Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (16): 2880-2890.doi: 10.3864/j.issn.0578-1752.2019.16.013


The Variation/Heteroplasmy of Chicken Mitochondrial ND1 Gene and Its Association with Traits

XU YuanYuan1,HOU LingLing2,JI JieFei1,WANG HuanJie1,LI SiLu1,CHEN Wen1,KANG XiangTao1,HUANG YanQun1()   

  1. 1 College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University, Zhengzhou 450002
    2 Xuchang Animal Husbandry Bureau (Municipal Animal Health Inspection Institute) , Xuchang 461099, Henan
  • Received:2018-09-18 Accepted:2019-07-03 Online:2019-08-16 Published:2019-08-21
  • Contact: YanQun HUANG


【Objective】 The purpose of this study was to investigate the heteroplasmy of mitochondrial ND1 gene in chickens and to study the distribution of mitochondrial heteroplasmy among different breeds and Gushi chicken resource population, and furthermore, to analysis the effects of mitochondrial heteroplasmy on valuable economic traits. 【Method】 DNA extracted from blood samples of eight chicken breeds including Gushi chicken, Arbor Acres broiler chicken, Henan Cockfighting chicken, Lushi chicken, White Leghorn chicken, White Plymouth Rock chicken, Silkie chicken and Tibetan chicken, were used to study the distribution of mt.A4589G mutation/ heteroplasmy in natural populations by PCR-RFLP. In addition, DNA extracted from blood samples of Gushi chicken resource population constructed previously were used to study the distribution of mt.A4589G mutation/ heteroplasmy in Gushi chicken resource population by PCR-RFLP and to study the association analysis between mt.A4589G mutation/ heteroplasmy and F2 traits of Gushi chicken resource population, including carcass traits, growth traits, meat quality indicators and blood biochemical indicators, thereby grasping the heteroplasmy of chicken mitochondrial ND1 gene and its potential effects; 【Result】1) Among eight breeds, one synonymous mutation mt.A4589G was detected from the full length of mitochondrial ND1 gene, and its distribution showed obvious variety characteristics. The dominant alleles of exotic breeds such as broiler chicken, White Plymouth Rock chicken and White Leghorn chicken were A, while domestic local breeds such as Silky chicken, Henan Cockfighting chicken and Lushi chicken were G. (2) The heteroplasmy of mt.A4589G in different breeds and Gushi chicken resource population was detected by PCR-RFLP. Among eight breeds, only five AG heterogeneous individuals were detected in Gushi chicken, Henan Cockfighting chicken and broiler chicken. In the Gushi chicken resource population, mt.A4589G had a wider heteroplasmy and the frequencies of heteroplasmy in F0, F1 and F2 generations were 0.81, 0.41 and 0.70, respectively. (3) The correlation analysis between mt.A4589G heteroplasmy and F2 traits of Gushi chicken resource population showed that mt.A4589G heteroplasmy was significantly correlated with abdominal fat, sebum thickness eight-week-old shank length, diameter of leg muscle fiber and glucose levels in the blood (P<0.05). (4) The correlation analysis between the levels of heteroplasmy of mt.A4589G and F2 traits of Gushi chicken resource population indicated that the levels of heteroplasmy was significantly correlated with carcass traits, growth traits and serum biochemical indicators (P<0.05). 【Conclusion】 mt.A4589G is a heteroplasmic variation, and its heteroplasmic distribution exhibits obvious variety characteristics. The mt.A4589G heteroplasmy of the natural population occurs less frequently, while mt.A4589G has a wider heteroplasmy in the Gushi chicken resource population. Furthermore, through the correlation analysis between the heteroplasmy of mt.A4589G and the F2 traits of Gushi chicken resource population, it was found that the mt.A4589G mutation/heterogeneity was significantly correlated with the abdominal fat and the glucose level in the blood (P<0.05).

Key words: chicken, ND1 gene, PCR-RFLP, heteroplasmy, association analysis

Table 1

The primers used in the research"

Primer name
Primer sequence(5′-3′)
995 57 --
356 55 Bsp1286I

Fig. 1

Gel electrophoresis results of PCR amplification products of primer ND1-1"

Fig. 2

The sequencing results of mt.ND1 gene (DNA mixed pool as a template)"

Fig. 3

Electrophoresis analysis of ND1-2 PCR products"

Table 2

Distribution of mitochondrial mt.A4589G variation/heteroplasmy in eight breeds of chicken"

频率Frequency 品种(样本数)Breed 1)(sample number)
GS (10) BC (12) HC (8) LS (10) WL (10) WP (10) SK (10) TB (10)
AA 0.375 0.0(0) 0.75(9) 0.0(0) 0.1(1) 0.7(7) 1.0(10) 0.0(0) 0.3(3)
AG 2) 0.063 0.2(2) 0.08(1) 0.25(2) 0.0(0) 0.0(0) 0.0(0) 0.0(0) 0.0(0)
GG 0.562 0.8(8) 0.17(2) 0.75(6) 0.9(9) 0.3(3) 0.0(0) 1.0(10) 0.7(7)

Fig. 4

PCR-RFLP detection of mt.A4589G variation"

Fig. 5

Validation of 5 heteroplasmic individuals detected by PCR-RFLP using Sanger sequencing 1) Left is the breeds and heteroplasmic level of the five heterogeneous individuals detected by the PCR-RFLP method, and right is the Sanger sequencing peak map corresponding samples (GS1, GS2 - Gushi chicken, BC1 - Broiler chicken, HC1, HC2 - Henan Cockfighting chicken). 2) The red arrow is the mt.A4589G site"

Table 3

The distribution of mt.A4589G variation in Gushi chicken resource population"

F0 F1 F2 总分布 Total
AA 6 0.19 9 0.16 66 0.09 81 0.09
AG 25 0.81 23 0.41 540 0.70 588 0.69
GG 0 0.00 24 0. 43 165 0.21 189 0.22

Table 4

Correlation analysis between mt.A4589G variation/heteroplasmy and traits of Gushi chicken F2 generation resource group (families containing AA and AG genotypes)"

性状Traits AA型 AA genotype(n=63) AG型 AG genotype(n=69) PP-value
出生重 BW(g) 29.495±0.200 30.180±0.194 0.0232
腿肌纤维直径 FDL (cm) 37.831±0.925 35.047±0.827 0.0388
8周胸深 CD8(cm) 6.251±0.109 6.644±0.105 0.0159
8周胸骨长 BBL8(cm) 8.718±0.079 8.983±0.077 0.0259
8周胫长 SL8(cm) 7.749±0.078 8.012±0.077 0.0266
8周胫围 SG8(cm) 3.347±0.027 3.421±0.025 0.0644
胸肌pH BpH 6.189±0.038 6.080±0.036 0.0553
盲肠长度 CL(cm) 16.453±0.262 15.689±0.256 0.0538
肌胃重率 GR(%) 2.149±0.036 2.052±0.035 0.0685

Table 5

Correlation analysis between mt.A4589G variation/heteroplasmy and traits of Gushi chicken F2 generation resource group (families containing GG and AG genotypes)"

性状 Traits AG型 AG genotype (n=488) GG型 GG genotype (n=158) PP-value
腹脂 AF(g) 8.618±0.498 6.310±0.924 0.0292
腹脂率 AFR(%) 0.936±0.051 0.692±0.096 0.0264
皮下脂肪厚度 SFT(cm) 0.452±0.007 0.486±0.014 0.0339
葡萄糖 GLU(mmol·L-1) 8.617±0.164 9.471±0.319 0.0191
乳酸脱氢酶 LDH(U·L-1) 2811.195±21.164 2707.856±41.082 0.0277
盲肠长度 CL(cm) 16.125±0.117 15.619±0.218 0.0427

Table 6

Correlation analysis between different grades of the proportion of mt.4589A in mt.A4589G and traits of Gushi chicken F2 generation resource population"

1 级=0%
腹脂重Abdominal fat (g) 5.968±0.929A 8.857±0.768 7.313±0.720a 12.004±1.392Bb 9.448±1.897 0.0048
腹脂率Abdominal fat rate(%) 0.668±0.096A 0.958±0.080 0.811±0.075a 1.284±0.145Bb 1.055±0.197 0.0067
腿肌率Leg muscle rate(%) 32.569±0.143 32.587±0.118a 32.117±0.110b 32.506±0.213 32.087±0.296 0.0157
脾重Spleen weight (g) 2.823±0.088a 2.874±0.073 2.948±0.068 3.294±0.132b 3.056±0.180 0.0661
脾率Spleen rate(%) 0.212±0.006 0.214±0.005 0.220±0.005 0.244±0.010 0.234±0.013 0.0717
肌胃率Masticatory stomach rate (%) 2.056±0.023 2.063±0.019 2.075±0.018 2.030±0.035 2.181±0.047 0.0984
盲肠长度Cecal length(cm) 15.508±0.212 16.196±0.176 15.884±0.164 15.980±0.322 16.737±0.438 0.0410
屠宰率Slaughter rate(%) 89.586±0.170 89.863±0.142 89.526±0.131 90.184±0.255 90.182±0.343 0.0910
8周胫长8-weeks shank length(cm) 7.830±0.054 7.945±0.045 7.940±0.042 8.076±0.082 7.766±0.110 0.0406
12周胸深12-weeks chest depth(cm) 7.985±0.063 7.913±0.052 7.814±0.049 8.019±0.095 7.743±0.129 0.0680
12周胸角12-week chest angle(°) 78.515±0.340 78.418±0.283 79.275±0.263 79.763±0.512 79.225±0.694 0.0704
葡萄糖GLC(mmol·L-1) 9.472±0.319 8.576±0.251 8.911±0.239 7.878±0.458 7.887±0.677 0.0370
淀粉酶Amylase(U·L-1) 410.247±18.096a 405.599±14.427a 423.412±13.735 504.657±25.784b 519.791±40.013 0.0106
乳酸脱氢酶 LDH(U·L-1) 2714.742±40.803 2761.307±32.411 2845.511±30.532 2827.621±58.904 2820.090±85.306 0.0996
[1] GORMAN G S, SCHAEFER A M, NG Y, GOMEZ N, BLAKELY E L, ALSTON C L, FEENEY C, HORVATH R, YU-WAI-MAN P, CHINNERY P F, TAYLOR R W, TURNBULL D M, MCFARLAND R . Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Annals of Neurology, 2015,77(5):753-759.
[2] BLACKSTONE N W . Book Review: Essential Cell Biology: An introduction to the molecular biology of the cell. Quarterly Review of Biology, 1998,73(4).
[3] CROW M T, MANI K, NAM Y J, KITSIS R N . The mitochondrial death pathway and cardiac myocyte apoptosis. Circulation Research, 2004,95(10):957-970.
[4] TAANMAN J W . The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta, 1999,1410(2):103-123.
[5] KUKAT C, WURM C A, SPAHR H, FALKENBERG M, LARSSON N G, JAKOBS S . Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtdna. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(33):13534-13539.
[6] YE K, LU J, MA F, KEINAN A, GU Z . Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(29):10654-10659.
[7] STEWART J B, CHINNERY P F . The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews Genetics, 2015,16(9):530-542.
[8] YUSNITA Y, NORSIAH M D, RAHMAN A J . Mutations in mitochondrial NADH dehydrogenase subunit 1 (mtnd1) gene in colorectal carcinoma. The Malaysian Journal of Pathology, 2010,32(2):103-110.
[9] GIULIANI C, BARBIERI C, LI M, BUCCI L, MONTI D, PASSARINO G, LUISELLI D, FRANCESCHI C, STONEKING M, GARAGNANI P . Transmission from centenarians to their offspring of mtdna heteroplasmy revealed by ultra-deep sequencing. Aging, 2014,6(6):454-467.
[10] LOUTRE R, HECKEL A M, JEANDARD D, TARASSOV I, ENTELIS N . Anti-replicative recombinant 5S rrna molecules can modulate the mtdna heteroplasmy in a glucose-dependent manner. PLoS One, 2018,13(6):e0199258.
[11] SCHON E A, DIMAURO S, HIRANO M . Human mitochondrial DNA: roles of inherited and somatic mutations. Nature Reviews Genetics, 2012,13(12):878-890.
[12] YU E P, BENNETT M R . Mitochondrial DNA damage and atherosclerosis. Trends in Endocrinology & Metabolism Tem, 2014,25(9):481-487.
[13] DANCAUSE K N, VILAR M G, STEFFY R, LUM J K . Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses. PLoS One, 2011,6(2):e16843.
[14] LIU Y P, WU G S, YAO Y G, MIAO Y W, LUIKART G, BAIG M, BEJA-PEREIRA A, DING Z L, PALANICHAMY M G, ZHANG Y P . Multiple maternal origins of chickens: out of the Asian jungles. Molecular Phylogenetics and Evolution, 2006,38(1):12-19.
[15] MWACHARO J M, BJORNSTAD G, MOBEGI V, NOMURA K, HANADA H, AMANO T, JIANLIN H, HANOTTE O . Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution, 2011,58(2):374-382.
[16] REVAY T, BODZSAR N, MOBEGI V E, HANOTTE O, HIDAS A . Origin of Hungarian indigenous chicken breeds inferred from mitochondrial DNA D-loop sequences. Animal Genetics, 2010,41(5):548-550.
[17] KOMIYAMA T, IKEO K, GOJOBORI T . The evolutionary origin of long-crowing chicken: its evolutionary relationship with fighting cocks disclosed by the mtdna sequence analysis. Gene, 2004,333:91-99.
[18] GUAN X, GENG T, SILVA P, SMITH E J . Mitochondrial DNA sequence and haplotype variation analysis in the chicken (Gallus gallus). Journal of Heredity, 2007,98(7):723-726.
[19] LU W W, HOU L L, ZHANG W W, ZHANG P F, CHEN W, KANG X, HUANG Y . Study on heteroplasmic variation and the effect of chicken mitochondrial ND2. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2016,27(4):2303-2309.
[20] SAMBROOK J, FRITSCH E F, MANIATIS T . Molecular Cloning. A laboratory Manual. Analytical Biochemistry, 2001,186(1):182-183.
[21] PRUETT C L, WINKER K . The effects of sample size on population genetic diversity estimates in song sparrows Melospiza melodia. Journal of Avian Biology, 2008,39(2):252-256.
[22] TRASK J A, MALHI R S, KANTHASWAMY S, JOHNSON J, GARNICA W T, MALLADI V S, SMITH D G . The effect of SNP discovery method and sample size on estimation of population genetic data for Chinese and Indian rhesus macaques (Macaca mulatta). Primates; Journal of Primatology, 2011,52(2):129-138.
[23] IOMMARINI L, GHELLI A, TROPEANO C V, KURELAC I, LEONE G, VIDONI S, LOMBES A, ZEVIANI M, GASPARRE G, PORCELLI A M . Unravelling the effects of the mutation m.3571insc/MT-ND1 on respiratory complexes structural organization. International Journal of Molecular Sciences, 2018,19(3):764-780.
[24] BARADARAN R, BERRISFORD J M, MINHAS G S, SAZANOV L A . Crystal structure of the entire respiratory complex I. Nature, 2013,494(7438):443-448.
[25] ANTONICKA H, OGILVIE I, TAIVASSALO T, ANITORI R P, HALLER R G, VISSING J, KENNAWAY N G, SHOUBRIDGE E A . Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. The Journal of Biological Chemistry, 2003,278(44):43081-43088.
[26] TURRENS J F . Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 2003,552(2):335-344.
[27] MAGNACCA K N, BROWN M J . Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evolutionary Biology, 2010,10(1):174.
[28] REINER J E, KISHORE R B, LEVIN B C, ALBANETTI T, BOIRE N, KNIPE A, HELMERSON K, DECKMAN K H . Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria. PLoS One, 2010,5(12):e14359.
[29] RAMOS A, SANTOS C, MATEIU L, GONZALEZ MDEL M, ALVAREZ L, AZEVEDO L, AMORIM A, ALUJA M P . Frequency and pattern of heteroplasmy in the complete human mitochondrial genome. PLoS One, 2013,8(10):e74636.
[30] WALLACE D C . Mitochondrial DNA mutations in disease and aging. Environmental and Molecular Mutagenesis, 2010,51(5):440-450.
[31] PATANANAN A N, WU T H, CHIOU P Y, TEITELL M A . Modifying the Mitochondrial Genome. Cell Metabolism, 2016,23(5):785-796.
[32] SIMON D K, MAYEUX R, MARDER K, KOWALL N W, BEAL M F, JOHNS D R . Mitochondrial DNA mutations in complex I and trna genes in Parkinson's disease. Neurology, 2000,54(3):703-709.
[33] BROWN M D, ZHADANOV S, ALLEN J C, HOSSEINI S, NEWMAN N J, ATAMONOV V V, MIKHAILOVSKAYA I E, SUKERNIK R I, WALLACE D C . Novel mtdna mutations and oxidative phosphorylation dysfunction in Russian LHON families. Human Genetics, 2001,109(1):33-39.
[34] SUDOYO H, SURYADI H, LERTRIT P, PRAMOONJAGO P, LYRAWATI D, MARZUKI S . Asian-specific mtdna backgrounds associated with the primary G11778A mutation of Leber's hereditary optic neuropathy. Journal of Human Genetics, 2002,47(11):594-604.
[35] HOWELL N, BINDOFF L A, MCCULLOUGH D A, KUBACKA I, POULTON J, MACKEY D, TAYLOR L, TURNBULL D M . Leber hereditary optic neuropathy: Identification of the same mitochondrial NDI mutation in six pedigrees. American Journal of Human Genetics, 1991,49(5):939-950.
[36] ABU-AMERO K K, ALZAHRANI A S, ZOU M, SHI Y . High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene, 2005,24(8):1455-1460.
[37] WANG J W, CHEN W, KANG X T, HUANG Y Q, TIAN Y D, WANG Y B . Identification of differentially expressed genes induced by energy restriction using annealing control primer system from the liver and adipose tissues of broilers. Poultry Science, 2012,91(4):972-978.
[38] MERLO PICH M, RAULE N, CATANI L, FAGIOLI M E, FAENZA I, COCCO L, LENAZ G . Increased transcription of mitochondrial genes for Complex I in human platelets during ageing. FEBS Letters, 2004,558(1-3):19-22.
[39] LU W W, HOU L L, ZHANG W W, ZHANG P F, CHEN W, KANG X, HUANG Y . Study on heteroplasmic variation and the effect of chicken mitochondrial ND2. Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2016,27(4):2303-2309.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[7] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[8] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[9] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[10] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[11] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[12] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[13] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[14] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[15] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
Full text



No Suggested Reading articles found!