Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (5): 874-881.doi: 10.3864/j.issn.0578-1752.2019.05.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Sulfur Fertilizer on Boron Uptake and Distribution of Rape in B-contaminated Soil

LI MingFeng,LIU XinWei,WANG HaiTong,ZHAO ZhuQing()   

  1. Microelement Research Center, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070
  • Received:2018-09-02 Accepted:2018-12-17 Online:2019-03-01 Published:2019-03-12
  • Contact: ZhuQing ZHAO E-mail:zzq@mail.hzau.edu.cn

Abstract:

【Objective】This study explored the effects of sulfur (S) fertilizer application on B uptake and distribution in rapeseed under high boron (B) environment, and provided a theoretical basis for rational application of S fertilizer to alleviate B toxicity in rapeseed (Brassica napus L.). 【Method】Rape plants (cv. Huayouza 9) were grown in pots filled with calcareous alluvial soil contaminated with B (total B content: 13.44 mg·kg -1; available B: 5.07 mg·kg -1) and the effects of S fertilizer level (0, 20, 50, 100, 200, and 500 mg·kg -1) on B concentration, distribution, cell wall extraction rate, cell wall B concentration and its proportion of total B in different parts of the rape were determined at the podding stage. 【Result】 With the increase of S application, the biomass increased at first and then decreased in different parts of rape. When the S was applied at 50 mg·kg -1, the fresh biomass of rape was the largest, reached 364.5 g/plant under different S application, and the B concentration and distribution in different parts of rape followed the order of pods>leaves>stems>roots, which indicated that the pods were the main accumulation site of B. As the S fertilizer level increased from 0 to 100 mg·kg -1, the pod B concentration and distribution ratios decreased by 14.8% and 15.0%, respectively. The extraction rate of cell wall of rapeseed pods increased by 43.0%, and there was no significant change in the B concentration and proportion in the cell wall. When S fertilizer was continuously applied to 200 mg·kg -1, the B concentration, distribution ratios and cell wall B concentration of rapeseed pods decreased significantly, and cell wall B proportion increased significantly compared with that of non-sulfur fertilizer. The opposite trends were found in the B concentrations and cumulative distribution ratios in the leaves, stems and roots. As the S fertilizer level increased from 0 to 100 mg·kg -1, the B concentration significantly increased by 15.0%, 32.9% and 34.9% in rape leaves, stems, and roots, respectively. The B distribution ratios significantly increased by 13.4%, 29.6% and 18.6%, and B concentration in the cell wall significantly increased by 12.3%, 22.9% and 14.9% in rape leaves, stems, and roots, respectively. It showed that the addition of S fertilizer increased the B concentration of the leaves, stems and roots of rapeseed. 【Conclusion】S fertilizer application effectively alleviated B toxicity by increasing biomass, limiting B translocation from roots, stems and leaves to pods, and by increasing the extraction rate of cell wall in rape plants grown on B-contaminated soil. The optimum amount of S fertilizer application was 50-100 mg·kg -1.

Key words: boron contamination, sulfur fertilizer, rape, boron distribution, cell wall

Table 1

Effect of S fertilizer level on biomass in different parts of rape plants at the podding stage (fresh weight)"

施硫量
S fertilizer level (mg·kg-1)
油菜不同部位鲜重 Fresh weight in different parts of rape (g/plant) 单株生物量
Biomass (g/plant)
果荚 Pod 叶 Leaf 茎 Stem 根 Root
0 57.30±2.71c 77.02±6.46b 142.48±5.95cd 36.35±1.49ab 313.16±13.52cd
20 64.15±3.87abc 84.60±2.23ab 151.91±11.07bc 37.61±1.78a 338.26±13.33b
50 68.47±3.70a 90.90±5.38a 166.68±6.25a 38.49±2.18a 364.53±6.75a
100 64.57±5.62ab 85.79±7.10ab 157.18±7.58ab 38.76±2.65a 346.29±14.74ab
200 60.89±3.32bc 81.38±2.58ab 148.35±1.86bcd 35.72±1.82ab 326.34±5.23bc
500 57.71±2.15bc 77.00±3.93b 137.38±3.28d 33.42±2.51b 305.50±8.94d

Fig. 1

Effect of S fertilizer level on B concentration (left) and distribution ratio (right) in different parts of rape plants at the podding stage"

Fig. 2

Effect of S fertilizer level on cell wall B concentration(left) and its proportion on total B (right) in different parts of rape plants at the podding stage"

Table 2

Effect of S fertilizer level on cell wall extraction ratio in different parts of rape plants at the podding stage (fresh weight)"

施硫量
S fertilizer level (mg·kg-1)
细胞壁提取率 The extraction rate of the cell wall (%)
果荚 Pod 叶 Leaf 茎 Stem 根 Root
0 7.90±0.45c 7.65±0.32b 21.25±1.48a 20.71±1.18a
20 8.23±0.15c 7.62±0.43b 22.69±0.58a 19.77±1.20ab
50 9.25±0.17c 7.04±0.77ab 22.62±1.14a 19.36±0.77ab
100 11.30±0.97b 6.97±0.31ab 21.32±0.95a 18.44±1.00b
200 11.99±0.79ab 6.37±0.50a 19.20±1.18b 17.91±0.77b
500 12.94±1.41a 6.31±0.23a 18.95±0.67b 17.87±1.61b

Fig. 3

Effects of S fertilizer on the transmission electron micrographs of leaves of rape at the podding stage"

[1] CARTWRIGHT B, ZARCINAS B A, MAYFIELD A H .Toxic concentration of boron in a red-brown earth at Gladstone South Australia. Soil Research, 1984,22(3):261-272.
doi: 10.1071/SR9840261
[2] PARKS J L, EDWARDS M .Boron in the Environment. Critical Reviews in Environmental Science and Technology, 2005,35(2):81-114.
doi: 10.1080/10643380590900200
[3] GÜR N, TÜRKER O C, BÖCÜK H . Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere , 2016,157:1-9.
doi: 10.1016/j.chemosphere.2016.04.138 pmid: 27192627
[4] SHAH A, WU X W, ULLAH A, FAHAD S, MUHAMMAD R, YAN L, JIANG C C .Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicology and Environmental Safety, 2017,145(6):575-582.
doi: 10.1016/j.ecoenv.2017.08.003 pmid: 28800533
[5] 段碧辉, 刘新伟, 矫威, 赵竹青, 胡承孝 .硒减轻油菜幼苗硼毒害机理的研究. 中国农业科学, 2014,47(11):2126-2134.
doi: 10.3864/j.issn.0578-1752.2014.11.006
DUAN B H, LIU X W, JIAO W, ZHAO Z Q, HU C X . Alleviation of boron toxicity on rape seedlings by selenium. Scientia Agricultura Sinica , 2014,47(11):2126-2134. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.11.006
[6] 王春利, 邢小茹, 吴国平, 司杨, 魏复盛 .宽甸土壤及部分农作物中硼的分布及污染分析. 中国环境监测, 2003,19(5):4-7.
doi: 10.3969/j.issn.1002-6002.2003.05.002
WANG C L, XING X R, WU G P, SI Y, WEIF S . Analyses of boron distribution and pollution in soil and some crops in Kuandian. Environmental Monitoring in China , 2003,19(5):4-7. (in Chinese)
doi: 10.3969/j.issn.1002-6002.2003.05.002
[7] SCIALLI A R, BONDE J P BRÜSKE-HOHLFELD I,CULVER B D,Li Y,SULLIVAN F M,. An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers. Reproductive Toxicology, 2010,29(1):10-24.
doi: 10.1016/j.reprotox.2009.10.006 pmid: 19850122
[8] 黄启为, 杨志辉, 胡树林, 刘鹏, 王翠红, 彭建伟 .硫肥对油菜产量及品质的影响. 湖南农业大学学报(自然科学版), 2001,27(4):276-279.
doi: 10.3321/j.issn:1007-1032.2001.04.008
HUANG Q W, YANG Z H, HU S L, LIU P, WANG C H, PENG J W . Effects of sulfur fertilizer on yield and quality of rapeseed. Journal of Hunan Agricultural University (Natural Sciences) , 2001,27(4):276-279. (in Chinese)
doi: 10.3321/j.issn:1007-1032.2001.04.008
[9] 吴曦, 陈明昌, 杨治平 .碱性土壤施硫磺对油菜生长、土壤pH和有效磷含量的影响. 植物营养与肥料学报, 2007,13(4):671-677.
doi: 10.11674/zwyf.2007.0421
WU X, CHEN M C, YANG Z P . Effects of sulfur application on the growth of cole, soil pH and available P in alkaline soil. Plant Nutrition and Fertilizer Science , 2007,13(4):671-677. (in Chinese)
doi: 10.11674/zwyf.2007.0421
[10] 孟赐福, 姜培, 曹志洪, 徐秋芳, 周国模 .硫素与其他营养元素的交互作用对作物养分吸收、产量和质量的影响. 土壤, 2009,41(3):329-334.
doi: 10.3321/j.issn:0253-9829.2009.03.001
MENF C F, JIANG P K, CAO Z H, XU Q F, ZHOU G M . Interaction effects of sulfur and other nutrients on nutrient uptakes, yields, and qualities of crops. Soils , 2009,41(3):329-334. (in Chinese)
doi: 10.3321/j.issn:0253-9829.2009.03.001
[11] WANG B L, SHI L, LI Y X, ZHANG W H .Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta , 2010,231(6):1301-1309.
[12] SMITH T E, GRATTAN S R, GRIEVE C M, POSS J A, SUAREZ D L . Salinity's influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations. Agricultural Water Management, 2010,97(6):783-791.
doi: 10.1016/j.agwat.2010.01.015
[13] FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D O'CONNELL C,RAY D K,WEST P C,BALZER C,BENNETT E M,CARPENTER S R,HILL J,MONFREDA C,POLASKY S,ROCKSTRÖM J,SHEEHAN J,SIEBERT S,TILMAN D,ZAKS D P,. Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620
[14] FAO. Food and agriculture organization of the united nations,2016 . . Food and agriculture organization of the united nations, 2016. .
[15] HU H, BROWN P H .Localization of boron in cell walls of squash and tobacco and its association with pectin evidence for a structural role of boron in the cell wall. Plant Physiology, 1994,105(2):681-689.
doi: 10.1104/pp.105.2.681
[16] 刘磊超, 姜存仓, 董肖, 吴秀文, 刘桂东, 卢晓佩 .硼胁迫对枳橙砧木细根根尖成熟区和幼嫩叶片细胞结构的影响. 中国农业科学, 2015,48(24):4957-4964.
doi: 10.3864/j.issn.0578-1752.2015.24.010
LIU L C, JIANG C C, DONG X, WU X W, LIU G D, LU X P . Effects of boron deficiency on cellular structures of maturation zone from root tips and functional leaves from middle and upper plant in trifoliate orange rootstock. Scientia Agricultura Sinica , 2015,48(24):4957-4964. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.24.010
[17] WEIL R R, MUGHOGHO S K .Sulfur nutrition of maize in four regions of Malawi. Agronomy Journal, 2000,92(4):649.
doi: 10.2134/agronj2000.924649x
[18] 刘新伟, 段碧辉, 夏全杰, 矫威, 郭再华, 胡承孝, 赵竹青 .硫对土壤中硒形态变化及油菜硒吸收的影响. 环境科学, 2014,35(9):3564-3571.
doi: 10.13227/j.hjkx.2014.09.044
LIU X W, DUAN B H, XIA Q J, JIAO W, GUO Z H, HU C X, ZHAO Z Q . Effects of sulfur on transformation of selenium in soil and uptake of selenium in rape. Environmental Science , 2014,35(9):3564-3571. (in Chinese)
doi: 10.13227/j.hjkx.2014.09.044
[19] 刘新伟, 段碧辉, 赵小虎, 郭再华, 胡承孝, 赵竹青 .外源四价硒条件下硫对小麦硒吸收的影响机制. 中国农业科学, 2015,48(2):241-250.
doi: 10.3864/j.issn.0578-1752.2015.02.04
LIU X W, DUAN B H, ZHAO X H, GUO Z H, HU C X, ZHAO Z Q . Effects of sulfur on selenium uptake in wheat and its mechanism when amended with selenite. Scientia Agricultura Sinica , 2015,48(2):241-250. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.02.04
[20] 谢晓梅, 廖敏, 张楠, 徐培智, 徐昌旭, 刘光荣 .外源S 2-抑制水稻生长及土壤微生物活性的半效应浓度研究 . 植物营养与肥料学报, 2015,21(5):1286-1293.
doi: 10.11674/zwyf.2015.0523
XIE X M, LIAO M, ZHANG N, XU P, XU CX, LIU G R . EC50 of soil S 2– inhibiting rice growth and soil microbial activities . Journal of Plant Nutrition and Fertilizer, 2015,21(5):1286-1293. (in Chinese)
doi: 10.11674/zwyf.2015.0523
[21] 董丽欣, 李保国, 齐国辉, 郭素萍, 张雪梅, 于祎飞, 胡志伟 .土壤铜、硫污染对苹果幼树生长发育的影响. 水土保持学报, 2011,25(6):198-201.
DONG L X, LI B G, QI G H, GUO S P, ZHANG X M, YU W F, HU Z W . Effects of soil copper and sulfur pollution on growth of young apple trees. Journal of Soil and Water Conservation , 2011,25(6):198-201. (in Chinese)
[22] BOGIANI J C, SAMPAIO T F ABREU-JUNIOR C H,ROSOLEM C A,. Boron uptake and translocation in cotton cultivars. Plant and Soil, 2013,375(1/2), 241-253.
doi: 10.1590/S0100-06832012000500014
[23] 冷锁虎, 唐瑶, 李秋兰, 左青松, 杨萍 .油菜的源库关系研究Ⅰ.角果大小对油菜后期源库的调节. 中国油料作物学报, 2005,27(3):37-40.
doi: 10.3321/j.issn:1007-9084.2005.03.009
LENG S H, TANG Y, LI Q L, ZUO Q S, YANG P . Studies on source and sink of rapeseed.Ⅰ. Regulation of pod size on source and s ink in rapeseed after flowering. Chinese Journal of Oil Crop Sciences , 2005,27(3):37-40. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2005.03.009
[24] SAVIĆ J, MARJANOVIĆ-JEROMELA A GLAMOČLIJA D,PRODANOVIĆ S,. Oilseed rape genotypes response to boron toxicity. Genetika, 2013,45(2):565-574.
doi: 10.2298/GENSR1302565S
[25] REID R .Update on boron toxicity and tolerance in plants. Advances in plant and animal boron nutrition. Springer , Dordrecht, The Netherlands, 2007: 83-90.
[26] MATOH T, ISHIGAKI K, OHNO K, AZUMA J .Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant and Cell Physiology, 1993,34(4):639-642.
doi: 10.1093/oxfordjournals.pcp.a078465
[27] 刘桂东, 胡萍, 张婧卉, 周高峰, 曾钰, 钟八莲, 姜存仓 .缺硼对脐橙幼苗硼分配及叶片细胞壁组分硼含量的影响. 植物营养与肥料学报, 2018,24(1):179-186.
LIU G D, HU P, ZHANG J H, ZHOU G F, ZENG Y, ZHONG B L, JIANG C C . Effect of boron deficiency on boron distribution in different plant parts and boron concentration in leaf cell wall components in navel orange plants. Journal of Plant Nutrition and Fertilizers , 2018,24(1):179-186. (in Chinese)
[28] DANNEL F, PFEFFER H RÖMHELD V,. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. Journal of Plant Physiology, 1998,153(5/6):615-622.
doi: 10.1016/S0176-1617(98)80212-5
[29] O’NEILL M A, EBERHARD S, ALBERSHEIM P, DARVILL A G . Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science, 2001,294(5543):846-849.
doi: 10.1126/science.1062319 pmid: 11679668
[30] 李金柱, 吴礼树, 杨玉华 .硼在植物细胞壁上营养机理的研究进展. 中国油料作物学报, 2004,26(4):96-100.
doi: 10.3321/j.issn:1007-9084.2004.04.022
LI J Z, WU L S, YANG Y H . Advances on the study of B nutritional mechanisms in plant cell wall. Chinese Journal of Oil Crop Sciences , 2004,26(4):96-100. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2004.04.022
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[6] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[7] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[8] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[9] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[10] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[11] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[12] BAI Fei,BAI GuiPing,WANG ChunYun,LI Zhen,GONG DePing,HUANG Wei,CHENG YuGui,WANG Bo,WANG Jing,XU ZhengHua,KUAI Jie,ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[13] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[14] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[15] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!