficiencies of potato in sandy soil of Yulin area. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3):270-278. (in Chinese)
[19] HUSSAIN M, FAROOQ S, HASAN W, UL-ALLAHD S, TANVEER M, FAROOQ M, NAWAZ A . Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management, 2018,201:152-166.
doi: 10.1016/j.agwat.2018.01.028
[20] HUSSAIN R A, AHMAD R, NAWAZ F, ASHRAF M Y, WARAICH E A . Foliar NK application mitigates drought effects in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum, 2016,38(4):83.
[21] PINKERTON A, SIMPSON J R . Interactions of surface drying and subsurface nutrients affecting plant growth on acidic soil profiles from an old pasture. Australian Journal of Experimental Agriculture, 1986,26(6):681-689.
doi: 10.1071/EA9860681
[22] 惠红霞, 许兴, 李前荣 . 外源甜菜碱对盐胁迫下枸杞光合功能的改善. 西北植物学报, 2003,23(12):2137-2422.
HUI H X, XU X, LI Q R . Exogenous betaine improves photosynthesis of Lycium barbarum under salt stress. Acta Botanica Boreali- Occidentalia Sinica, 2003,23(12):2137-2422. (in Chinese)
[23] 韩瑞宏, 卢欣石, 高桂娟, 杨秀娟 . 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007,27(12):5229-5237.
HAN R H, LU X S, GAO G J, YANG X J . Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecologica Sinica, 2007,27(12):5229-5237. (in Chinese)
[24] HOSSEINZADEH S R, AMIRI H, ISMAILI A . Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture, 2018,17(11):2426-2437.
[25] GU J F, ZHOU Z X, LI Z K, CHEN Y, WANG Z Q, ZHANG H . Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Research, 2017,200:58-70.
[26] 杜清洁, 代侃韧, 李建明, 刘国英, 潘铜华, 常毅博 . 亚低温与干旱胁迫对番茄叶片光合及荧光动力学特性的影响. 应用生态学报, 2015,26(6):1687-1694.
DU Q J, DAI K R, LI J M, LIU G Y, PAN T H, CHANG Y B . Effects of sub-low temperature and drought stress on characteristics of photosynthetic and fluorescence kinetics in tomato leaves. Chinese Journal of Applied Ecology, 2015,26(6):1687-1694. (in Chinese)
[27] EVANS J R, TERASHIMA I . Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Functional Plant Biology, 1987,14(1):59-68.
doi: 10.1071/PP9870059
[28] POORTER H, EVANS J R . Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 1998,116(1/2):26-37.
doi: 10.1007/s004420050560
[29] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛 . 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014,30(10):82-90.
LI J M, PAN T H, WANG L H, DU Q J, CHANG Y B, ZHANG D L, LIU Y . Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Transactions of the CSAE, 2014,30(10):82-90. (in Chinese)
[30] ZENG W Z, XU C, WU J W, HUANG J S, ZHAO Q, WU M S . Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus L.). Pedosphere, 2014,24(5):635-644.
[31] LI X J, KANG S Z, ZHANG X T, LI F S, LU H N . Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2. Agricultural Water Management, 2018,195(1):71-83.
doi: 10.1016/j.agwat.2017.09.017
[32] FLEXAS J, BOTA J, LORETO F, CORNIC G, SHARKEY T D . Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biology, 2004,6(3):269-279.
doi: 10.1055/s-2004-820867
[33] SANTOS C V . Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 2004,103(1):93-99.
doi: 10.1016/j.scienta.2004.04.009
[34] WRIGHT I J, REICH P B, WESTOBY M, ACKERLY D D, BARUCH Z, BONGERS F, CAVENDER-BARES J, CHAPIN T, CORNELISSEN J H C, DIEMER M . The worldwide leaf economics spectrum. Nature, 2004,428(6985):821-827.
doi: 10.1038/nature02403
[35] HU W, JIANG N, YANG J S, MENG Y L, WANG Y H, CHEN B L, ZHAO W Q, OOSTERHUIS D M, ZHOU Z G . Potassium (K) supply affects K accumulation and photosynthetic physiology in two cotton (Gossypium hirsutum L.) cultivars with different K sensitivities. Field Crops Research, 2016,196:51-63.
[36] HERBERT D A, FOWNES J H . Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry, 1995,29(3):223-235.
doi: 10.1007/BF02186049
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[11] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!