Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 1066-1077.doi: 10.3864/j.issn.0578-1752.2019.06.010

• HORTICULTURE • Previous Articles     Next Articles

Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis

CHEN QinCao1,2,DAI WeiDong1(),LIN ZhiYuan1,2,XIE DongChao1,2,LÜ MeiLing3,LIN Zhi1()   

  1. 1 Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Agilent Technologies (China) Co., Ltd., Beijing 100102
  • Received:2018-11-12 Accepted:2019-01-10 Online:2019-03-16 Published:2019-03-22
  • Contact: WeiDong DAI,Zhi LIN E-mail:daiweidong@tricaas.com;linzhi@caas.cn

Abstract:

【Objective】Shading treatment is widely used to improve the quality of teas in tea yielding. However, the effects of dark shading on the quality of teas remain unclear. This study focused on the effects of dark shading on the main quality components in teas to understand the relationship between shading and tea quality in detail.【Method】Moderate (65.0%) and dark (99.7%) shading treatments were applied to tea plants by using black shading net, with non-shading as control. Ultraviolet spectrophotometry was employed to determine the contents of total polyphenols, total amino acids and total flavonoids, and ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was employed to investigate the quality components in tea leaves.【Result】Compared with the control group, moderate shading treatment significantly reduced the contents of total amino acids and total flavonoids (P<0.05), and slightly reduced the content of total polyphenols, and therefore increased the ratio of polyphenols to amino acids. Dark shading treatment significantly reduced the contents of total amino acids and total flavonoids, while significantly increased the contents of total polyphenols and the ratio of phenol to ammonia (P<0.05). Principal component analysis showed that the two shading treatments significantly changed the metabolite pattern in tea leaves. A total of 87 compounds were identified, including 2 alkaloids, 18 amino acids, 12 catechins, 8 dimeric catechins, 19 flavone glycosides and flavonol glycosides, 5 glycosidically bound volatiles (GBVs), 6 nucleosides and nucleotides, 9 phenolic acids, and 8 other compounds. The contents of 82 compounds in two shading groups showed significant differences comparing with the control (P<0.05). After shading, the contents of alkaloids significantly increased; amino acids showed various change trends, with the contents of more than half of amino acids significantly decreased. The contents of several catechins and dimeric catechins significantly decreased in moderate shading group, while the contents of most catechins and their dimers significantly increased in dark shading group. The content of most flavone glycosides and flavonol glycosides showed decreased trend along with the increase of shading degree. The contents of most GBVs significantly increased. The contents of most of nucleosides and nucleotides significantly decreased; the content of most phenolic acids significantly increased.【Conclusion】After dark shading treatment, the contents of alkaloids, catechins and dimeric catechins significantly increased, while the contents of amino acids significantly decreased, and therefore the ratio of phenol to ammonia significantly increased, which indicated that dark shading might not contribute to improve the tea quality.

Key words: tea, shading, metabolomics, LC-MS, secondary metabolism

Fig. 1

Shading treatment (A) and appearance changes of tea leaves (B-D) "

Table 1

The effects of shading on main biochemical compositions and moisture content of tea leaves"

对照CK 中度遮阴(M)Moderate shading 黑暗遮阴(D)Dark shading
总多酚 Total polyphenols (%) 9.99±0.4a 9.77±0.71a 12.75±0.57b
总氨基酸 Total amino acids (%) 4.63±0.14a 4.20±0.05b 4.33±0.06b
总黄酮 Total flavonoids (%) 3.28±0.17a 2.17±0.06b 1.46±0.14c
酚氨比Ratio of polyphenols to amino acids 2.16±0.05a 2.33±0.17a 2.95±0.17b
没食子酸Gallic acid (mg?g-1) 3.78±0.22a 4.51±0.29b 4.63±0.11b
表没食子儿茶素 EGC (mg?g-1) 14.93±0.37a 13.49±0.08b 10.56±0.34c
儿茶素 C (mg?g-1) 4.19±0.13a 3.99±0.03b 8.24±0.08c
表没食子儿茶素没食子酸酯EGCG (mg?g-1) 29.12±3.86a 28.35±2.7a 53.38±6.08b
表儿茶素EC (mg?g-1) 6.42±0.05a 5.58±0.07b 5.64±0.12b
表儿茶素没食子酸酯ECG (mg?g-1) 2.19±0.63a 1.79±0.37a 5.69±1.12b
咖啡碱Caffeine (mg?g-1) 26.93±0.87a 28.88±0.08b 39.4±0.19c
含水率Moisture content (%) 78.67±0.13a 80.15±0.28b 80.85±0.25c

Fig. 2

PCA score plot of 3 sets of samples (R2X=0.757, Q2=0.687) "

Table 2

Identified compounds and their relative contents in tea leaves (peak area, counts) "

编号
NO.
化合物
Compound
对照
CK
中度遮阴(M)
Moderate shading
黑暗遮阴(D)
Dark shading
生物碱 Alkaloids
1 可可碱 Theobromine* 21601922±564017a 23610245±1235150b 31765707±910344c
2 咖啡碱 Caffeine* 81927164±669239a 84157969±833682b 92249135±626755c
氨基酸 Amino acids
3 赖氨酸 Lysine* 415102±33333a 304636±13196b 287939±21857b
4 组氨酸 Histidine* 106521±2331a 114046±1501b 115505±4088b
5 精氨酸 Arginine* 1080777±17439a 411284±30083b 310232±11544c
6 谷氨酰胺 Glutamine* 11504894±248750a 9510890±228064b 8544787±165748c
7 天冬酰胺 Asparagine* 269010±4047a 330815±12527b 386838±12683c
8 天冬氨酸 Aspartic acid* 2471046±65470a 3061948±147858b 3511442±163262c
9 苏氨酸 Threonine* 508856±15011a 541787±29692a 658518±34367b
10 谷氨酸 Glutamic acid* 12341565±309155a 13270317±611986b 13439150±632674b
11 脯氨酸 Proline* 2645963±379642a 2440953±213986ab 2108482±62378b
12 哌啶酸 Pipecolic acid 3248531±142042a 2935336±171353b 1764292±38796c
13 缬氨酸 Valine* 2339386±101496a 2238141±130139a 1919611±60701b
14 焦谷氨酸 Pyroglutamic acid 1062221±57097a 811492±72660b 771975±48705b
15 茶氨酸 Theanine* 68360338±585955a 66479617±411838b 68385572±731671a
16 络氨酸 Tyrosine* 1786868±93078a 1549169±153847b 1106611±81550c
17 亮氨酸 Leucine* 1443868±81819a 1408718±79026a 1573454±70977b
18 异亮氨酸 Isoleucine* 3262703±121220a 3024099±132531ab 2798292±251013b
19 苯丙氨酸 Phenylalanine* 4853644±269826a 4666955±267358a 2267113±388453b
20 色氨酸 Tryptophan* 5472135±160789a 5984855±345522b 11062018±429397c
儿茶素类物质 Catechins
21 没食子儿茶素 GC* 10739724±248150a 7266229±1746807b 6619543±177288b
22 表没食子儿茶素 EGC* 39500597±1284644a 37443505±1664176b 34546359±1417812c
23 儿茶素 C* 8415688±210799a 7060237±384357b 8382320±246267a
24 表没食子儿茶素没食子酸酯 EGCG* 29958037±706088a 30326483±808249a 34639578±1220789b
25 表没食子儿茶素-3,5-二没食子酸酯
EGC 3,5-digallate
273480±42970a 283272±48547a 1053013±139393b
26 没食子儿茶素没食子酸酯 GCG 972901±112326a 1030902±94020a 1425857±71356b
27 表儿茶素 EC* 19771924±1020879a 18019916±667293b 19623903±522374a
28 表没食子儿茶素-3- (3-O-甲基)没食子酸酯 EGCG3''Me* 120447±4955a 140818±4851b 199237±10846c
29 表儿茶素没食子酸酯 ECG* 18779724±793807a 17384430±501165a 24909140±1543699b
30 表阿夫儿茶精 Epiafzelechin* 734021±40623a 779426±44759a 632343±30136b
31 表没食子儿茶素-3-O (4-O-甲基)没食子酸酯 EGCG4''Me 172678±3694a 186962±6304b 117215±7432c
32 表阿夫儿茶精-3-没食子酸酯 Epiafzelechin 3-gallate 361261±14773a 417017±48019a 872386±74888b
儿茶素二聚体类物质 Dimeric catechins
33 原花青素B3 Procyanidin B3 1456926±144947a 1318465±164090a 1777328±154439b
34 原花青素B5 Procyanidin B5 676231±36224a 607400±27511a 865820±81000b
35 原花青素B1 Procyanidin B1 12734590±529138a 11845963±653962a 14682473±1649024b
36 原花青素B2 Procyanidin B2* 3648511±97335a 3372480±218490b 4396056±133796c
37 原花青素C1 Procyanidin C1 442411±27557a 407848±31717a 576841±29677b
38 聚酯型儿茶素B Theasinensin B 2686283±501963a 2475063±384834a 2088193±324752a
39 聚酯型儿茶素A Theasinensin A 1078878±239782a 1060887±272465a 1853021±224828b
40 表儿茶素-4α-8-表儿茶素没食子酸酯
EC-(4alpha->8)-ECG
3126006±328977a 3187820±548213a 3992103±491254b
黄酮(醇)糖苷
Flavone glycosides and flavonol glycosides
41 芹菜素 6,8-C-二葡萄糖苷
Apigenin 6,8-C-diglucoside*
1613798±56930a 1630940±131948a 777980±59120b
42 芹菜素 6-C-葡糖-8-C-阿拉伯糖苷
Apigenin 6-C-glucosyl-8-C-arabinoside
1660183±106041a 1503259±97807b 810637±78142c
43 芹菜素 6-C-阿拉伯糖-8-C-葡萄糖苷
Apigenin 6-C-arabinoside-8-C-glucoside
1496711±129603a 1518132±151862a 788376±65889b
44 槲皮素三葡萄糖苷1 Quercetin triglucoside1 1612840±57495a 1363996±78280b 580505±25067c
45 槲皮素二葡萄糖苷 Quercetin diglucoside 67381±3565a 55609±3754b 107029±9284c
46 槲皮素三葡萄糖苷2 Quercetin triglucoside2 1084804±46160a 1141132±51278a 638989±30546b
47 杨梅酮 3-葡萄糖苷 Myricetin 3-glucoside 18182085±616935a 12072654±310669b 3589507±251769c
48 牡荆素 Vitexin (Apigenin 8-C-glucoside)* 765594±51330a 782206±55471a 271503±22369b
49 异牡荆素 Isovitexin (Apigenin 6-C-glucoside)* 1181313±24234a 979750±147049b 233632±18079c
50 槲皮素 3-半乳糖苷Quercetin 3-O-galactoside* 1099792±11518a 506247±12394b 143146±3610c
51 槲皮素 3-葡萄糖酰芸香糖苷
Quercetin 3-O-glucosylrutinoside
14979656±3750206a 8112166±2330341b 3161317±67104c
52 芦丁 Rutin (Quercetin 3-rutinoside)* 2164395±550873a 1090625±197167b 198801±14635c
53 异槲皮苷 Isoquercitrin (Quercetin 3-glucoside)* 17026726±301235a 7759338±124311b 1851133±23502c
54 山奈酚 3-半乳糖酰芸香糖苷
Kaempferol 3-galactosylrutinoside
7541465±350174a 7835962±171382a 4825756±137690b
55 山奈酚 3-葡糖酰芸香糖苷
Kaempferol 3-glucosylrutinoside
7016794±174776a 5664808±182475b 1898898±51123c
56 山奈酚 3-半乳糖苷 Kaempferol 3-O-galactoside* 23176288±330927a 20712077±535708b 7805419±171856c
57 山奈酚 3-芸香糖苷 Kaempferol 3-O-rutinoside* 2816105±37743a 1598996±83538b 483109±13085c
58 山奈酚 3-葡萄糖苷 Kaempferol 3-O-glucoside* 5081721±116589a 3529878±58811b 936048±18986c
59 山奈酚 3-阿拉伯糖苷 Kaempferol 3-O-arabinoside* 1525796±41047a 1362198±34642b 469329±16088c
香气糖苷 Glycosidically bound volatiles
60 苯甲基樱草糖苷 Benzyl primeveroside 355943±33789a 418331±21363b 457889±16047c
61 苯乙基樱草糖苷 Phenylethyl primeveroside 303228±36908a 670857±67252b 2026015±184020c
62 顺-3-己烯基樱草糖苷 cis-3-Hexenyl b-primeveroside 115287±8765a 129325±6209b 219121±11667c
63 芳樟醇氧化物樱草糖苷 Linalool oxide primeveroside 2152086±267169a 2604541±163205b 972995±35694c
64 芳樟基樱草糖苷 Linalyl primeveroside 142195±5721a 232484±9465b 256285±15269c
核苷(酸) Nucleosides and nucleotides
65 腺嘌呤核苷二磷酸 ADP 289424±11725a 241159±17959b 233107±15448b
66 腺嘌呤核苷酸 AMP 2320655±155694a 2183139±147428a 1661637±77320b
67 (S)-5'-脱氧-5' -(甲基亚磺酰基)腺苷
(S)-5'-Deoxy-5'-(methylsulfinyl)adenosine
3129086±882862a 2919162±1223813a 1980296±688545a
68 腺苷 Adenosine* 11518652±412666a 10370580±354834b 8366365±330059c
69 鸟苷 Guanosine* 2390845±190284a 2035461±70401b 1463535±89231c
70 5'-甲硫腺苷 5'-Methylthioadenosine 3089992±571947a 3567162±597102a 3150748±579503a
酚酸 Phenolic acids
71 茶没食子素 Theogallin* 25899247±573438a 31559584±533807b 50027889±838726c
72 木麻黄素 Strictinin* 1774131±71441a 1958248±182106a 3045129±305136b
73 4-香豆酰奎宁酸 4-Coumaroylquinic acid 1490324±342313a 1610962±50961a 1667523±402289a
74 绿原酸 Chlorogenic acid* 951977±26554a 1163181±36488b 1210987±22284c
75 二没食子葡萄糖苷 Digalloylglucose 54447±5062a 65531±4727b 136856±7065c
76 3-O-p-香豆酰奎宁 3-O-p-Coumaroylquinic acid 5148816±226499a 5686498±191820a 4357076±794521b
77 鲁米诺酸 Lucuminic acid 393779±42713a 428757±27110a 180194±17712b
78 咖啡酰莽草酸 Caffeoylshikimic acid 124053±3716a 71765±2542b 0±0c
79 2''-O-反式香豆酰紫云英苷2''-O-trans-p-Coumaroylastragalin 315833±14488a 427880±10136ab 481791±180927b
其他 Others
80 胆碱磷酸 Phosphocholine 996444±32181a 1102106±31318b 2057178±51259c
81 甘油磷酸胆碱 Glycerophosphocholine 3593165±298005a 1005165±240471b 689645±68058c
82 N-乳酰乙醇胺 N-Lactoyl ethanolamine 1479644±40550a 1231846±44941b 956384±48087c
83 茶氨酸葡萄糖苷 Theanine glucoside 1570632±195849a 1325741±40281b 1732060±143831a
84 1-乙基-5-羟基-2-吡咯烷酮1-Ethyl-5-hydroxy-2-pyrrolidinone* 2415457±132124a 2761946±73300b 2371416±94210a
85 泛酸 Pantothenic acid 307404±16208a 262262±7379b 236161±10922c
86 二氢猕猴桃内脂 Dihydroactinidiolide 199672±27481a 226319±14022b 135856±6966c
87 N, N'-二环己基脲 N,N'-Dicyclohexylurea 3100145±55344a 3096187±43286a 3041915±59904a
[1] HARBOWY M E, BALENTINE D A, DAVIES A P, CAI Y . Tea chemistry. Critical Reviews in Plant Sciences, 1997,16(5):415-480.
doi: 10.1080/07352689709701956
[2] 孙京京, 朱小元, 罗贤静丽, 邓骋, 宁井铭 . 不同遮荫处理对绿茶品质的影响. 安徽农业大学学报, 2015,42(3):387-390.
doi: 10.13610/j.cnki.1672-352x.20150424.018
SUN J J, ZHU X Y , LUO X J L, DENG C, NING J M . Effects of different degrees of shading on green tea quality. Journal of Anhui Agricultural University, 2015,42(3):387-390. (in Chinese)
doi: 10.13610/j.cnki.1672-352x.20150424.018
[3] 张文锦, 梁月荣, 张方舟, 陈常颂, 张应根, 陈荣冰, 翁伯奇 . 覆盖遮荫对乌龙茶产量、品质的影响. 茶叶科学, 2004,24(4):276-282.
doi: 10.3969/j.issn.1000-369X.2004.04.010
ZHANG W J, LIANG Y R, ZHANG F Z, CHEN C S, ZHANG Y G, CHEN R B, WENG B Q . Effects on the yield and quality of oolong tea by covering with shading net. Journal of Tea Science, 2004,24(4):276-282. (in Chinese)
doi: 10.3969/j.issn.1000-369X.2004.04.010
[4] 石元值, 肖强, 吕闰强, 韩国方 . 不同遮荫材料对茶树叶产量与品质的影响//第十五届中国科协年会, 2013.
SHI Y Z, XIAO Q, LÜ R Q, HAN G F . The effects of the shading mate rials on the tea yield and tea qualities//The 15th Annual Meeting of China Association for Science and Technology , 2013. (in Chinese)
[5] 肖润林, 王久荣, 汤宇, 刘永胜, 彭晚霞, 宋同清 . 高温干旱季节遮阳网覆盖对茶园温湿度和茶树生理的影响. 生态学杂志, 2005,24(3):251-255.
XIAO R L, WANG J R, TANG Y, LIU Y S, PENG W X, SONG T Q . Effects of covering with outer shading screens during hot-dry season in tea plantation. Chinese Journal of Ecology, 2005,24(3):251-255. (in Chinese)
[6] 肖润林, 王久荣, 单武雄, 黎星辉, 宋同清, 汤宇 . 不同遮荫水平对茶树光合环境及茶叶品质的影响. 中国生态农业学报, 2007,15(6):6-11.
XIAO R L, WANG J R, DAN W X, LI X H, SONG T Q, TANG Y . Tea plantation environment and quality under different degrees of shading. Chinese Journal of Eco-Agriculture, 2007,15(6):6-11. (in Chinese)
[7] LEE L S, CHOI J H, SON N, KIM S H, PARK J D, JANG D J, JEONG Y, KIM H J . Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. Journal of Agricultural & Food Chemistry, 2013,61(2):332-338.
doi: 10.1021/jf304161y pmid: 23256790
[8] ZHANG Q F, SHI Y Z, MA L F, YI X Y, RUAN J Y . Metabolomic analysis using ultra-performance liquid chromatography-quadrupole- time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PLoS One, 2014,9(11):1-10.
doi: 10.1371/journal.pone.0112572 pmid: 4229221
[9] 刘建军, 袁丁, 司辉清, 庞晓莉, 唐晓波, 杨洁 . 遮荫对不同季节茶树新梢的内含成分影响研究. 西南农业学报, 2013,26(1):115-118.
doi: 10.3969/j.issn.1001-4829.2013.01.024
LIU J J, YUAN D, SI H Q, PANG X L, TANG X B, YANG J . Effects of shading on ingredients of tea shoots in different seasons. Journal of Southwest Agriculture, 2013,26(1):115-118. (in Chinese)
doi: 10.3969/j.issn.1001-4829.2013.01.024
[10] WANG Y S, GAO L P, SHAN Y, LIU Y J, TIAN Y W, XIA T . Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis(L.) O. Kuntze). Scientia Horticulturae, 2012,141(3):7-16.
doi: 10.1016/j.scienta.2012.04.013
[11] KU K M, CHOI J N, KIM J, KIM J K, YOO L G, LEE S J, HONG Y S, LEE C H . Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). Journal of Agricultural & Food Chemistry, 2010,58(1):418-426.
doi: 10.1021/jf902929h pmid: 19994861
[12] 杨剑超, 姜学玲, 王德涛, 贺晶, 张晓伟, 孙晓, 王冰 . 遮荫处理对胶东丘陵地区设施夏茶品质的影响. 现代农业科技, 2018(6):23-34.
YANG J C, JIANG X L, WANG D T, HE J, ZHANG X W, SUN X, WANG B . Effect of shading treatment on summer green tea quality in Jiaodong hilly area.Science of Modern Agricultures, 2018(6):23-34. (in Chinese)
[13] 单武雄, 肖润林, 王久荣, 陈佩, 付晓青 . 遮光对丘陵茶园白露毛尖茶产量和品质的影响. 农业现代化研究, 2010,31(3):368-372.
doi: 10.3969/j.issn.1000-0275.2010.03.026
DAN W X, XIAO R L, WANG J R, CHEN P, FU X Q . Effects of shading on yield and quality of Bailu Maojian famous tea. Research of Agricultural Modernzation, 2010,31(3):368-372. (in Chinese)
doi: 10.3969/j.issn.1000-0275.2010.03.026
[14] YANG Z Y, KOBAYASHI E, KATSUNO T, ASANUMA T, FUJIMORI T, ISHIKAWA T, TOMOMURA M, MOCHIZUKI K, WATASE T, NAKAMURA YWATANABE N . Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea ( Camellia sinensis) plants in the dark. Food Chemistry, 2012,135(4):2268-2276.
doi: 10.1016/j.foodchem.2012.07.066 pmid: 22980801
[15] TONTUL I, TORUN M, DINCER C, SAHIN-NADEEM H, TOPUZ A, TURNA T, OZDEMIR F . Comparative study on volatile compounds in Turkish green tea powder: Impact of tea clone, shading level and shooting period. Food Research International, 2013,53(2):744-750.
doi: 10.1016/j.foodres.2012.12.026
[16] 张文锦, 梁月荣, 张应根, 陈常颂, 张方舟 . 遮荫对夏暑乌龙茶主要内含化学成分及品质的影响. 福建农业学报, 2006,21(4):360-365.
doi: 10.3969/j.issn.1008-0384.2006.04.015
ZHANG W J, LIANG Y R, ZHANG Y G, CHEN C S, ZHANG F Z . Effects on quality and chemical components of oolong tea by shading in summer. Fujian Journal of Agricultural Sciences, 2006,21(4):360-365. (in Chinese)
doi: 10.3969/j.issn.1008-0384.2006.04.015
[17] YANG C, HU Z Y, LU M L, LI P L, TAN J F, CHEN M, LV H P, ZHU Y, ZHANG Y, GUO L, PENG Q H, DAI W D, LIN Z . Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International, 2018,106:909-919.
doi: 10.1016/j.foodres.2018.01.069 pmid: 29580004
[18] DAI W D, QI D D, YANG T, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, XIE D C, TAN J F, LIN Z . Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea ( Camellia sinensis L.). Journal of Agricultural & Food Chemistry, 2015,63(44):9869-9878.
[19] DAI W D, XIE D C, LU M L, LI P L, LV H P, YANG C, PENG Q H, ZHU Y, GUO L, ZHANG Y, TAN J F, LIN Z . Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Research International, 2017,96:40-45.
doi: 10.1016/j.foodres.2017.03.028 pmid: 28528106
[20] TAN J F, DAI W D, LU M L, LV H P, GUO L, ZHANG Y, ZHU Y, PENG Q H, LIN Z . Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Research International, 2016,79:106-113.
doi: 10.1016/j.foodres.2015.11.018
[21] CHEN Y Y, FU X N, MEI X, ZHOU Y, CHENG S H, ZENG L T, DONG F, YANG Z Y . Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea ( Camellia sinensis) leaves. Journal of Proteomics, 2017,157:10-17.
doi: 10.1016/j.jprot.2017.01.017 pmid: 28163235
[22] 张英娜 . 绿茶茶汤主要儿茶素呈味特性研究[D]. 北京: 中国农业科学院, 2016.
ZHANG Y N . Study on the taste characteristics of the main catechins in green tea infusion[D]. Beijing: Chinese Academy of Agricultural Science, 2016. ( in Chinese)
[23] SCHARBERT S, HOLZMANN N, HOFMANN T . Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural & Food Chemistry, 2004,52(11):3498-3508.
doi: 10.1021/jf049802u pmid: 15161222
[24] SCHARBERT S, HOFMANN T . Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural & Food Chemistry, 2005,53(13):5377-5384.
doi: 10.1021/jf050294d pmid: 15969522
[25] HO C T, ZHENG X, LI S M . Tea aroma formation. Food Science & Human Wellness, 2015,4(1):9-27.
[26] CHEN Q C, ZHU Y, DAI W D, LV H P, MU B, LI P L, TAN J F, NI D J, LIN Z . Aroma formation and dynamic changes during white tea processing. Food Chemistry, 2019,274:915-924.
doi: 10.1016/j.foodchem.2018.09.072
[27] GUI J D, FU X M, ZHOU Y, KATSUNO T, MEI X, DENG R F, XU X L, ZHANG L Y, DONG F, WATANABE N, YANG Z Y . Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural & Food Chemistry, 2015,63(31):6905-6914.
doi: 10.1021/acs.jafc.5b02741 pmid: 26212085
[28] KANEKO S, KUMAZAWA K, MASUDA H, HENZE A, HOFMANN T . Molecular and sensory studies on the umami taste of Japanese green tea. Journal of Agricultural & Food Chemistry, 2006,54(7):2688-2694.
doi: 10.1021/jf0525232 pmid: 16569062
[29] KANEKO S, KUMAZAWA K, MASUDA H, HENZE A, HOFMANN T . Sensory and structural characterisation of an umami enhancing compound in green tea (mat-cha). Developments in Food Science, 2006,43(43):181-184.
doi: 10.1016/S0167-4501(06)80043-9
[30] ZHAO F, QIU X H, YE N X, QIAN J, WANG D H, ZHOU P, CHEN M J . Hydrophilic interaction liquid chromatography coupled with quadrupole-orbitrap ultra high resolution mass spectrometry to quantitate nucleobases, nucleosides, and nucleotides during white tea withering process. Food Chemistry, 2018,266:343-349.
doi: 10.1016/j.foodchem.2018.06.030
[31] LI C F, YAO M Z, MA C L, MA J Q, JIN J Q, CHEN L . Differential metabolic profiles during the albescent stages of ‘Anji Baicha’ ( Camellia sinensis). PLoS One, 2015,10:1-18.
[32] MA C L, CHEN L, WANG X C, JIN J Q, MA J Q, YAO M Z, WANG Z L . Differential expression analysis of different albescent stages of 'Anji Baicha' ( Camellia sinensis(L.) O. Kuntze) using cDNA microarray. Scientia Horticulturae, 2012,148:246-254.
doi: 10.1016/j.scienta.2012.09.033
[33] ZHANG Q F, LIU M Y, RUAN J Y . Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar. Frontiers in Plant Science, 2017,8:1-11.
doi: 10.3389/fpls.2017.00291 pmid: 5337497
[34] ZHANG Q F, LIU M F, RUAN J Y . Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC Plant Biology, 2017,17:1-10.
doi: 10.1186/s12870-016-0951-9 pmid: 5209872
[35] 大棚课题组. 大棚覆盖技术在茶树上的应用研究初报. 蚕桑茶叶通讯, 1998(3):8-10.
GROUP G R. Preliminary report on the application of greenhouse covering technology on tea trees.Sericulture Tea Communication, 1998(3):8-10. (in Chinese)
[36] 胡永光, 江丰 , Ashraf MAHMOOD, 刘鹏飞 . 春茶采摘末期遮荫对其生长和品质的影响. 农业机械学报, 2018,49(1):283-289.
doi: 10.6041/j.issn.1000-1298.2018.01.035
HU Y G, JIANG F, ASHRAF M, LIU P F . Effects of shading cultivation on growth and quality of spring tea during final harvesting period. Journal of Agricultural Machinery, 2018,49(1):283-289. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2018.01.035
[37] 宛晓春 . 茶叶生物化学. 第三版. 北京: 中国农业出版社, 2003: 165-166.
WAN X C . Tea Biochemistry. 3th Edition. Beijing: China Agricultural Press, 2003: 165-166. (in Chinese)
[38] 李明, 张龙杰, 石萌, 林小明, 郑新强, 王开荣, 陆建良, 梁月荣 . 遮光对光照敏感型新梢白化茶春梢化学成分含量的影响. 茶叶, 2016,42(3):150-154.
LI M, ZHANG L J, SHI M, LIN X M, ZHENG X Q, WANG K R, LU J L, LIANG Y R . Effect of light-shading on chemical composition of spring shoots on light-sensitive albino tea plants. Journal of Tea, 2016,42(3):150-154. (in Chinese)
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[3] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[4] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[5] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[6] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[7] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[8] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[9] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[10] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[11] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[12] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[13] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[14] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[15] WANG YaHui, LIU XiaoHong, YONG MingLi, XIONG AiSheng, SU XiaoJun. Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics [J]. Scientia Agricultura Sinica, 2021, 54(22): 4869-4879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!