Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1815-1829.doi: 10.3864/j.issn.0578-1752.2018.10.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

TaDRO, A Gene Associated with Wheat Root Architectures, Its Global Distribution and Evolution in Breeding

WeiJun ZHANG1,2(), Tian LI1, Lin QIN1, Jing ZHAO1, JunJie ZHAO1, Hong LIU1, Jian HOU1, ChenYang HAO1, DongSheng CHEN2, YiQin WEI2, RuiLian JIN1, XueYong ZHANG1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Institute of Crop Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yongning 750105, Ningxia
  • Received:2017-10-16 Accepted:2017-11-30 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 Root improvement is one of the key factors to improve stress resistance and yield of wheat. Root architecture related genes, homoeologous TaDRO, are cloned from cultivars with different root phenotypes. Molecular markers are developed to detect its relationship with important agronomic traits of wheat. which could provide technical support for wheat improvement. 【Method】 Polymorphic sites of TaDRO-A, -B and -D were detected in 21 common wheat accessions with high diversity. Physical locations of three homoeologues were determined based on the newest genome sequence of Chinese Spring. Molecular markers were developed according to the polymorphic sites at TaDRO-5A and -5B. Association analysis between genotypes and phenotypic traits were carried out in a natural population of 323 accessions. 【Result】 The three homoeologous genes of TaDRO-A, -B and -D were cloned. TaDRO-A, -B and -D were located on chromosomes 5A (426.15 Mb), 5B (381.00 Mb) and 5D (327.60 Mb), respectively. Three SNPs were detected at TaDRO-A among 21 accessions and two haplotypes were formed, Hap-5A-A and Hap-5A-C. A molecular marker, TaDRO-5A-KASP, was developed based on the SNP located at position of -2271 bp in the promoter region. Thirteen SNPs and one InDel in the promoter region, four SNPs in the coding region were detected at TaDRO-5B, formed two haplotypes, Hap-5B-Ⅰ and Hap-5B-Ⅱ. The marker TaDRO-5B-InDel was developed based on the Indel at position of -300 bp. Association analysis showed that haplotypes of TaDRO-5A were significantly correlated with plant height (PH), thousand kernel weight (TKW) and root growth angle (RGA). The genetic effects on Hap-5A-A showed RGA and TKW increasing, and root depth and PH decreasing, while those on Hap-5A-C exhibited the opposite effect. The effects of Hap-5B-Ⅰ exhibited root depth and PH increasing, and TKW decreasing, while those of Hap-5B-Ⅱ were the opposite. Hap-5A-C and Hap-5B-Ⅰ were favored haplotypes in landraces while they were non-favored ones in modern cultivars. The frequencies of Hap-5A-C and Hap-5B-Ⅰ in arid and semi-arid areas were higher than those in wet areas in China. Hap-5A-C was favored haplotype in dry regions worldwide. Frequencies of Hap-5A-A and Hap-5B-Ⅱ were increasing in breeding process, respectively.【Conclusion】 Hap-5A-C and Hap-5B-Ⅰ are associated with deeper root, higher PH and lower TKW, whereas Hap-5A-A and Hap-5B-Ⅱ behave the opposite. Wheat cultivars showed root depth and plant height decreasing in breeding process due to development of irrigation system and nitrogen industries. The developed molecular markers might be used to select the ideotypes of cultivars for higher efficiency use of water and nitrogen.

Key words: wheat, root architecture, TaDRO, haplotype, association analysis

Fig.1

Physical mapping of TaDRO-5A and -5B on group 5 chromosomes in wheat"

Fig. 2

Dynamic expression of TaDRO in multi-tissue at different development stages"

Fig. 3

Gene structures and development of functional markers of TaDRO-5A and -5B"

Table 1

Association analysis between haplotypes at TaDRO-5A and TaDRO-5B with agronomic traits in wheat"

年份
Year
地点
Site
环境
Environments
TaDRO-5A TaDRO-5B
株高PH
P-value
千粒重TKW
P-value
根角度RGA
P-value
株高PH
P-value
根角度RGA
P-value
2015 顺义
Shunyi
水WW ns ns 0.0017**
旱DS ns 0.0431* ns
水热HE 0.0310* 0.0252* 0.0011**
旱热DE 0.0165* 0.0209* 0.0223*
2016 昌平
Changping
水WW 0.0223* ns 0.0364*
旱DS ns ns 0.0017**
顺义
Shunyi
水WW 0.0160* 0.0342* 0.0133*
旱DS 0.0148* 0.0198* 0.0327*
水热HE 0.0108* ns 0.0095**
旱热DE 0.0243* ns 0.0122*
2016 实验室 Lab 0.04984* ns

Table 2

Association analysis between TaDRO-5A and TaDRO-5B haplotypes RL, PH, TKW and RGA in wheat"

性状
Trait
TaDRO-5A TaDRO-5B
Hap-5A-A Hap-5A-C Hap-5B-Ⅰ Hap-5B-Ⅱ
根长RL 391.07±111.56 403.21±95.13 410.91±98.80a 383.97±112.15b
株高PH 116.85±23.22B 126.30±18.53A 130.20±13.34A 111.69±24.64B
千粒重TKW 41.50±7.49A 36.77±7.66B 35.99±6.58B 43.32±7.56A
根夹角RGA 112.87±1.39a 102.61±4.66b 112.10±3.64 111.73±1.46

Fig. 4

Association analysis of haplotype effects of TaDRO-5A and TaDRO-5B for root architecture"

Fig. 5

TaDRO-5A, TaDRO-5B haplotype distribution of landraces (a,c) and modern varieties (b,d) in ten Chinese wheat ecology regions"

Fig. 6

Haplotype frequencies of TaDRO-5A and TaDRO-5B with the variation tendency in different periods in China wheat"

Fig. 7

Geographic distribution of haplotypes at TaDRO-5A (a) and TaDRO-5B (b) in six major wheat production regions worldwide"

[1] 杨方人. 旱作大豆高产综合技术对根系发育及生理功能影响的研究. 大豆科学, 1987, 6(3): 225-230.
YANG F R.The effect of the high-yield comprehensive agrotechniques of dry-farming on development of soybean roots.Soybean Science, 1987, 6(3): 225-230. (in Chinese)
[2] 王法宏, 任德昌, 王旭清, 曹宏鑫, 余松烈, 于振文. 施肥对小麦根系活性、延缓旗叶衰老及产量的效应. 麦类作物学报, 2001, 27(3): 51-54.
doi: 10.7606/j.issn.1009-1041.2001.03.068
WANG F H, REN D C, WANG X Q, CAO H X, YU S L, YU Z W.Effect of applying fertilizer on root activity, delaying the senescence of the flag leaf and yield in winter wheat.Journal of Triticeae Crops, 2001, 27(3): 51-54. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2001.03.068
[3] 李鲁华, 陈树宾, 秦莉, 孔祥丽, 李世清. 不同土壤水分条件下春小麦品种根系功能效率的研究. 中国农业科学, 2002, 35(7): 867-871.
LI L H, CHEN S B, QIN L, KONG X L, LI S Q.Study on root function efficiency of spring wheats under different moisture condition.Scientia Agricultura Sinica, 2002, 35(7): 867-871. (in Chinese)
[4] PENG Y C, MA W Y, CHEN L L, YANG L, LI S J, ZHAO H T, ZHAO Y K, JIN W H, LI N, BEVAN M W, LI X, TONG Y P, LI Y H.Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis. Plant Physiology, 2013, 161(3): 1542-1556.
[5] YUSAKU U, KAZUHIKO S, SATOSHI O, JAGADISHI R, MANABU I, NAHO H, YUKA K, YOSHIAKI I, KAZUKO O, NORIKO K, HARUHIKO I, HINAKO T, RITSUKO M, YOSHIAKI N, WU J Z, TAKASHI M, TOSHIYUKI T, KAZUTOSHI O, MASAHIRO Y.Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013, 45(9): 1097-1102.
doi: 10.1038/ng.2725 pmid: 23913002
[6] SHARMA S, XU S, EHDAIE B, HOOPS A, TIMOTHY J, ADAM J, LUKASZEWSKI J, WAINES G.Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat.Theoretical and Applied Genetics, 2011, 122: 759-769.
[7] JIA Y B, YANG X E, FENG Y, JILANI G.Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency.Journal of Zhejiang University: Science B, 2008, 9: 427-434.
doi: 10.1631/jzus.B0710636 pmid: 18500783
[8] BAI C H, LIANG Y L, HAWKESFORD M J.Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat.Journal of Experimental Botany, 2013, 64: 1745-1753.
doi: 10.1093/jxb/ert041 pmid: 23564959
[9] LOPES M S, REYNOLDS M P.Partioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat.Functional Plant Biology, 2010, 37(2): 147-156.
[10] HOCHHOLDINGER F.The maize root system: Morphology, anatomy and genetics//BENNETZEN J, HAKE S. The Handbook of Maize. New York: Springer, 2009: 145-160.
[11] COUNDERT Y, PERIN C, COURTOIS B, KHONG N G, GANTET P.Genetic control of root development in rice, the model cereal.Trends in Plant Science, 2010, 15: 219-226.
doi: 10.1016/j.tplants.2010.01.008 pmid: 20153971
[12] CAO P, REN Y Z, ZHANG K P, TENG W, ZHAO X Q, DONG Z Y, LIU Y, QIN H J, LI Z S, WANG D W, TONG Y P.Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat.Molecular Breeding, 2014, 33(4): 975-985.
doi: 10.1007/s11032-013-0013-z
[13] GUPTA P K, RUSTGI S, KULWAL P L.Linkage disequilibrium and association studies in higher plants: Present status and future prospects.Plant Molecular Biology, 2005, 57(4): 461-485.
doi: 10.1007/s11103-005-0257-z pmid: 15821975
[14] WANG L F, GE H M, HAO C Y, DONG Y C, ZHANG X Y.Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE, 2012, 7(2): e29432.
doi: 10.1371/journal.pone.0029432 pmid: 22328917
[15] KRAAKAMN A T W, NIKS R E, VAN DEN BERG P M M M, STAM P, EEUWIJK V. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars.Genetics, 2004, 168(1): 435-446.
doi: 10.1534/genetics.104.026831 pmid: 15454555
[16] YAN J B, KANDIANI C B, HARJES C E, KIM E H, YANG X, SKINNER D J, FU Z, MITCHELL S, LI Q, FERNANDEZ M G, ZAHARIEVA M, BABU R, FU Y, PALACIOS N, LI J, DELLAPENNA D, BRUTNELL T, BUCKLER E S, WARBURTON M L, ROCHEFORD T.Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nature Genetic, 2010, 42(4): 322-327.
[17] BRESEGHELLO F, SORRELLS M E.Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177.
doi: 10.1534/genetics.105.044586 pmid: 16079235
[18] MASSMAN J, COOPER B, HORSLEY R, NEATE S, MACKY D, CHAO S, DONG Y, SCHWARZ P, MUEHIBAUER G L, SMITH K P.Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Molecular Breeding, 2011, 27: 439-454.
doi: 10.1007/s11032-010-9442-0
[19] ROY J K, SMITH K P, MUEHLBAUER G J, CHAO S, CLOSE T J, STEFFENSON B J.Association mapping of spot blotch resistance in wild barley.Molecular Breeding, 2010, 26: 243-256.
doi: 10.1007/s11032-010-9402-8 pmid: 20694035
[20] ANDERSEN J R, LUBBERSTEDT T.Functional markers in plants, trends.Plant Science, 2003, 8(11): 554-560.
[21] LIU Y N, HE Z H, APPELS R, XIA X C.Functional markers in wheat: current status and future prospects.Theoretical and Applied Genetic, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[22] HAO C Y, DONG Y C, WANG L Y, YOU G X, ZHANG H N, GE H M, JIA J Z, ZHANG X Y.Genetic diversity and construction of core collection in Chinese wheat genetic resources.Chinese Science Bulletin, 2008, 53: 1518-1526.
doi: 10.1007/s11434-008-0212-x
[23] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T) ) method.Methods, 2001, 25: 402-408.
[24] 刘秀林, 昌小平, 李润植, 景蕊莲. 小麦种子根结构及胚芽鞘长度的QTL分析的方法. 作物学报, 2011, 37(3): 381-388.
doi: 10.3724/SP.J.1006.2011.00381
LIU X L, CHANG X P, LI R Z, JING R L.Mapping QTLs for seminal root architecture and coleoptile length in wheat.Acta Agronomica Sinica, 2011, 37(3): 381-388. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00381
[25] BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCHLER E S.TASSEL: Software for association mapping of complex traits in diverse samples.Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[26] LIAO H, YAN X L.Adaptive changes and geno-typic variation of root architecture of common bean in response to phosphorus deficiency.Acta Botanica Sinica, 2000, 42(2): 158-163.
[27] 郝留根. 小麦根系性状测定方法的比较及根系性状的QTL分析[D]. 杨凌: 西北农林科技大学, 2014.
HAO L G.Comparison on different methods for measuring root traits and QTL analysis on root traits in wheat [D]. Yangling: Northwest Agriculture and Forestry University, 2014. (in Chinese)
[28] 刘士哲. 无土栽培技术. 北京: 中国农业出版社, 200l.
LIU S Z. Soilless Planting Technique.Beijing: China Agriculture Press, 2001. (in Chinese)
[29] 张喜英. 作物根系与土壤水利用. 北京: 气象出版社, 1999.
ZHANG X Y.Crop Roots and Soil Moisture Utilization. Beijing: Meteorological Press, 1999. (in Chinese)
[30] 李维炯. 测定根生物量的简便方法-土钻法. 耕作与栽培, 1984(6): 43.
LI W J.Methods of studying roots systems of auger.Tillage and Cultivation, 1984(6): 43. (in Chinese)
[31] 杨丽雯, 张永清. 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011, 44(11): 2244-2251.
doi: 10.3864/j.issn.0578-1752.2011.11.005
YANG L W, ZHANG Y Q.Developing patterns of root systems of four cereal crops planted in dryland areas.Scientia Agricultura Sinica, 2012, 44(11): 2244-2251. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.11.005
[32] JOHNSON M G, TINGEY D T, PHILLIPS D L, STORM M J.Advancing fine root research with minirhizotrons.Environmental and Experimental Botany, 2001, 45(3): 263-289.
doi: 10.1016/S0098-8472(01)00077-6 pmid: 11323033
[33] LI B, LI Q R, MAO X G, LI A, WANG J Y, CHANG X P, HAO C Y, ZHANG X Y,JING R . Two novel AP2/EREBP transcription factor genes TaPARG have pleiotropic functions on plant architecture and yield-related traits in common wheat. Plant Science, 2016, 7: 1191.
doi: 10.3389/fpls.2016.01191 pmid: 4977303
[34] ABE J, MORITA S.Growth direction of nodal roots in rice: its variation and contribution to root system formation.Plant Soil, 1994, 165: 333-337.
doi: 10.1007/BF00008078
[35] ARAKI H, MORITA S, TATSUMI J, IIJIMA M.Physio- morphological analysis on axile root growth in upland rice.Plant Production Science, 2002, 5: 286-293.
[36] YOSHIDA S, HASEGAWA S.The rice root system: its development and function//Drought Resistance in Crops with Emphasis on Rice. Manila: International Rice Research Institute, 1982: 97-114.
[37] FUKAI S, COOPER M.Development of drought-resistant cultivars using physio-morphological traits in rice.Field Crops Research, 1995, 40: 67-86.
doi: 10.1016/0378-4290(94)00096-U
[38] RICH S M, WATT M.Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver.Journal of Experimental Botany, 2013, 64: 1193-1208.
doi: 10.1093/jxb/ert043 pmid: 23505309
[39] WASSON A P, RICHARD R A, CHATRATH R, MISRA S C, PRASAD S V, REBETZKE G J, KIRKEGAARD J A, CHRISTOPHER J, WALT M.Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.Journal of Experimental Botany, 2012, 63(9): 3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286
[40] MANSCHADI A M, CHRISTOPHER J T, VOIL P D, HAMMER G L.The role of root architectural traits in adaptation of wheat to water-limited environments.Functional Plant Biology, 2006, 33: 823-837.
doi: 10.1071/FP06055
[41] KIRKEGAARD J A, LILLEY J M, HOWE G N, GRAHMA J M.Impact of subsoil water use on wheat yield.Australian Journal Agricultural Research, 2007, 58: 303-315.
[42] 于福来, 方玉强, 王文全, 王秋玲, 刘凤波. 甘草栽培群体主要数量性状遗传变异及相互关系研究.中国中药杂志, 2011, 36(18): 2457-2461.
doi: 10.4268/cjcmm20111801
YU F L, FANG Y Q, WANG W Q, WANG Q L, LIU F B.Genetic variability and interrelationships of mainly quantitative traits in Glycyrrhiza uralensis cultivated population. China Journal of Chinese Medica, 2011, 36(18): 2457-2461. (in Chinese)
doi: 10.4268/cjcmm20111801
[43] 农田灌溉面积达8.77亿亩,占全国耕地面积的48% [EB/OL]. .
The irrigated area of farmland is 877 million mu, accounting for 48% of the total arable land [EB/OL]. (in Chinese)
[44] YUSAKU U, HANZAWA E, NAGAI S, SASAKI K, YANO M, SATO T.Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields. Theoretical and Applied Genetics, 2011, 124(1): 75-86.
[45] YUSAKU U, OKUNO K, YANO M.Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal Experimental Botany, 2011, 62(8): 2485-2494.
doi: 10.1093/jxb/erq429 pmid: 21212298
[46] YUSAKU U, YAMAMOTO E, KANNO N, KAWAI S, MIZUBAYASHI T, FUKUOKA S.A major QTL controlling deep rooting on rice chromosome 4.Scientific Reports, 2013, 3: 3040.
doi: 10.1038/srep03040 pmid: 24154623
[47] YUSAKU U, KITOMI Y, YAMAMOTO E, KANNO N, KAWAI S, MIZUBAYASHI T, FUKUOKA S, A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice, 2015, 8: 8.
doi: 10.1186/s12284-015-0044-7 pmid: 4384719
[48] WRIGHT S I, VROH I, SCHROEDER S, YASANORI M, DOEBLEY J, MCMULLEN M D, GAUT B S.The effects of artificial selection on the maize genome.Science, 2004, 308(5726): 1310-1314.
[49] OLSEN K M, URUGGANAN M D.Molecular evidence on the origin and evolution of glutinous rice.Genetics, 2002, 162: 941-950.
[50] PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E, BEALES J, FISH L J, WORLAND A J, PELICA F, SUDHAKAR D, CHRISTOU P, SNAPE J W, GALE M D, HARBERD N P.Green revolution genes encode mutant gibberellin response modulators.Nature, 1999, 400(6741): 256-261.
[51] FRARY A, NESBITT T C, GRANDILLO S, KNAAP E, CONG B, LIU J, MELLER J, ELBER R, ALPERT K B, TANKSLEY S D.fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289(5746): 85-88.
[52] FAY J C, WU C I.Hitchhiking under positive Darwinian selection.Genetics, 2000, 155: 1405-1413.
doi: 10.1002/1098-2272(200007)19:1<81::AID-GEPI6>3.0.CO;2-8 pmid: 10880498
[53] WAINES J G, EHDAIE B.Domestication and crop physiology: Roots of Green-revolution wheat.Annals of Botany, 2007, 100(5): 991-998.
doi: 10.1140/epjc/s2006-02484-y pmid: 17940075
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[5] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[6] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[7] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[8] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[11] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[12] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[13] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[14] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[15] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!