Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1380-1388.doi: 10.3864/j.issn.0578-1752.2019.08.008

• PLANT PROTECTION • Previous Articles     Next Articles

Construction and Evaluation of ATMT Mutant Library of Fusarium verticillioides

SUN Hua,MA HongXia,DING MengJun,LI Po(),SHI Jie(),LIU ShuSen   

  1. Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture/IPM Centre of Hebei Province, Baoding 071000, Hebei
  • Received:2018-11-26 Accepted:2019-01-15 Online:2019-04-16 Published:2019-04-26
  • Contact: Po LI,Jie SHI E-mail:lipo-0524@163.com;shij99@163.com

Abstract:

【Objective】The objective of this study is to establish a highly efficient ATMT mutagenesis system of Fusarium verticillioides, and to construct ATMT mutant library in which mutant contains green fluorescent protein (GFP). And then this library was used for screening and analysis, which can lay a foundation for studying the infection pathway and molecular pathogenesis of F. verticillioides on maize ear. 【Method】 The inhibitory concentration of cefotaxime sodium (Cefo) and ampicillin sodium (Amp) against Agrobacterium tumefaciens AGL-1 and the sensitive concentration of hygromycin B against F. verticillioides were screened for ATMT mutagenesis system. A shuttle plasmid containing GFP and hygromycin phosphotransferase (HPH) genes was used as a vector to construct the ATMT mutants library of F. verticillioides. The T-DNA insertion and stability of transformant were detected and analyzed through hygromycin B resistance, PCR identification of GFP-specific primers, and fluorescence microscopy. Nine transformants were randomly selected and the sporulation number, conidial germination rate, and pathogenicity were measured. 【Result】When the concentration of Cefo/Amp was 150/150 μg·mL -1, the growth of AGL-1 was inhibited, and when the concentration of hygromycin B was 150 μg·mL -1, the growth of F. verticillioides was completely incapacitated. Using the optimized ATMT, a total of 2 465 GFP-labeled transformants were obtained, these transformants could still grow normally on PDA medium containing hygromycin B after cultured 5 generations on hygromycin-free PDA medium, which indicated that HPH had been integrated into wild-type (WT) genome of F. verticillioides and the transformants were stable in their characteristics of genetics. The PCR detection results amplified with GFP-specific primers showed that the homology of transformants with GFP (accession number: LC420351.1) in NCBI was 99.26%, and the hyphae and conidia of transformants showed green fluorescence under the fluorescence microscope, while no fluorescence was observed in WT, indicating that GFP had been integrated into the WT genome and successfully expressed. Compared with WT strain, the sporulation number of transformant 54 increased significantly, about 1.9 times of that of WT strain, and the conidial germination rate of transformant 24 decreased obviously in the same time. The pathogenicity of transformant 13 was enhanced, the disease grade reached 9, the pathogenicity of transformant 33 and 16 was reduced to grade 3, and the pathogenicity of transformant 4 was the weakest, the disease grade was 1. There was no significant change in biological characters of partial transformants.【Conclusion】ATMT mutant library with GFP of F. verticillioides was constructed, and the mutants with changed sporulation number, conidia germination rate and pathogenicity were obtained through primarily screening. It will lay a foundation for further study on the infection pathway and pathogenic molecular mechanisms of F. verticillioides on maize ear in the future.

Key words: maize, Fusarium verticillioides, ATMT, mutant library, green fluorescent protein, transformant

Fig. 1

Inhibition effect of different concentrations of hygromycin B on the growth of F. verticillioides A—G: 0、10、25、50、75、100和150 μg?mL-1潮霉素B 0, 10, 25, 50, 75, 100 and 150 μg?mL-1 hygromycin B, respectively"

Fig. 2

PCR detection of partial transformants of F. verticillioides M:100 bp Ladder;1:阳性对照 Positive control;2—11:转化子 Transformants;12:阴性对照Negative control"

Fig. 3

Expression of GFP in F. verticillioides"

Fig. 4

Comparison of sporulation number between partial transformants and wild-type strain"

Fig. 5

Comparison of conidial germination rate between partial transformants and wild-type strain"

Fig. 6

The pathogenicity of partial transformants and wild- type strain"

[1] 丘卓秋, 吴海燕, 龙彦蓉 . 玉米孢囊线虫发生危害和生物学研究进展. 植物保护, 2017,43(4):16-20.
QIU Z Q, WU H Y, LONG Y R . Research progress in the occurrence and biology of Heterodera zeae. Plant Protuction, 2017,43(4):16-20. (in Chinese)
[2] ORTIZ C S, RICHARDS C, TERRY A, PARRA J, SHIM W B . Genetic variability and geographical distribution of mycotoxigenicFusarium verticillioides strains isolated from maize fields in Texas. The Plant Pathology Journal, 2015,31(2):203-211.
[3] DUAN C X, QIN Z H, YANG Z H, LI W X, SUN S L, ZHU Z D, WANG X M . Identification of pathogenicFusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016,8(6):186.
[4] LANUBILE A, BERNARDI J, MAROCCO A, LOGRIECO A, PACIOLLA C . Differential activation of defense genes and enzymes in maize genotypes with contrasting levels of resistance to Fusarium verticillioides. Environmental and Experimental Botany, 2012,78:39-46.
[5] ZHOU D N, WANG X M, CHEN G K, SUN S L, YANG Y, ZHU Z D, DUAN C X . The majorFusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018,10(2):90.
[6] PROCTOR R H, BROWN D W, PLATTNER R D, DESJARDINS A E . Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genetics and Biology, 2003,38(2):237-249.
[7] KIM H, WOLOSHUK C P . Role ofAREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genetics and Biology, 2008,45(6):947-953.
[8] MYUNG K, ZITOMER N C, DUVALL M, GLENN A E, RILEY R T, CALVO A M . The conserved global regulator VeA is necessary for symptom production and mycotoxin synthesis in maize seedlings by Fusarium verticillioides. Plant Pathology, 2012,61(1):152-160.
[9] BLUHM B H, KIM H, BUTCHKO R A E, WOLOSHUK C P . Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Molecular Plant Pathology, 2008,9(2):203-211.
[10] CHOI Y E, SHIM W B . Functional characterization ofFusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit. Microbiology, 2008,154(1):326-336.
[11] 孙华, 郭宁, 石洁, 张海剑, 马红霞, 刘树森 . 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017,47(5):577-583.
SUN H, GUO N, SHI J, ZHANG H J, MA H X, LIU S S . Characterization of the maize ear rot pathogens and genetic diversity analysis of dominant species in Hainan. Acta Phytopathologica Sinica, 2017,47(5):577-583. (in Chinese)
[12] 任旭 . 我国玉米穗腐病主要致病镰孢菌多样性研究[D]. 北京: 中国农业科学院, 2011.
REN X . Diversity analyses of Fusarium spp., the main causal agents of maize ear rot in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[13] 李晓鸯, 马周杰, 盖晓彤, 汪浩德, 姚远, 孙艳秋, 高增贵 . 东北地区玉米穗腐镰孢菌种类鉴定及拟轮枝镰孢菌遗传多样性. 沈阳农业大学学报, 2018,49(2):136-142.
LI X Y, MA Z J, GAI X T, WANG H D, YAO Y, SUN Y Q, GAO Z G . Identification of Fusarium species causing maize ear rot in northeast China and the diversity of F. verticillioides. Journal of Shenyang Agricultural University, 2018,49(2):136-142. (in Chinese)
[14] 隋韵涵, 肖淑芹, 董雪, 薛春生, 陈捷 . 九种杀菌剂对Fusarium verticillioidesF. graminearum毒力及玉米穗腐病的防治效果. 玉米科学, 2014,22(2):145-149.
SUI Y H, XIAO S Q, DONG X, XUE C S, CHEN J . Toxicity and field control effect of nine fungicides against Fusarium ear rot. Journal of Maize Sciences, 2014,22(2):145-149. (in Chinese)
[15] HEADRICK J M, PATAKY J K . Maternal influence on the resistance of sweet corn lines to kernel infection by Fusarium moniliforme. Phytopathology, 1991,81(3):268-274.
[16] MUNKVOLD G P, CARLTON W M . Influence of inoculation method on systemicFusarium moniliforme infection of maize plants grown from infected seeds. Plant Disease, 1997,81(2):211-216.
[17] ALESSANDRA L, LUCA P, ADRIANO M . Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance afterFusarium verticillioides infection. Journal of Plant Physiology, 2010,167(16):1398-1406.
[18] LESLIE J F, PEARSON C A S, NELSON P E, TOUSSOUN T A . Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States. Phytopathology, 1990,80(4):343-350.
[19] OREN L, EZRATI S, COHEN D, SHARON A . Early events in theFusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. Applied and Environmental Microbiology, 2003,69(3):1695-1701.
[20] DASTJERDI R, KARLOVSKY P . Systemic infection of maize, sorghum, rice, and beet seedlings with fumonisin-producing and nonproducingFusarium verticillioides strains. The Plant Pathology Journal, 2015,31(4):334-342.
[21] 陈东亮, 李纪元, 范正琪, 范妙华 . 根癌农杆菌介导真菌遗传转化的影响因素及应用. 安徽农业科学, 2010,38(7):3317-3320.
CHEN D L, LI J Y, FAN Z Q, FAN M H . Influencing factors of genetic transformation in fungi mediated by Agrobacterium tumefaciens and its application. Journal of Anhui Agricultural Sciences, 2010,38(7):3317-3320. (in Chinese)
[22] 黄亚丽 . 农杆菌介导哈茨木霉转化系统优化及突变体分析[D]. 北京: 中国农业科学院, 2008.
HUANG Y L . The optimization of Agrobacterium tumefaciens mediated Trichoderma harzianum transformation system and analysis of T-DNA insertional mutants[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. ( in Chinese)
[23] 王梅娟, 李坡, 吴敏, 范永山, 谷守芹, 董金皋 . 玉米大斑病菌ATMT突变体库的构建及其分析. 中国农业科学, 2012,45(12):2384-2392.
doi: 10.3864/j.issn.0578-1752.2012.12.006
WANG M J, LI P, WU M, FAN Y S, GU S Q, DONG J G . Construction and evaluation of ATMT mutant library of Setosphaeria turcica. Scientia Agricultura Sinica, 2012,45(12):2384-2392. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.12.006
[24] 许苗苗, 苏前富, 李丽娜, 渠清, 贾娇, 曹志艳, 董金皋 . 青色荧光蛋白标记的禾谷镰孢转化子的构建. 微生物学通报, 2018,45(10):2191-2199.
XU M M, SU Q F, LI L N, QU Q, JIA J, CAO Z Y, DONG J G . Construction of CFP-labeled Fusarium graminearum transformants. Microbiology China, 2018,45(10):2191-2199. (in Chinese)
[25] 张小飞, 李晓, 崔丽娜, 邹成佳, 彭云良, 杨晓蓉 . 轮枝镰孢菌的绿色荧光蛋白基因标记. 西南农业学报, 2014,27(6):2374-2376.
ZHANG X F, LI X, CUI L N, ZOU C J, PENG Y L, YANG X R . Green fluorescent protein gene transformation on Fusarium verticillioides. Southwest China Journal of Agricultural Sciences, 2014,27(6):2374-2376. (in Chinese)
[26] 吴磊 . 轮枝镰孢的荧光标记及其在寄主-病原菌互作中的应用[D]. 秦皇岛: 河北科技师范学院, 2011.
WU L . Fluorescence labelling of Fusarium verticillioides and its application in study of host-fungus interaction[D]. Qinhuangdao: Hebei Normal University of Science and Technology, 2011. ( in Chinese)
[27] 赵培宝, 任爱芝, 胡明江, 张秀省, 陈蕾蕾, 宋晓妍, 石梅 . 农杆菌介导的拟康氏木霉遗传转化及T-DNA插入突变体的筛选. 植物保护, 2010,36(6):74-76.
ZHAO P B, REN A Z, HU M J, ZHANG X S, CHEN L L, SONG X Y, SHI M . Agrobacterium tumefaciens-mediated transformation of Trichoderma pseudokoningii SMF2 and isolation of the T-DNA insertion mutant. Plant Protection, 2010,36(6):74-76. (in Chinese)
[28] 刘玲, 张鸿飞, 张岚, 秦郦, 王德培 . 黑曲霉高效敲除体系构建及tpsA基因的敲除. 食品研究与开发, 2018,39(22):124-130.
LIU L, ZHANG H F, ZHANG L, QIN L, WANG D P . Construction of high efficient gene knockout system in Aspergillus niger and knockout of trehalose-6-phosphate synthase. Food Research and Development, 2018,39(22):124-130. (in Chinese)
[29] 张俊华, 刘烨, 韩雨桐, 潘春清, 王中业, 张淋淋, 崔凯旋 . 农杆菌介导稻瘟病菌绿色荧光蛋白(GFP)遗传转化研究. 东北农业大学学报, 2014,45(11):1-7.
ZHANG J H, LIU Y, HAN Y T, PAN C Q, WANG Z Y, ZHANG L L, CUI K X . GFP genetic transformation of Magnaporthe grisea mediated by Agrobacterium tumefaciens. Journal of Northeast Agricultural University, 2014,45(11):1-7. (in Chinese)
[30] 李春强, 梁慧施, 夏亦荠, 彭明 . GFP标记的尖孢镰刀菌西瓜专化型侵染西瓜过程观察. 热带作物学报, 2011,32(10):1935-1939.
LI C Q, LIANG H S, XIA Y J, PENG M . Observation of the infection process of watermelon by Fusarium oxysporum f. sp. niveum using the GFP marker. Chinese Journal of Tropical Crops, 2011,32(10):1935-1939. (in Chinese)
[31] 张俊华, 牟明, 常浩, 李云鹏, 范琳, 钟庆燕, 潘春清, 邹徳堂 . 根癌农杆菌介导gfp基因转化水稻纹枯病菌及其对病原菌稳定性和致病力的影响. 东北农业科学, 2016,41(6):67-74.
ZHANG J H, MU M, CHANG H, LI Y P, FAN L, ZHONG Q Y, PAN C Q, ZOU D T . Agrobacterium tumefaciens-mediated transformation of gfp gene and its effects on stability and pathogenicity for Rhizoctonia solani. Journal of Northeast Agricultural Sciences, 2016,41(6):67-74. (in Chinese)
[32] 林春花, 刘先宝, 蔡吉苗, 李超萍, 李继锋, 黄贵修 . 橡胶树尖孢炭疽菌绿色荧光蛋白(GFP)标记转化株的获得. 热带作物学报, 2009,30(10):1495-1500.
LIN C H, LIU X B, CAI J M, LI C P, LI J F, HUANG G X . Collectotrichum acutatum GFP tagged transformants generated from Agrobacterium tumefaciens-mediated insertional mutagenesis. Chinese Journal of Tropical Crops, 2009,30(10):1495-1500. (in Chinese)
[33] 陈茂功 . 玉米弯孢叶斑病菌的荧光标记及其对玉米侵染过程的研究[D]. 秦皇岛: 河北科技师范学院, 2012.
CHEN M G . Fluorescence labeling of Curvularia lunata and its infection in maize[D]. Qinhuangdao: Hebei Normal University of Science and Technology, 2012. ( in Chinese)
[34] 吴磊, 李洪杰, 王晓鸣, 朱振东, 段灿星, 武小菲 . 农杆菌介导的轮枝镰孢GFPDsRed遗传转化及转化子特性分析//中国植物病理学会2010年学术年会论文集, 2010: 117.
WU L, LI H J, WANG X M, ZHU Z D, DUAN C X, WU X F . Agrobacterium tumefaciens-mediated transformation of gfp and DsRed and characterization of transformants in Fusarium verticillioides// Proceedings of the Annual Meeting of Chinese Society for Plant Pathology (2010), 2010: 117. (in Chinese)
[35] 盖晓彤 . 玉米茎腐病与穗腐病致病镰孢菌侵染途径及其致病力差异研究[D]. 沈阳: 沈阳农业大学, 2018.
GAI X T . Studies on the infection pathway and pathogenic difference of Fusarium from stalk rot and ear rot on maize[D]. Shenyang: Shenyang Agricultural University, 2018. ( in Chinese)
[36] 张娇, 谷守芹, 李青为, 韩建民, 董金皋 . 根癌农杆菌介导的玉米大斑病菌转化条件的优化. 河北农业大学学报, 2010,33(4):85-88, 108.
ZHANG J, GU S Q, LI Q W, HAN J M, DONG J G . Optimization of factors affecting genetic transformation of Setosphaeria turcica via Agrobacterium tumefaciens. Journal of Agricultural University of Hebei, 2010,33(4):85-88, 108. (in Chinese)
[37] 倪璇, 姜雪, 李雅乾, 陈捷 . 玉米弯孢叶斑病菌ATMT突变株构建及致病力分析. 中国生物工程杂志, 2016,36(1):23-28.
doi: 10.13523/j.cb.20160104
NI X, JIANG X, LI Y Q, CHEN J . Construction and pathogenicity analysis of ATMT mutant of Curvularia lunata. China Biotechnology, 2016,36(1):23-28. (in Chinese)
doi: 10.13523/j.cb.20160104
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!