Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 1078-1089.doi: 10.3864/j.issn.0578-1752.2019.06.011

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Chromium (III) Stress Alleviation by Sulfur Compounds During Chromium Bio-enrichment by Saccharomyces cerevisiae

LI HanTong1,JIA ChengLi1,ZHANG ShuWen1,LU Jing1,PANG XiaoYang1,LIU Lu2(),LÜ JiaPing1()   

  1. 1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 Beijing Institute of Nutrition Resources, Engineering Research Centre of System-Nutrition, Beijing 100069
  • Received:2018-09-14 Accepted:2019-01-11 Online:2019-03-16 Published:2019-03-22
  • Contact: Lu LIU,JiaPing Lü E-mail:13910666179@163.com;lvjp586@vip.sina.com

Abstract:

【Objective】The objective of this study was to investigate the antioxidative mechanism and role of sulphur during chromium (Ⅲ) enrichment by Saccharomyces cerevisiae. The mechanisms of alleviation chromium (Ⅲ) toxicity against yeast by sulphur were revealed. 【Method】Saccharomyces cerevisiae YSI-3.7 was used in this study. Various incubation conditions were investigated, such as various concentrations Cr(Ⅲ) and sulfate. And the corresponding biomass, total chromium content, organic chromium content and oxidative stress markers (including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and so on), were measured and analyzed. 【Result】 Low Cr(Ⅲ) concentration (0-200 μg?mL -1) could stimulate the growth of yeast, while high Cr(Ⅲ) concentration (>500 μg?mL -1) inhibited its growth. After Saccharomyces cerevisiae YSI-3.7 was incubated with 500 μg?mL -1 Cr(Ⅲ) for 44 h, the content of organic Cr in yeast was found to be 725.55±55.08 μg?g -1 DCW and that of total Cr was 1255.53±43.75 μg?g -1 DCW. After Saccharomyces cerevisiae YSI-3.7 was incubated with 800 μg?mL -1 Cr(Ⅲ) for 44 h, the content of organic Cr in yeast was found to be 536.25±36.89 μg?g -1 DCW and that of total Cr was 1812.22±38.24 μg?g -1 DCW. The content of MDA increased (from 11.83 nmol?mL -1 to 18.04 nmol?mL -1) with the increasement of Cr(Ⅲ) concentration (0-800 μg?mL -1), while the activity of SOD and CAT decreased. The content of GSH, total sulfhydryl and T-AOC increased at lower Cr(Ⅲ) concentration (≤500 μg?mL -1), and decreased at the high concentration (800 μg?mL -1). The supplementation of 1 mmol?L -1 Na2SO3 during incubation could alleviate the stress of Cr(Ⅲ) against yeast. The protein content increased and MDA content decreased (12.83%) with the addition of 1 mmol?L -1 Na2SO3 during incubation. The activity of CAT was almost unaffected. The activity of SOD was increased to 4.41%. GSH, T-AOC and GSH-Px content increased to 28.83%, 14.29% and 18.80%, respectively. 【Conclusion】During the Cr(Ⅲ) bio-enrichment process by yeast, Cr(Ⅲ) stress could aggravate the lipid peroxidation of cell membrane. At low Cr(Ⅲ) concentration(0-500 μg?mL -1), yeast could protect itself from this stress by its own antioxidant enzymes, among which glutathione and its related enzymes played an important role. At high concentration of Cr(Ⅲ) (800 μg?mL -1) , the degree of membrane lipid peroxidation was aggravated and the yeast’s own antioxidant capacity was not enough to protect itself from Cr(Ⅲ) stress. Supplementation of S (1 mmol?L -1 Na2SO3) could mitigate membrane lipid peroxidation caused by Cr(Ⅲ)by improving SOD activity, GSH, T-AOC and GSH-Px content in yeast, improving the antioxidant capacity of yeast itself and Cr(Ⅲ) bio-enrichment by yeast.

Key words: Cr(Ⅲ);, S, Saccharomyces cerevisiae, GTF, oxidative stress

Table 1

Effect of Cr (Ⅲ) on YSI-3.7 growth and its chromium enrichment"

Cr(Ⅲ) (μg?mL-1)
0 200 500 800
生物量 Biomass (g/100 mL) 1.40±0.07 1.06±0.01 0.97±0.05 0.45±0.02
有机铬 Organic chromium (μg·g-1DCW) 0 224.74±6.41 725.55±55.08 536.25±36.89
总铬 Total chromium (μg·g-1DCW) 0 409.04±12.65 1255.53±43.75 1812.22±38.24
有机铬/总铬 Organic/total chromium (%) 0 54.94±1.90 57.79±2.45 29.59±2.48

Table 2

Effect of Cr (Ⅲ) on YSI-3.7 oxidative stress"

检测指标
Index
Cr(Ⅲ) 浓度 Cr(Ⅲ) concentration (μg?mL-1)
0 200 500 800
丙二醛 MDA (nmol?mL-1) 11.83±0.38 15.54±0.41 16.91±0.33 18.04±0.44
超氧化物岐化酶 SOD (U?mg-1 prot) 8.61±0.19 8.28±0.11 7.93±0.07 7.35±0.21
过氧化氢酶 CAT (U?mg-1 prot) 9.09±0.28 7.83±0.14 4.72±0.09 3.64±0.03
还原型谷胱甘肽 GSH (μmol?g-1 prot) 31.42±1.54 40.22±1.38 48.52±2.01 43.84±1.94
氧化型谷胱甘肽 GSSG (μmol?g-1 prot) 7.86±0.21 9.56±0.32 12.38±0.52 15.46±0.61
谷胱甘肽氧化酶 GSH-Px (U?g-1 prot) 1044.51±10.22 1274.32±5.89 763.01±3.21 534.68±6.76
总巯基 -SH (μg?g-1 prot) 38.51±1.14 53.44±2.71 59.05±2.98 35.74±1.97
总抗氧化能力 T-AOC (U?g-1 prot) 0.8±0.21 0.85±0.19 1.61±0.32 0.35±0.01

Table 3

Effect of various S compounds on YSI-3.7 biomass and its chromium enrichment"

含硫化合物
S compound
浓度
Concentration (mmol?L-1)
生物量
Biomass
(g/100 mL)
有机铬
Organic chromium
(μg·g-1·DCW)
总铬
Total chromium
(μg·g-1·DCW)
有机铬率
Percentage of organic chromium (%)
0 对照组 Control 1.002±0.1 755.63±4.23 1431.93±10.12 52.77±1.24
Na2SO3 0.5 0.92±0.07 1198.16±9.43 1578.21±11.27 75.92±3.75
1 0.85±0.08 1607.02±6.78 1876.32±9.43 85.65±2.36
5 0.60±0.04 2052.43±10.58 2755.04±11.38 74.50±3.57
10 0.49±0.03 609.58±4.98 1746.95±8.79 34.84±1.98
15 0.32±0.02 477.39±2.75 740.18±8.02 64.50±1.63
Na2S 0.5 1.005±0.25 895.98±5.72 1601.45±5.98 55.95±1.48
1 1.08±0.07 1261.16±6.27 1868.74±9.98 67.75±2.32
5 0.781±0.03 691.63±3.61 2302.31±11.54 30.04±1.03
10 0.69±0.08 613.83±2.88 3516.62±21.32 17.46±0.98
15 0.15±0.04 318.70±1.02 3834.02±20.98 8.31±0.45
(NH42SO3 0.5 0.996±0.05 721.01±2.79 2101.45±14.32 34.31±1.74
1 0.942±0.04 861.12±5.97 2868.14±16.45 30.02±1.05
5 0.276±0.02 542.19±4.34 3000.21±18.91 18.07±1.13
10 0.121±0.02 301.21±2.83 1812.62±13.69 16.62±0.45
15 0.085±0.01 100.32±1.56 1367.02±9.13 7.33±0.41

Fig. 1

Effects of Na2SO3 on reactive oxygen species related intermediate metabolites by YSI-3.7 0: Chromium (Ⅲ) concentration is 0. 500: Chromium (Ⅲ) concentration is 500 μg?mL-1. 500+1 NS: Chromium (Ⅲ) concentration is 500 μg?mL-1, Na2SO3 concentration is 1 mmol?L-1. The same as below"

Fig. 2

Effect of Na2SO3 on YSI-3.7 antioxidant capacity"

[1] 徐晨晨 . 微量元素铬对营养代谢调控的研究进展. 家禽科学, 2012(1):12-15.
doi: 10.3969/j.issn.1673-1085.2012.01.003
XU C C . Research progress on the regulation of nutrient metabolism by trace element chromium.Poultry Science, 2012(1):12-15. (in Chinese)
doi: 10.3969/j.issn.1673-1085.2012.01.003
[2] YEH G Y, EISENBERG D M, KAPTCHUK T J, PHILLIPS R.S. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care, 2003,26(4):1277-1294.
doi: 10.2337/diacare.26.4.1277 pmid: 12663610
[3] HATFIELD M J, GILLESPIE S, CHEN Y, LI Z, CASSADY C J, VINCENT J B . Low-molecular-weight chromium-binding substance from chicken liver and American alligator liver. Comparative Biochemistry & Physiology, Part B, Biochemistry & Molecular Biology 2006, 144(4):423-431.
doi: 10.1016/j.cbpb.2006.04.012 pmid: 16815060
[4] CHEN Y, WATSON H M, GAO J, SINHA S H, CASSADY C J, VINCENT J.B. Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromium. Journal of Nutrition, 2011,141(7):1225-1232.
doi: 10.3945/jn.111.139147 pmid: 21593351
[5] BERNER T O, MURPHY M M, SLESINSKI R . Determining the safety of chromium tripicolinate for addition to foods as a nutrient supplement. Food & Chemical Toxicology, 2004,42(6):1029.
doi: 10.1016/j.fct.2004.02.015 pmid: 15110112
[6] MOLIN M, RENAULT J P, LAGNIEL G, PIN S, TOLEDANO M, LABARRE J . Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast. Free Radical Biology & Medicine, 2007,43:136-144.
doi: 10.1016/j.freeradbiomed.2007.04.007 pmid: 17561102
[7] LI H, GUO A, WANG H . Mechanisms of oxidative browning of wine. Food Chemistry, 2008,108(1):1-13.
doi: 10.1016/j.foodchem.2007.10.065
[8] FERREIRA J, DU TOIT M , DU TOIT W J . The effects of copper and high sugar concentrations on growth, fermentation efficiency and volatile acidity production of different commercial wine yeast strains. Australian Journal of Grape & Wine Research, 2006,12(1):50-56.
doi: 10.1111/j.1755-0238.2006.tb00043.x
[9] 廖芸, 曾英杰, 许笑男, 钟秋平, 赵久香 . 铜离子对荔枝酒降酸酵母发酵性能及醋酸代谢的影响. 食品科技, 2014(10):43-47.
LIAO Y, ZENG Y J, XU X N, ZHONG Q P, ZHAO J X . Effect of copper ion on the fermentation performance and acetic acid metabolism of lychee wine yeast.Food Science and Technology, 2014(10):43-47. (in Chinese)
[10] PANDA S K . Impact of copper on reactive oxygen species, lipid peroxidation and antioxidants in Lemna minor. Biologia Plantarum, 2008,52(3):561-564.
doi: 10.1007/s10535-008-0111-7
[11] GAETKE L M, CHOW C K . Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 2003,189(1/2):147.
doi: 10.1016/S0300-483X(03)00159-8 pmid: 12821289
[12] LIN C C, KAO C H . Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation, 2000,30(2):151-155.
doi: 10.1023/A:1006345126589
[13] BRENNAN R J , SCHIESTL R H . Cadmium is an inducer of oxidative stress in yeast. Mutation Research, 1996, 356(2): 171-178.
doi: 10.1016/0027-5107(96)00051-6 pmid: 8841482
[14] MENEZES R A, AMARAL C, BATISTA-NASCIMMENTO L, SANTOS C, RODRIGUES-POUSADA C . Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Biochemical Journal, 2008,414(2):301-311.
[15] BEYERSMANN D, HARTWIG A . Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 2008,82(8):493-512.
doi: 10.1007/s00204-008-0313-y
[16] HARRIS G K, SHI X L . Signaling by carcinogenic metals and metal-induced reactive oxygen species. Mutation Research, 2003, 533(1):183-200.
[17] BEYERSMANN D, HARTWIG A . Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of Toxicology, 2008,82(8):493-512.
doi: 10.1007/s00204-008-0313-y
[18] 刘鹭, 吕加平, 高艳红 . 空间搭载高产葡萄糖耐量因子(GTF)酵母的选育. 微生物学通报, 2009,36(2):223-230.
LIU L, LÜ J P, GAO Y H . Breeding of high yield glucose tolerance factor (GTF) yeast in space. Microbiology, 2009,36(2):223-230. (in Chinese)
[19] ALEXANDER J, AASETH J . Uptake of chromate in human red-blood-cells and isolated rat-liver cells - the role of the anion carrier. Analyst, 1995,120(3):931-933.
doi: 10.1039/AN9952000931 pmid: 7741257
[20] SUMMERS A O . Damage control: Regulating defenses against toxic metals and metalloids. Current Opinion Microbiology, 2009,12(2):138.
doi: 10.1016/j.mib.2009.02.003 pmid: 19282236
[21] SALNIKOW K, ZHIKOVICH A . Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic and chromium. Chemical Research Toxicology, 2008,21(1):28-24.
doi: 10.1021/tx700198a pmid: 17970581
[22] PEREIRA Y, LAGNIEL G, GODAT E, BAUDOUIN-CORNU P, JUNOT C, LABARRE J . Chromate causes sulfur starvation in yeast. Toxicological Sciences, 2008,106(2):400-412.
doi: 10.1002/app.12197 pmid: 18794233
[23] 冯建永, 庞民好, 张金林, 刘颖超 . 复杂盐碱对黄顶菊种子萌发和幼苗生长的影响及机理初探. 草业学报, 2010,19(5):77-86.
doi: 10.11686/cyxb20100512
FENG J Y, PANG M H, ZHANG J L, LIU Y C . Study on complex effects on saline flaveriabidentis seed germination and seedling growth and its mechanism. Acta prataculturae sinica, 2010,19(5):77-86. (in Chinese)
doi: 10.11686/cyxb20100512
[24] 高春生, 王春秀, 张书松 . 水体铜对黄河鲤肝胰脏抗氧化酶活性和总抗氧化能力的影响. 农业环境科学学报, 2008,27(3):1157-1162.
doi: 10.3321/j.issn:1672-2043.2008.03.055
GAO C S, WANG C X, ZHANG S S . Effect of water copper on antioxidant enzyme activity and total antioxidant capacity of hepatopancreas in the Yellow River carp. Journal of Agricultural Environmental Science, 2008,27(3):1157-1162. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2008.03.055
[25] GADJEV I, STONE J M, GECHEV T S . Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. International Review of Cell & Molecular Biology, 2008,270:87-144.
doi: 10.1016/S1937-6448(08)01403-2 pmid: 19081535
[26] TIWARI K, DWIVEDI K, SINGH S . Chromium (VI) induced phytotoxicity and oxidative stress in pea ( Pisum sativum L.): Biochemical changes and translocation of essential nutrients. Journal of Environmental Biology, 2009,30(3):389.
pmid: 20120464
[27] PEREIRA M D, HERDERIRO R S, FERNANDES P N , ELEUTHERIO E C A, PANEK A D . Targets of oxidative stress in yeast sod mutants. Biochinica et Biophysica Acta, 2003,1620(1-3):245-251.
doi: 10.1016/S0304-4165(03)00003-5 pmid: 12595095
[28] APEL K, HIRTIRT H . Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 2004,55:373-399.
doi: 10.1146/annurev.arplant.55.031903.141701
[29] MITTLER R, VANDERAUWERA S, GOLLERY M, BREUSEGEM F V . Reactive oxygen gene network of plants. Trends in Plant Science, 2004,9(10):490-498.
doi: 10.1016/j.tplants.2004.08.009 pmid: 15465684
[30] KEUNEN E, REMANS T, BOHLER S, VANGRONSVELD J, CUYPERS A . Metal-induced oxidative stress and plant mitochondria. International Journal of Molecular Sciences, 2011,12(10):6894-6918.
doi: 10.3390/ijms12106894 pmid: 3211017
[31] MANGABEIRA P A, FERREIRA A S , DE ALMEIDA A A F, FERNANDES V F, LUCENA E, SOUZA V L, DOS SANTOS JÚNIOR A J, OLIVEIRA A H, GRENIER-LOUSTALOT M F, BARBIER F, SILVA D C . Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals, 2011,24(6):1017-1026.
doi: 10.1007/s10534-011-9459-9 pmid: 21562773
[32] DAUD M K, MEI L, VARIATH M T, ALI S, LI C, RAFIQ M T, ZHU S J . Chromium (VI) uptake and tolerance potential in cotton cultivars: Effect on their root physiology, ultramorphology, and oxidative metabolism. Biomed Research International, 2014,2014(2):975946.
doi: 10.1155/2014/975946 pmid: 4053220
[33] 赵风斌, 王丽卿, 季高华, 李为星 . 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响. 环境污染与防治, 2012,34(10):40-44.
doi: 10.3969/j.issn.1001-3865.2012.10.009
ZHAO F B, WANG L Q, JI G H, LI W X . Effects of salt stress on the biological indexes of 3 submerged plants and the content of malondialdehyde in leaves. Environmental Pollution and Prevention, 2012,34(10):40-44. (in Chinese)
doi: 10.3969/j.issn.1001-3865.2012.10.009
[34] 孟衡玲, 张薇, 卢丙越, 何芳芳, 鲁海菊 . 金银花幼苗对盐胁迫的生理响应. 江苏农业科学, 2015,43(4):247-249.
doi: 10.15889/j.issn.1002-1302.2015.04.090
MENG H L, ZHANG W, LU B Y, HE F F, LU H J . Physiological response of Lonicera japonica seedlings to salt stress. Jiangsu Agricultural Sciences, 2015,43(4):247-249. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2015.04.090
[35] 吴灵琼, 成水平, 杨立华, 吴振斌 . Cd 2+和Cu 2+对美人蕉的氧化胁迫及抗性机理研究 . 农业环境科学学报, 2007,26(4):1365-1369.
doi: 10.3321/j.issn:1672-2043.2007.04.033
WU L Q, CHENG S P, YANG L H, WU Z B . Effects of Cd 2+ and Cu 2+ on oxidative stress and resistance mechanism of Canna indica. Journal of Agricultural Environmental Science, 2007,26(4):1365-1369. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2007.04.033
[36] SHAH K, KUMAR R G, VERMA S, DUBEY R S . Effects of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001,161(6):1135-1144.
doi: 10.1016/S0168-9452(01)00517-9
[37] 杜君, 李海兰, 李慧, 战吉宬, 黄卫东 . 铜对葡萄酒酿酒酵母的氧化胁迫机制. 中国农业科学, 2011,44(2):369-378.
doi: 10.3864/j.issn.0578-1752.2011.02.017
DU J, LI H L, LI H, ZHAN J C, HUANG W D . Oxidative stress of wine yeasts under copper exposure. Scientia Agricultura Sinica, 2011,44(2):369-378. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.02.017
[38] DEVI S R, YAMMAOTO Y, MASTUMOTO H . An intracellular mechanism of aluminum tolerance associaced antioxidant status in cultured tobacco cells. Journal of Inorganic Biochemistry, 2003,97(1):59-68.
doi: 10.1016/S0162-0134(03)00182-X pmid: 14507461
[39] 金承涛 . Al 3+、高温对酿酒酵母的胁迫作用及其耐性机制的研究 [D]. 杭州: 浙江大学, 2005.
JIN C T . The effect of Al 3+, high temperature stress on Saccharomyces cerevisiae and its tolerance mechanism research [D]. Hangzhou: Zhejiang University, 2005.
[40] LI J S, JIA H L, WANG J, CAO Q H, WEN Z C . Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na +/H + antiporter system in the hydrogen peroxide-dependent manner in saltstress Arabidopsis thaliana root. Protoplasma, 2014,251(4):899-912.
doi: 10.1007/s00709-013-0592-x pmid: 24318675
[41] CHRISTOU A, MANGANARIS G A, PAPADOPOULOS I, FOTOPOULOS V . Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiole defence pathways. Journal of Experimental Botany, 2013,64:1953-1966.
doi: 10.1093/jxb/ert055 pmid: 3638822
[42] SHI H T, YE T T, CHAN Z L . Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass. Plant Physiology & Biochemistry, 2013,71(2):226-234.
doi: 10.1016/j.plaphy.2013.07.021 pmid: 23974354
[43] 安志装, 王校常, 严蔚东, 施卫明, 曹志洪 . 植物螯合肽及其在重金属胁迫下的适应机制. 植物生理学报, 2001,37(5):463-467.
doi: 10.1088/0256-307X/18/11/313
AN Z Z, WANG X C, YAN W D, SHI W M, CAO Z H . Phytochelatins and its adaptive mechanism under heavy metal stress. Plant Physiology Communications, 2001,37(5):463-467. (in Chinese)
doi: 10.1088/0256-307X/18/11/313
[44] 李文学, 陈同斌 . 超富集植物吸收富集重金属的生理和分子生物学机制. 应用生态学报, 2003,14(4):627-631.
LI W X, CHEN T B . Physiobgical and molecular biological mechanisms of heavy metal absorption and accumulation in hyperaccumulators. Chinese Journal of Applied Ecology, 2003,14(4):627-631. (in Chinese)
[45] 郞飞波, 张国平 . 植物螯合肽及其在重金属耐性中的作用. 应用生态学报, 2003,14(4):632-636.
LANG F B, ZHANG G P . Phytochelatin and its function in heavy metal tolerance of higher plants. Chinese Journal of Applied Ecology, 2003,14(4):632-636. (in Chinese).
[46] 王宁 . 重金属胁迫与生物样品中巯基化合物的应答作用[D]. 延吉: 延边大学, 2014.
WANG N . Heavy metal stress and the response of sulfhydryl compounds in biological samples [D]. Yanji: Yanbian University , 2014. (in Chinese)
[47] COLEMAN J, BLAKE-KALFF M, DAVIES E . Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation. Trends in Plant Science, 1997,2(4):144-151.
doi: 10.1016/S1360-1385(97)01019-4
[48] FREEMAN J L, PERSANS M W , NIEMAN K . Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyper accumulators. Plant Cell, 2004,16(8):2176-2191.
doi: 10.1105/tpc.104.023036 pmid: 15269333
[49] COBBETT C, GOLDSBROUGH P . Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 2002,53(1):159.
doi: 10.1146/annurev.arplant.53.100301.135154
[50] NOCTOR G, GOMEZ L, VANACKER H, FOYER C H . Interaction between biosynthesis, compartmentation and tansport in the control of gluthione homeostasis and signaling. Journal of Experimental Botany, 2002,53(372):1283-1304.
doi: 10.1093/jexbot/53.372.1283 pmid: 11997376
[51] SUGIYAMA K, IZAWA S, INOUE Y . The Yap 1p- dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000,275(20):15535-15540.
[52] IZAWA S, INOUE Y, KIMURA A . Oxidative stress response in yeast: Effect of glutathione on adaptatin to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Letters, 1995,368(1):73-76.
doi: 10.1016/0014-5793(95)00603-7 pmid: 7615092
[53] WESTWATER J, MCLAREN N F, DORMER U H, JAMIESON D J . The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast, 2002,19(3):233-239.
[54] SHANMUGANATHANA, AVERY SV, WILLETTS S A . Copper- induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Letters, 2004,556(1-3):253-259.
[55] SUGIYAMA K, KAWANRA A, IZAWA S, INOUE Y . Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochemical Journal, 2000,352(1):71-78.
[56] TONGUL B, KAVAKCIOGLU B, TARHAN L . Chloramine T induced oxidative stress and the response of antioxidant system inPhanerochaete chrysosporium. Folia Microbiologica, 2017(1-2):1-9.
[57] MUKAI K, MORINCOTO H, OKAUCHI Y, NAGAOKA S . Kinetic study of reactions between tocopheroxyl radicals and fatty acids. Lipids, 1993,28(8):753-756.
doi: 10.1007/BF02535999
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[5] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[6] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[7] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[8] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[9] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[10] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[11] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[12] YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
[13] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[14] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[15] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!