Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1574-1586.doi: 10.3864/j.issn.0578-1752.2019.09.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Functional Analysis of Burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing, Antifungal and Growth-Promoting Activity of Maize

GONG AnDong,ZHU ZiYu,LU YaNan,WAN HaiYan,WU NanNan,Cheelo Dimuna,GONG ShuangJun,WEN ShuTing,HOU Xiao   

  1. College of Life Science, Xinyang Normal University/Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, Henan
  • Received:2018-10-30 Accepted:2019-01-15 Online:2019-05-01 Published:2019-05-16

Abstract:

【Objective】 The study was carried out to screen microbe with phosphate solubilizing (P-solubilizing) and antagonistic activity, to evaluate their efficacies for P-solubilizing, fungal inhibition and plant growth promoting, and to identify antifungal compounds, so as to provide new resources for the development of microbial fertilizers. 【Method】 Rhizosphere soil samples of tea trees were collected from Cheyun mountain factory in Xinyang, Henan, China. Each sample was diluted, and spread onto the surface of insoluble organic and inorganic media. The diameter of P-solubilizing zone was measured after 5 days of incubation. The strain WY6-5 was chosen for further studies because it showed the highest P-solubilizing activity on insoluble phosphate. Additionally, the strain WY6-5 was inoculated in liquid medium and soil for 20 days to test P-solubilizing activity, and inoculated in maize grown soil to test plant growth promoting effects. Moreover, strain WY6-5 was co-cultured with eight different fungi to determine antagonistic activity by using a two dish face-to-face cultural method. The volatiles were characterized and identified with gas chromatography-tandem mass spectrometry (GC-MS/MS). 【Result】 Three strains with P-solubilizing activity were isolated from rhizosphere soils of tea trees, and which were capable of dissolving insoluble organic and inorganic phosphorus medium. The strain WY6-5 demonstrated the highest P-solubilizing activity with the solubilizing halo up to 2.3 cm on insoluble organic medium, and 3.6 cm on insoluble and inorganic phosphorus medium. The ratios of the P-solubilizing halo diameter to the colony diameter on both media were 4.6 and 7.2, respectively. Based on morphological characteristics, physiological, biochemical and phylogenetic analyses, the strain WY6-5 was identified to be Burkholderia pyrrocinia. P-solubilizing activity of WY6-5 was also observed in the liquid medium or in soil after 20 days of incubation. The concentration of soluble phosphate in liquid medium was up to 520.4 mg·L -1, which was 176 times higher than that in control treatment. During 3-20 d, the phosphate concentrations in soil under WY6-5 treatments were constantly higher than that under control treatment. In addition, the strain WY6-5 significantly promoted the growth of maize seedling in terms of the number, length, width and area of leaf as well as plant height and fresh weight. Moreover, the volatile compounds produced from the WY6-5 inhibited the growth of all eight different fungi, with the mycelium inhibition rate up to 100%. The antifungal volatile was subsequently identified as dimethyl disulfide through GC-MS/MS. 【Conclusion】 The Burkholderia pyrrocinia strain WY6-5 isolated from rhizosphere soils of a tea tree was found to be able to dissolve insoluble phosphate in both liquid medium and soil, to promote the growth of maize seedlings, and to produce volatile dimethyl disulfide with broad antifungal activity, implying an important biological functions.

Key words: phosphate solubilizing, volatile antifungal activity, Burkholderia pyrrocinia, dimethyl disulfide, microbial fertilizer, maize

Fig. 1

P-solubilizing activity of strain WY6-5 in the medium containing insoluble organic/inorganic phosphorus"

Fig. 2

Phylogenetic tree analysis of strain WY6-5 and other homologous strains based on 16S rRNA sequences"

Table 1

Biochemical analysis of strain WY6-5"

试验内容
Experiments
WY6-5 B. cepacia / pyrrocinia* 试验内容
Experiments
WY6-5 B. cepacia/ pyrrocinia*
碳/氮源利用 Carbon /Nitrogen utilization 盐耐受性 Salt tolerance
α-D-葡糖Alpha-D-glucose ++ + 1% NaCl ++ ++
D-山梨醇 D-sorbitol + + 4% NaCl - -
D-半乳糖醛酸 D-Galacturonic Acid ++ ++ 8% NaCl - -
吐温40 Tween 40 + + pH耐受性 pH tolerance
糊精 Dextrin + - pH 5 + ++
D-果糖 D-Fructose ++ ++ pH 6 ++ ++
L-丙氨酸L-Alanine + ++ 抗生素敏感性 Antibiotics sensitivity
乙酸 Acetic Acid + ++ 万古霉素 Vancomycin ++ ++
奎宁酸Quinic Acid ++ ++ 林肯霉素 Lincomycin ++ ++
D-天冬氨酸 D-Aspartic Acid ++ ++ 利福霉素SV Rifamycin SV ++ ++
L-丝氨酸 L-Serine + + 二甲胺四环素 Minocycline + ++
D-甘露醇 D-Mannitol ++ + 化学敏感性测试Chemical sensitivity
L-苹果酸 L-Malic Acid ++ ++ 盐酸胍 Guanidine HCl + +
L-焦谷氨酸 L-Pyroglutamic Acid + ++ 四唑蓝 Tetrazolium blue ++ ++
D-葡糖酸 D-Gluconic Acid ++ ++ 四唑紫 Tetrazolium purple ++ ++
D-阿拉伯醇 D-Arabitol + + 硫酸四癸钠 Niaproof 4 + ++
L-丝氨酸 L-Serine + + 1%乳酸钠 1% Sodium Lactate ++ ++

Fig. 3

P-solubilizing activity of the strain WY 6-5 in water and soil A: P-solubilizing activity of WY6-5 under liquid condition;B: P-solubilizing activity of WY6-5 in soil. *Means significant difference at P<0.05 level compared to control treatment, respectively"

Fig. 4

Effect of strain WY6-5 on the growth of maize seedlings"

Table 2

Effect of strain WY6-5 on the growth of maize seedling"

生长指标Growth index 对照组Control group 处理组WY6-5
叶长Leaf length (cm) 26.56±0.70 32.31*±0.95
叶宽Leaf width (cm) 2.41±0.08 2.92*±0.11
单叶叶面积Area of single leaf (cm2) 48.29±2.61 71.37*±4.45
单株叶片数Number of leaves per plant 8.33±0.14 9.00*±0.17
茎粗Stem diameter (cm) 0.58±0.02 0.72*±0.03
株高Plant height (cm) 30.20±0.45 34.12*±1.21
单株鲜重Fresh weigh of single plant (g) 5.73±0.02 7.07*±0.09
地上部干重 Dry weight of overground tissues (g/plant) 1.22±0.03 1.83*±0.08
地下部干重Dry weight of underground root (g/plant) 0.31±0.02 0.36±0.03

Fig. 5

Inhibitory effect of strain WY6-5 against the growth of different fungal pathogens The fungal strains used in the tests include Fusarium graminearum (Fg), Colletotrichum graminicola (Cg), Alternaria alternata (An), Magnaporthe oryzae (Mo), Aspergillus fumigatus (Afu), Aspergillus flavus (Afl), Aspergillus niger (An) and Botrytis cinerea (Bc)"

Fig. 6

Identification of volatiles from strain WY6-5 through GC-MS/MS The outside figure is the chromatogram of volatiles from WY6-5; The inter centroid is the MS spectrum of DMDS by EI-source"

[1] 李东坡, 武志杰 . 化学肥料的土壤生态环境效应. 应用生态学报, 2008,19(5):1158-1165.
LI D P, WU Z J . Impact of chemical fertilizers application on soil ecological environment. Chinese Journal of Applied Ecology, 2008,19(5):1158-1165. (in Chinese)
[2] 宋以玲, 于建, 陈士更, 肖承泽, 李玉环, 苏秀荣, 丁方军 . 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响. 水土保持学报, 2018,32(1):352-360.
SONG Y L, YU J, CHEN S G, XIAO C Z, LI Y H, SU X R, DING F J . Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil. Journal of Soil and Water Conservation, 2018,32(1):352-360. (in Chinese)
[3] 邢旭明, 王红梅, 安婷婷, 李双异, 裴久渤, 梁文举, 汪景宽 . 长期施肥对棕壤团聚体组成及其主要养分赋存的影响. 水土保持学报, 2015,29(2):267-273.
XING X M, WANG H M, AN T T, LI S Y, PEI J B, LIANG W J, WANG J K . Effects of long-term fertilization on distribution of aggregate size and main nutrient accumulation in brown earth. Journal of Soil and Water Conservation, 2015,29(2):267-273. (in Chinese)
[4] 魏后凯 . 化肥农药使用减量行动计划亟须加快推进. 中国人大, 2018(9):46.
WEI H K . Action plans for reducing fertilizer and pesticide use need to be accelerated.The People’s Congress of China, 2018(9):46. (in Chinese)
[5] 宫安东, 韩萌真, 孔宪巍, 魏彦博, 王磊, 程琳 . 茶树内生菌的应用性研究进展. 信阳师范学院学报(自然科学版), 2017,30(1):168-172. (in Chinese)
GONG A D, HAN M Z, KONG X W, WEI Y B, WANG L, CHENG L . Application analysis of endophytic microbes in Camellia sinensis. Journal of Xinyang Normal University (Natural Science Edition), 2017,30(1):168-172. (in Chinese)
[6] 张明艳, 张继光, 申国明, 张忠锋, 蔡宪杰, 薛林 . 烟田土壤微生物群落结构及功能微生物的研究现状与展望. 中国农业科技导报, 2014,16(5):115-122.
ZHANG M Y, ZHANG J G, SHEN G M, ZHANG Z F, CAI X J, XUE L . Present research status and prospects of microbial communities structure and functional microorganisms in tobacco-planting soil. Journal of Agricultural Science and Technology, 2014,16(5):115-122. (in Chinese)
[7] 史国英, 莫燕梅, 岑贞陆, 曾泉, 余功明, 杨丽涛, 胡春锦 . 一株高效解无机磷细菌BS06的鉴定及其解磷能力分析. 微生物学通报, 2015,42(7):1271-1278.
doi: 10.13344/j.microbiol.china.140721
SHI G Y, MO Y M, CEN Z L, ZENG Q, YU G M, YANG L T, HU C J . Identification of an inorganic phosphorus-dissolving bacterial strain BS06 and analysis on its phosphate solubilization ability. Microbiology China, 2015,42(7):1271-1278. (in Chinese)
doi: 10.13344/j.microbiol.china.140721
[8] 樊磊, 叶小梅, 何加骏, 张建英 . 解磷微生物对土壤磷素作用的研究进展. 江苏农业科学, 2008(5):261-263.
FAN L, YE X M, HE J J, ZHANG J Y . Research progress on the effect of phosphate-releasing microorganisms on soil phosphorus.Jiangsu Agricultural Sciences, 2008(5):261-263. (in Chinese)
[9] 鲁如坤, 时正元, 顾益初 . 土壤积累态磷研究Ⅱ.磷肥的表观积累利用率. 土壤, 1995(6):286-289.
LU R K, SHI Z Y, GU Y C . Study on soil phosphorus accumulationⅡ. Apparent accumulation and utilization rate of phosphate fertilizer.Soils, 1995(6):286-289. (in Chinese)
[10] 杨珏, 阮晓红 . 土壤磷素循环及其对土壤磷流失的影响. 土壤与环境, 2001,10(3):256-258.
YANG Y, RUAN X H . Soil circulation of phosphosrus and its effects on the soil loss of phosphorus. Soil and Environmental Sciences, 2001,10(3):256-258. (in Chinese)
[11] 林启美, 赵小蓉, 孙焱鑫, 姚军 . 四种不同生态系统的土壤解磷细菌的数量及种群分布. 土壤与环境, 2000,9(1):34-37.
LIN Q M, ZHAO X R, SUN Y X, YAO J . Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Sciences, 2000,9(1):34-37. (in Chinese)
[12] ZAIDI A, KHAN M S, AMIL M . Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea ( Cicer arietinum L.). European Journal of Agronomy, 2003,19(1):15-21.
[13] 曾广勤, 刘荣昌, 张爱民, 李风汀 . 磷细菌剂在小麦上应用研究. 河北省科学院学报, 1997(3):26-29, 34.
ZENG G Q, LIU R C, ZHANG A M, LI F T . Application of phosphorous bacteria in wheat.Journal of the Hebei Academy of Sciences, 1997(3):26-29, 34. (in Chinese)
[14] 郝晶, 洪坚平, 刘冰, 张健, 李楠 . 不同解磷菌群对豌豆生长和产量影响的研究. 作物杂志, 2006(1):73-76.
HAO J, HONG J P, LIU B, ZHANG J, LI N . Effect of different phosphate-solubilizing microorganisms on grow and yield of field-grown pea.Crops, 2006(1):73-76. (in Chinese)
[15] 张炳火, 李汉全, 罗娟艳, 杨建远, 石红璆, 孙凤珍 . 放线菌JXJ-0136对白菜和豇豆生长的影响及其解磷作用. 中国农业科学, 2016,49(16):3152-3161.
ZHANG B H, LI H Q, LUO J Y, YANG J Y, SHI H Q, SUN F Z . Influences of actinomycete strain JXJ-0136 on the growth of Brassica chinensis and Vigna unguiculata and its phosphate solubilization. Scientia Agricultura Sinica, 2016,49(16):3152-3161. (in Chinese)
[16] DA SILVA CEROZI B, FITZSIMMONS K . Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Scientia Horticulturae, 2016,211:277-282.
[17] GILES C D, HSU P C, RICHARDSON A E, HURST M R H, HILL J E . Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp. Soil Biology & Biochemistry, 2014,68:263-269.
[18] LUDUENA L M, ANZUAY M S, MAGALLANES-NOGUERA C, TONELLI M L, IBANEZ F J, ANGELINI J G, FABRA A, MCINTOSH M, TAURIAN T . Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp.S119. Research in Microbiology, 2017,168(8):710-721.
[19] 陈鑫鑫, 罗奕璇, 唐皓, 李有志, 樊宪伟 . Enterobacter sp.NG-33菌株对玉米根系及植株中氮磷钾含量的影响. 基因组学与应用生物学, 2017,36(8):3273-3277.
CHEN X X, LUO Y X, TANG H, LI Y Z, FAN X W . Effect of Enterobacter sp. NG-33 strain on root and the nitrogen, phosphorus and potassium content in plant of maize. Genomics and Applied Biology, 2017,36(8):3273-3277. (in Chinese)
[20] YANG L, LIU Y Q, CAO X Y, ZHOU Z J, WANG S Y, XIAO J, SONG C L, ZHOU Y Y . Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria. Microbiological Research. 2017,205:59-65.
[21] 刘云华, 吴毅歆, 杨绍聪, 何鹏飞, 何月秋 . 洋葱伯克霍尔德溶磷菌的筛选和溶磷培养条件优化. 华南农业大学学报, 2015,36(3):78-82.
LIU Y H, WU Y X, YANG S C, HE P F, HE Y Q . Screening of phosphorus-solubilizing strain Burkholderia cenocepacia and optimizing of phosphate-dissolving culture condition. Journal of South China Agricultural University, 2015,36(3):78-82. (in Chinese)
[22] GONG A D, LI H P, YUAN Q S, SONG X S, YAO W, HE W J, ZHANG J B, LIAO Y C . Antagonistic mechanism of Iturin A and Plipastatin A from bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE, 2014,10(2):e0116871.
[23] 吴淑平, 吕立哲, 金开美, 赵丰华, 郑杰, 赵海力 . 信阳市茶叶主产区茶园土壤养分状况研究. 山东农业科学, 2014,46(10):11-80.
WU S P, LV L Z, JIN K M, ZHAO F H, ZHENG J, ZHAO H L . Study on soil nutrient status of tea plantations in main producing areas in Xinyang City. Shandong Agricultural Sciences, 2014,46(10):11-80. (in Chinese)
[24] 谢修鸿, 王晓红, 梁运江, 王吉, 江湃 . 三种土壤有效磷测定方法相关性的研究. 吉林农业科学, 2015,40(3):30-32.
XIE X H, WANG X H, LIANG Y J, WANG J, JIANG P . Research on correlation of three analytic methods of soil available phosphorus. Journal of Jilin Agricultural Sciences, 2015,40(3):30-32. (in Chinese)
[25] 宫安东 . 镰刀菌和黄曲霉菌生防菌的分离及拮抗机理的研究[D]. 武汉: 华中农业大学, 2015.
GONG A D . Isolation and antagonistic mechanism analyses of biocontrol agents against fusarium and aspergillus species[D]. Wuhan: Huazhong Agricultural University, 2015. ( in Chinese)
[26] GONG A D, LI H P, SHEN L, ZHANG J B, WU A B, HE W J, YUAN Q S, HE J D, LIAO Y C . The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Frontiers in Microbiology, 2015,6:1091.
[27] TAYEB L A, LEFEVRE M, PASSET V, DIANCOURT L, BRISSE S, GRIMONT P A D . Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. Research in Microbiology, 2008,159:169-177.
[28] 鲍朋, 许章峰 . 巨大芽孢杆菌在生物肥料上的研究现状与发展方向. 农技服务, 2013,30(6):601-602.
BAO P, XU Z F . Research status and development trend of giant bacillus on biological fertilizer. Agricultural extension service, 2013,30(6):601-602. (in Chinese)
[29] AHUJA A, GHOSH S B, D’SOUZA S F . Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization. Bioresource Technology, 2007,98(17):3408-3411.
doi: 10.1016/j.biortech.2006.10.041
[30] 张云霞, 雷鹏, 许宗奇, 冯小海, 徐虹, 许仙菊 . 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响. 江苏农业学报, 2016,32(5):1073-1080.
ZHANG Y X, LEI P, XU Z Q, FENG X H, XU H, XU X J . Screening of a high-efficiency phosphate solubilizing bacterium Bacillus subtilis JT-1 and its effects on soil microecology and wheat growth. Jiangsu Journal of Agricultural Sciences, 2016,32(5):1073-1080. (in Chinese)
[31] 余贤美, 王义, 沈奇宾, 李炳龙, 贺春萍, 郑服丛 . 解磷细菌PSB3的筛选及拮抗作用的研究. 微生物学通报, 2008,35(9):1398-1403.
YU X M, WANG Y, SHEN Q B, LI B L, HE C P, ZHENG F C . The screening of phosphorus solubilizing Bacteria PSB3 and the study of its antagonism. Microbiology, 2008,35(9):1398-1403. (in Chinese)
[32] 戴沈艳, 申卫收, 贺云举, 陈雯雯, 钟文辉 . 一株高效解磷细菌的筛选及其在红壤性水稻土中的施用效果. 应用与环境生物学报, 2011,17(5):678-683.
DAI S Y, SHEN W S, HE Y J, CHEN W W, ZHONG W H . Screening of efficient phosphate-solubilizing bacterial strain and its application in red paddy soil to rice cultivation. Chinese Journal of Applied & Environmental Biology, 2011,17(5):678-683. (in Chinese)
[33] 张爱民 . 解磷解钾特异菌株 CX-7 的筛选及其应用试验研究[D]. 河北: 河北农业大学, 2014.
ZHANG A M . Screening of the specific solubilizin phosphate and poassium CX-7 strain and research on its applying experiment[D]. Hebei: Hebei Agricultural University, 2014. ( in Chinese)
[34] 王琰 . 解磷芽孢杆菌的筛选鉴定及其对玉米促生机理的研究[D]. 广州: 华南农业大学, 2016.
WANG Y . Study on isolation of Phosphate-solubilizing Bacillus and their impact of growth-promoting for maize[D]. Guangzhou: South China Agricultural University, 2016. ( in Chinese)
[35] 施俊凤, 孙常青, 张婧婷 . 采前喷施洋葱伯克霍尔德菌Burkholderia contaminans对草莓采后腐烂和品质的影响. 植物保护学报, 2018,45(2):382-388.
SHI J F, SUN C Q, ZHANG J T . Effects of preharvest spraying of Burkholderia contaminans on postharvest decay and quality of strawberry. Journal of Plant Protection, 2018,45(2):382-388. (in Chinese)
[36] 叶建仁, 任嘉红, 李浩, 吴小芹 . 洋葱伯克霍尔德氏菌及其在林木病害防治中的应用. 南京林业大学学报(自然科学版), 2013,37(4):149-155.
YE J R, REN J H, LI H, WU X Q . Application and its prospect analysis for Burkholderia cepacia in forest disease control. Journal of Nanjing Forestry University( Natural Sciences Edition) , 2013,37(4):149-155. (in Chinese)
[37] ZHAO K, PENTTINEN P, ZHANG X P, AO X L, LIU M K, YU X M, CHEN Q . Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 2013,7:3.
[38] LEMTUKEI D, TAMURA T, NGUYEN Q T, UENO M . Inhibitory activity of Burkholderia sp. isolated from soil in Gotsu City, Shimane, against Magnaporthe oryzae. Advances in Microbiology, 2017,7:137-148.
[39] BACH E, SEGER G D D S, FEMANDES G D C, LISBOA B B, PASSAGLIA L M P . Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 2016,99:141-149.
doi: 10.1016/j.apsoil.2015.11.002
[40] ROJAS-ROJAS F U, SALAZAR-GÓMEZ A, VARGAS-DÍAZ M E, VÁSQUEZ-MURRIETA M S, HIRSCH A M, DE MOT R, GHEQUIRE M G K, IBARRA J A, ESTRADA-DE LOS SANTOS P . Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology, 2018,164(9):377.
[41] 张清霞, 何玲玲, 单海焕, 童蕴慧, 陈夕军, 纪兆林, 刘凤权 . 桃褐腐病生防细菌FD6硝吡咯菌素合成基因簇的克隆及prnA功能分析. 园艺学报, 2016,43(8):1473-1481.
doi: 10.16420/j.issn.0513-353x.2016-0047
ZHANG Q X, HE L L, SHAN H H, TONG Y H, CHEN X J, JI Z L, LIU F Q . Cloning of pyrrolnitrin synthetic gene cluster prn and prnA functional analysis from Antagnistic Bacteria FD6 against peach brown rot. Acta Horticulturae Sinica, 2016,43(8):1473-1481. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0047
[42] 周莲, 蒋海霞, 金凯明, 孙爽, 张薇, 张雪洪, 何亚文 . 高产申嗪霉素和吩嗪-1-酰胺的水稻根际铜绿假单胞菌PA1201分离、鉴定与应用潜力. 微生物学报, 2015,55(4):401-411.
ZHOU L, JIANG H X, JIN K M, SUN S, ZHANG W, ZHANG X H, HE Y W . Isolation, identification and characterization of rice rhizobacterium Pseudomonas aeruginosa PA1201 producing high level of biopesticide “Shenqinmycin” and phenazine-1-carboxamide. Acta Microbiologica Sinica, 2015,55(4):401-411. (in Chinese)
[43] 赵惠 . 杀线虫活性生防细菌筛选鉴定及脂肽的初步分离[D]. 沈阳: 沈阳农业大学, 2018.
ZHAO H . Screening and identification of nematicidal bacteria and preliminary separation of lipopeptide[D]. Shenyang: Shenyang Agricultural University, 2018. ( in Chinese)
[44] HUANG C J, TSAY J F, CHANG S Y, YANG H P, WU W S, CHEN C Y . Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Management Science, 2012,68(9):1306-1310.
[45] BRIARD B, HEDDERGOTT C, LATGE J P . Volatile compounds emitted bypseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio, 2016,7(2):e00219-16.
[46] KAI M, PIECHULLA B . Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens. Plant Signaling & Behavior, 2010,231(4):444-446.
[47] WANG D, ROSEN C, KINKEL L, CAO A, THARAYIL N, GERIK J . Production of methyl sulfide and dimethyl disulfide from soil- incorporated plant materials and implications for controlling soilborne pathogens. Plant and Soil, 2009,324(1/2):185-197.
doi: 10.1007/s11104-009-9943-y
[48] SÉBASTIEN D, ERIC T, AHMED A G, JACQUES H . How a specialist and a non‐specialist insect cope with dimethyl disulfide produced by Allium porrum. Entomologia Experimentalis et Applicata, 2004,113(3):173-179.
[49] PAPAZLATANI C, ROUSIDOU C, KATSOULA A, KOLYVAS M, GENITSARIS S, PAPADOPOULOU K K, KARPOUZAS D G . Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils. European Journal of Plant Pathology, 2016,146(2):391-400.
doi: 10.1007/s10658-016-0926-6
[50] PIECHULLA B, LEMFACK M C, KAI M . Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell & Environment, 2017,40(10):2042-2067.
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!