Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1020-1033.doi: 10.3864/j.issn.0578-1752.2018.06.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Silique Density on Racemes and Its Component Traits in Brassica napus L.

REN YiYing, CUI Cui, WANG Qian, TANG ZhangLin, XU XinFu, LIN Na, YIN JiaMing, LI JiaNa, ZHOU QingYuan   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2017-09-13 Online:2018-03-16 Published:2018-03-16

Abstract: 【Objective】 High yield of rapeseed (Brassica napus) has been regarded as one of the main research goals for breeders. Silique density, the number of valid siliques on racemes as well as them related traits, which are the main character to test yield level of rapeseed, have significant or extremely significant positive correlation with the yield. These results are helpful to further elucidate the genetic and molecular mechanisms of the siliques density and related traits of rapeseed. 【Method】 In this study, a natural populations contained 213 rapeseed cultivars (lines) with different genetic backgrounds were used to study genotyping via the Brassica 60 K Illumina Infinium SNP array. Valid length on racemes and valid silique on racemes were investigated at the fruit ripening stage in 2015 and 2016, respectively, at same time silique density on racemes was calculated. Furthermore, relative kinship and linkage disequilibrium of chromosome were analyzed by Tassel 5.1.0 software, and the population structure was analyzed using Structure 2.3.4 software. Then, based on the optimal model, important candidate genes related to traits were predicted by the genome-wide correlation analysis (GWAS) of the silique density on racemes and its component traits were conducted, according to the sequence of LD regions of the associated SNP array. 【Result】Population structure analysis showed that 213 varieties were divided into P1 and P2 subgroups, in which the P1 contained 50 varieties of rapeseed (23.5%) and the P2 contained 163 varieties of rapeseed (76.5%), and it was consistent with the geo-cultivation of rapeseed. Meanwhile, the results of phylogenetic relationship indicated that about 89.74% materials had kinship value less than 0.2, of which about 59.91% materials had almost little genetic kinship. Thus, it can be concluded that there was a relatively distant kinship among materials in this natural group. In addition, a linkage disequilibrium analysis of A and C genomes revealed that r2 of A and C genomes decreased with increasing genetic distance, and the attenuation distance of A genome is smaller than that of C genome. Based on the two-year data analyzed by GWAS, 17 SNP were detected to be significant correlation with the siliques density on racemes and its component traits. Among them, 7 and 9 SNPs associated with silique density and valid length on racemes, each of them explained 11.343%-15.96% and 9.67%-13.097% of phenotypic variation, respectively. And 1 SNP site was related to valid silique on racemes, explaining the phenotypic variation of 11.56%. 22 candidate genes associated with silique density on racemes and its component traits were found via the LD interval of the significant SNPs and corresponding interval sequences of Brassica napus. Specifically, some genes including BnaA01g16940D, BnaC01g38800D and so on controlled silique density on racemes and its component traits by regulating the synthesis and signal transduction of endogenous hormones such as GA and IAA. And some genes, such as BnaA01g16970D, BnaA03g29180D and so on, were related to regulate meristems development of floral while other genes, BnaC09g18690D and BnaC09g09210D were involved in division and cell growth of floral. 【Conclusion】 In this study, 17 SNPs were detected associated with the siliques density on racemes, the valid length on racemes and the valid silique on racemes. Furthermore, 22 candidate genes related to the siliques density on racemes and its component traits were screened out.

Key words: Brassica napus, silique density on racemes, linkage disequilibrium, SNP, genome-wide association analysis

[1]    王红, 阮晓奇. 2004年菜籽油菜粕市场行情分析. 河南畜牧兽医, 2004, 25(5): 5-6.
WANG H, RUAN X Q. Market analysis of rapeseed oil and rape cake in 2004. Henan Journal of Husbandry and Veterinary Medicine, 2004, 25(5): 5-6. (in Chinese)
[2]    曾晓波, 吴谋成, 王海英. 丙酮浸提法制取菜籽浓缩蛋白. 中国粮油学报, 2001, 16(4): 10-13.
ZENG X B, WU M C, WANG H Y. Preparation of concentrated rapeseed protein by extraction with acetone. Chinese Cereals and Oils Association, 2001, 16(4): 10-13. (in Chinese)
[3]    SCHILTZ S, MUNIER-JOLAIN N, JEUDY C, BURSTIN J, SALON C. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiology, 2005, 137(4): 1463.
[4]    YANG P, SHU C, CHEN L, XU J, WU J, LIU K. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2012, 125(2): 285-296.
[5]    浦惠明, 龙卫华, 高建芹. 油菜全程机械化生产配套农艺技术研究:Ⅰ.不同播期和密度对直播油菜产量和经济性状的影响. 江苏农业科学, 2009(3): 48-51.
PU H M, LONG W H, GAO J Q. The research of complete mechanized production matching agronomic techniques in rapeseed: Ⅰ. different planting date and density on yield and economic characters of rape. Jiangsu Agricultural Sciences, 2009(3): 48-51. (in Chinese)
[6]    曾川, 刘成家, 徐洪志, 黄涌, 伊淑丽. 油菜株型育种研究进展]. 中国农学通报, 2014(12): 14-18.
ZNEG C, LIU C J, XU H Z, HUANG Y, YI S L. The research progress about plant type breeding of rape. Chinese Agricultural Science Bulletin, 2014(12): 14-18. (in Chinese)
[7]    安彩泰, 孙万泉, 李学才. 甘蓝型油菜数量性状的遗传研究: Ⅲ.六个农艺性状的遗传分析. 甘肃农大学报, 1988(4): 58-65.
AN C T, SUN W Q, LI X C. Genetic studies on quantitative characters in Brassica napus L.: Ⅲ.Genetic analysis of six agronomic characters. Journal of Gansu Agricultural University, 1988(4): 58-65. (in Chinese)
[8]    李栒, 官春云. 油菜主要性状遗传力和遗传相关的初步研究. 遗传, 1981, 3(3): 24-27.
LI X, GUAN C Y. The preliminary study on heritability and genetic correlation of major characters in Brassica napus. Hereditas(Beijing), 1981, 3(3): 24-27. (in Chinese)
[9]    江满霞, 高冰可, 卢列健, 张小元, 阳太羊. 13个油菜品种的农艺性状遗传力和相关性分析. 浙江农业科学, 2015, 56(4): 472-474.
JIANG M X, GAO B K, LU L J, ZHANG X Y, YANG T Y. Heritability and correlation analysis of agronomic characters in 13 Rape. Journal of Zhejiang Agricultural Sciences, 2015, 56(4): 472-474. (in Chinese)
[10]   余凤群, 金明源, 肖才升, 王蕾. 甘蓝型油菜DH群体几个数量性状的遗传分析. 中国农业科学, 1998, 31(3): 44-48.
YU F Q, JIN M Y, XIAO C S, WANG L. Genetics analysis of several quantitative traits of doubled haploid population in Brassica napus L.. Scientia Agricultura Sinica, 1998, 31(3): 44-48. (in Chinese)
[11]   张书芬, 宋文光, 任乐见, 田保明, 文雁成, 刘建民, 王建平. 甘蓝型双低油菜数量性状的遗传力及基因效应. 中国油料作物学报, 1996(3): 1-3.
ZHANG S F, SONG W G, REN L J, TIAN B M, WEN Y C, LIU J M, WANG J P. Heritability and gene effects of quantitative characters in"Double-Low" Rapeseed(Brassica napus L.).Oil Crops of China, 1996(3): 1-3. (in Chinese)
[12]   王瑞, 李加纳, 唐章林, 谌利, 张学昆. 甘蓝型黄籽油菜产量性状的遗传分析. 中国农学通报, 2004, 20(5): 37-38.
WANG R, LI J N, TANG Z L, SHEN L, ZHANG X K. Genetic analysis for yield characters in yellow-seeded rapessed lines(Brassica napus L.). Chinese Agricultural Science Bulletin, 2004, 20(5): 37-38. (in Chinese)
[13]   王俊生, 田建华, 张继澍, 李殿荣, 袁志发. 紧凑型油菜株型性状的遗传及其与主要产量性状的相关性研究. 西北农林科技大学学报(自然科学版), 2005, 33(6): 7-12.
WANG J S, TIAN J H, ZHANG J P, LI D R, YUAN Z F. Study on the heredity of plant-type traits in compact rapeseed lines and the genetic correlation with yield traits. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(6): 7-12. (in Chinese)
[14]   王会. 油菜重要性状的ADAA遗传模型分析及SNP标记预测杂种优势研究[D]. 北京: 中国农业科学院, 2014.
WANG H. Genetic analysis of important traits using ADAA model and prediction of heterosis using SNP markers in Brassica napus L.. [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[15]   CHEN W, ZHANG Y, LIU X P, CHEN B Y, TU J X, FU T D . Detection of QTL for six yield-related traits in oilseed rape ( Brassica napus ) using DH and immortalized F2, populations. Theoretical and Applied Genetics, 2007, 115(6): 849-858.
[16]   高必军. 甘蓝型油菜napin基因启动子的克隆与几个重要农艺性状的初步QTL定位[D]. 雅安: 四川农业大学, 2007.
GAO B J. Cloning of the napin gene promoter and preliminary QTL of some agronomical ImPort traits in Brassica napus [D].Ya’an: Sichuan Agricultural University, 2007. (in Chinese)
[17]   阴涛. 甘蓝型油菜株高和角果长及其相关性状QTL定位[D]. 重 庆: 西南大学, 2015.
YIN T. QTL mapping of major plant-type traits related to plant height and silique length in Brassica napus L.[D]. Chongqing: southwest university, 2015. (in Chinese)
[18]   FLINT-GARCIA S A, Thornsberry J M. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54(4): 357-374.
[19]   FLINT-GARCIA S A, THUILET A C, Yu J, Gael P, SUSAN M, ROMERO, SHARON E, MITCHELL, JOHN D, STEPHEN K, MAJOR M. GOODMAN, BUCKLER E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44(6): 1054-1064.
[20]   YU J, BUCKLER E S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17(2): 155-160.
[21]   LI F, CHEN B, XU K, GAO G, YAN G, QIAO J, LI J, LI H, LI L, XIAO X, ZHANG T Y, NISHIO T S, WU X M. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Science, 2015, 242: 169-177.
[22]   段继凤. 甘蓝型油菜含油量性状全基因组关联分析[D]. 武汉: 华中农业大学, 2013.
DUAN J F. Genome-wide association mapping of oil content trait in rapeseed (Brassica napus L.) [D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese)
[23]   HUMBERTO A, GAJARDO, BENJAMIN W, BRAULIO S C, ERIN E, HIGGINS, ISOBEL A P, PARKIN, ROD J. SNOWDON, MARIA L, FEDERICO L, INIGUEZ L. Association mapping of seed quality traits in Brassica napus L.using GWAS and candidate QTL approaches. Molecular Breeding, 2015, 35: 143.
[24]   LIU S, FAN C, Li J, CAI G J, YANG Q Y, WU J, YI X Q, ZHANG C Y, ZHOU Y M. A genome-wide association study rKINeveals novel elite allelic variations in seed oil content of Brassica napus. Theoretical and Applied Genetics, 2016, 129(6): 1203-1215.
[25]   卢坤, 王腾岳, 徐新福, 李加纳, 唐章林, 曲存民, 贺斌, 梁颖. 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016(3): 344-352.
LU K, WANG T Y, XU X F, LI J N, TANG Z L, QU C M, HE B, LIANG Y. Genome-wide association analysis of height of podding and thickness of pod canopy in Brassica napus. Acta Agronomica Sinica, 2016(3): 344-352. (in Chinese)
[26]   Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. theoretical and Applied Genetics, 2016, 129(6): 1203-1215.
[27]   PRITCHARD J K, STEPHENS M, ROSENBERG N A, DONNELLY P. Association mapping in structured populations. American Journal of Human Genetics, 2000, 67(1): 170-181.
[28]   EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 2005, 14: 2611-2620.
[29]   BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENT T M, RAMDOSS Y, BUCKLER E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
[30]   GINESTET C. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2011, 174(1): 245.
[31]   TURNER S D. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. The preprint server for Biology, 2014: 005165.
[32]   MARCHAL C, VALERIE D H , BARIAT L, SIALA W, BELIN C, Saez-Vasquez JULIO S V, RIONDET C, REICHHELD J P. NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. Molecular Plant, 2014, 7(1): 30-44.
[33]   PHILLIPS A L, HUTTLY A K. Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, gamma-TIP, is increased by GA3. Plant Molecular Biology, 1994, 24(4): 603-615.
[34]   SHI X J, SERGEY M, SHERON D O, CAROLINE B, ROCHUS B F, LUKAS S, ASAPH A. SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis Flower Organs. Plos Genetics, 2011, 7(5): e1001388.
[35]   CARLES C C, CHOFFNES-INADA D, REVILLE K, KVIN L, JENNIFER C, FLETCHERl. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development, 1991, 132(5): 897-911.
[36]   FLETCHER J C. The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis. Development (Cambridge, England), 2001, 128(8): 1323-1333.
[37]   JAYAWEERA T, SIRWARDANA C, DHARMASIRI S, QUINT M, Quint M, GRAY W M, DHARMASIRI N. Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions. Plos One, 2014, 9(8): e102301.
[38]   NADELLA V, SHIPP M J, MUDAY G K, WYATT S E. Evidence for altered polar and lateral auxin transport in the gravity persistent signal (gps) mutants of Arabidopsis. Plant Cell & Environment, 2006, 29(4): 682-690.
[39]   WITHERS J C, SHIPP M J, RUPASINGHE S G, POORNIMA SUKUMAR, SCHULER M A, MUDAY G K, WYATT S E. Gravity persistent signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism. American Journal of Botany, 2013, 100(1): 183-193.
[40]   DOMELAS M C, VAN LAMMEREN A A, KREIS M. Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. The Plant Journal, 2000, 21(5): 419-429.
[41]   YOUN J H, KIM T W, KIM E J, BU S, KIM S K, WANG Z Y, KIM T W. Structural and functional characterization of Arabidopsis GSK3- like kinase AtSK12. Molecules and Cells, 2013, 36(6): 564-570.
[42]   WANG X M, GINGRICH D K, DENG Y F, HONG Z L. A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis. Molecular Biology of the Cell, 2012, 23(8): 1446-1456.
[43]   WANG X, XIE B, ZHU M, ZHANG Z M, HONG Z L. Nucleostemin- like 1 is required for embryogenesis and leaf development in Arabidopsis. Plant Molecular Biology, 2012, 78(1): 31-44.
[44]   HUTCHISON C E, LI J, ARGUESO C, Monica GONZALEZ M, LEWIS M W, MAXWELL B B, PERDUE T D, SCHALLER G E, Jose M. ALONSO J M, ECKER J R, KIEBERA J J. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. The Plant Cell, 2006, 18(11): 3073-3087.
[45]   STOWEEVANS E L, HARPER R M, MOTCHOULSKI A V, LISCUM E. NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiology, 1998, 118(4): 1265-1275.
[46]   HARPER R M, STOWEEVANS E L, LUESSE D R, MUTO H, TATEMATSU K, WATAHIKI M K, YAMAMOTO K, LISCUM E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. The Plant Cell, 2000, 12(5): 757-770.
[47]   LECHNER E, XIE D S, GRAVA S, PIGAGLIO E, PLANCHAIS S, MURRAY J A H, PARMENTIER Y, MUTTRER J, DUBREUCQ B, SHEN W H, GENSCHIK P. The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. Journal of Biological Chemistry, 2002, 277(51): 50069-50080.
[48]   QU J, KANG S G, HAH C, JANG J C. Molecular and cellular characterization of GA-Stimulated Transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Science, 2016, 246: 1-10.
[49]   LI L, HE Y, WANG Y, ZHAO H J, CHEN X, YE T T, WU Y X, WU Y. Arabidopsis PLC2 is involved in auxin-modulated reproductive development. The Plant Journal, 2015, 84(3): 504-515.
[50]   FINO L M D, D’AMBROSIO J M, TEJOS R, WIIK R V, LAMATTINA L, MUNNIK T, PAGNUSSAT G C, LAXALT A M . Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta, 2016: 1-12.
[51]   SAIGA S, FURUMIZU C, YOKOYAMA R, KURATA T, SATO S, KATO T, TABATA S, SUZUKI M, KOMEDA Y. The Arabidopsis OBEROLN1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance. Development, 2008, 135(10): 1751-1759.
[52]   MIZUNO S, OSAKABE Y, MARUYAMA K, ITO T, OSAKABE K, SATO T, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Receptor- like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. The Plant Journal, 2007, 50(5): 751-766.
[53] RIBONE P A, CAPELLA M, CHAN R L. Functional characterization of the homeodomain leucine zipper I transcription factor AtHB13 reveals a crucial role in Arabidopsis development. Journal of Experimental Botany, 2015, 66(19): 5929-5943.
[54]   SHI Y F, WANG D L, WANG C, CULLER A H, KREISER M A, SURESH J, COHEN J D, PAN J, BAKER B, LIU J Z. Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Molecular Plant, 2015, 8(9): 1350-1365.
[55]   GALLA G, ZENONI S, MARCONI G, MARCONI G, BOTTON A, PINOSA F, CITTRRIO S, RUPETRI B, PALME K, ALBERTINI E, PEZZZOTTI M, MAU M, SHARBEL T F, STORME N D, GEELEN D, BARCACCIA G. Sporophytic and gametophytic functions of the cell cycle-associated Mob1 gene in Arabidopsis thaliana L.. Gene, 2011, 484(1/2): 1-12.
[56]   CUI X, GUO Z, SONG L, WANG Y, CHENG Y. NCP1/AtMOB1A plays key roles in auxin-mediated Arabidopsis development. Plos Genetics, 2016, 12(3): e1005923.
[57]   KATO H, MOTOMURA T, KOMEDA Y, SAITO T, KATO A. Overexpression of the NACtranscription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. Journal of Plant Physiology, 2010, 167(7): 571-577.
[58]   MVSSAR K J, KANDASSAMY M K, MCKINNEY E C, MEAGHRR R B. Arabidopsis plants deficient in constitutive class profilins reveal independent and quantitative genetic effects. BMC Plant Biology, 2015, 15(1): 177-193.
[59]   MIKKELSEN M D, NAUR P, HALKIER B A. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. The Plant Journal, 2004, 37(5): 770-777.
[60]   段秀建. 油菜株型相关性状的全基因组关联分析[D]. 重庆: 西南大学, 2015.
DUAN X J. Genome-wide association analysis of plant-type related traits in rapeseed (Brassica napus L.) [D]. Chongqing: southwest university, 2015. (in Chinese)
[61]   孙美玉, 华玮, 刘静, 王新发, 刘贵华, 王汉中. 甘蓝型油菜主花序有效角果数QTL定位. 中国油料作物学报, 2013, 35(1): 1-7.
SUN M Y, HUA W, LIU J, WANG X F, LIU G H, WANG H Z. QTLs for effective silique number of main inflorescence on rapeseed ( Brassica napus L.). Chinese Journal of Oil Crop Sciences, 2013, 35(1): 1-7. (in Chinese)
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[6] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[7] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[8] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[9] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[10] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[11] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[12] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[13] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[14] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,LI LianWen,PIAO JiCheng. Genetic Relationship and Structure Analysis of 15 Species of Malus Mill. Based on SNP Markers [J]. Scientia Agricultura Sinica, 2020, 53(16): 3333-3343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!