Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4651-4663.doi: 10.3864/j.issn.0578-1752.2022.23.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation

LIU ShuJun1,2(),LI DongChu1,2,*(),HUANG Jing1,2,LIU LiSheng1,2,WU Ding3,LI ZhaoQuan3,WU YuanFan4,ZHANG HuiMin1,2,*()   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
    2Hengyang Red Soil Experimental Station of Chinese Academy of Agricultural Sciences/National Observation and Research Station of Farmland Ecosystem in Qiyang, Qiyang 426182, Hunan
    3Yueyang Eco-Environmental Monitoring Centre of Hunan Province, Yueyang 414000, Hunan
    4Hunan Soil and Fertilizer Station, Changsha 410006
  • Received:2021-10-19 Accepted:2021-12-06 Online:2022-12-01 Published:2022-12-06
  • Contact: DongChu LI,HuiMin ZHANG E-mail:liushujun@caas.cn;lidongchu@caas.cn;zhanghuimin@caas.cn

Abstract:

【Objective】 The study aimed to explore effects of different fertilization on paddy soil aggregate characteristics and potassium distribution under rapeseed-rice rotation and winter fallow by the located experiment test. It was hoped that the study would provide a basis for the sustainable utilization of potassium resources in paddy-upland rotation areas of Southern China. 【Method】 Based on the location experiment of potassium fertilizer in different rotation patterns started in 2016, five treatments were selected, including CK(F) (no fertilization and winter fallow), NPK(F) (NPK fertilizer and winter fallow), NPK(R) (NPK fertilizer and winter rapeseed), NPK (SR+R) (NPK fertilizer with rice straw returning and winter rapeseed), and NP50%K (SR+R) (50% reduction of K fertilizer with rice straw returning and winter rapeseed). The soil samples were collected from the 0-20 cm soil layer of each treatment after rape harvest of the third year for analysis of physical and chemical properties, such as soil aggregates distribution, and exchangeable and non-exchangeable potassium content variation in soil aggregates. The stability of soil aggregates and the distribution of potassium in aggregates were further investigated..【Result】 The soil aggregate fractions of all treatments was the highest in <0.053 mm. Compared with NPK(F), NPK(R) increased the proportion of aggregates of 1-2 mm, 0.5-1 mm and 0.25-0.5 mm by 26.2%-82.6% under the same fertilization treatment. Also the stability of soil aggregates was increased, the proportion of aggregates of >0.25 mm, mean weight diameter (MWD), and geometric mean diameter (GMD) were significantly increased by 30.6%, 31.2% and 82.0%, respectively. Under rapeseed-rice rotation, the proportion of aggregates of >2 mm was increased under NPK(SR+R), which was 69.7% higher than that under NPK(R). The exchangeable potassium content in soil aggregates decreased with decreasing particle size under all treatments. NPK(SR+R) significantly increased exchangeable potassium content in all aggregate fractions by 22.2%-46.0% compared with NPK(R) under rapeseed-rice rotation. NP50%K(SR+R) significantly reduced the exchangeable potassium content in aggregates of >0.5 mm by 19.4%-20.6% than NPK(SR+R). Compared with NPK(F), three fertilization treatments under rapeseed-rice rotation all reduced the non-exchangeable potassium content in aggregate fractions. Under all treatments, the contribution rate of different fractions of soil aggregates to the bulk soil in potassium was the highest in <0.053 mm. Compared with NPK(F), NPK(R) significantly increased the contribution rates of 1-2 mm and 0.5-1 mm aggregates to bulk soil in potassium by 82.6%, 52.1% (exchangeable potassium ) and 105.5%, 36.9% (non-exchangeable potassium), respectively.【Conclusion】 The rapeseed-rice rotation could increase MWD, GMD, macroaggregate proportion and the contribution rate of macroaggregate to the bulk soil in potassium and improve soil structure. Under this rotation pattern, the chemical fertilizer combined with rice straw returning could increase the exchangeable potassium content in all aggregate fractions, which improved the potassium supply in paddy soil. However, the rapeseed-rice rotation reduced the content of non-exchangeable potassium in soil aggregates due to high potassium demand, and the input of potassium fertilizer should be appropriately increased.

Key words: rice-winter fallow, rapeseed-rice rotation, rice straw returning, aggregate, soil potassium

Table 1

Fertilizer rates used in rice and rape season"

处理
Treatment
水稻季 Rice season 油菜季 Rape season
基肥
Basal fertilizer
(kg·hm-2)
追肥
Additional fertilizer
(kg·hm-2)
基肥
Basal fertilizer
(kg·hm-2)
追肥
Additional fertilizer (kg·hm-2)
N P2O5 K2O N K2O N P2O5 K2O Na2B4O7.10H2O N
CK(F) 0 0 0 0 0 0 0 0 0 0
NPK(F) 162 135 120 108 120 0 0 0 0 0
NPK(R) 162 135 120 108 120 150 75 75 15 75
NPK(SR+R) 162 135 120 108 120 150 75 75 15 75
NP50%K(SR+R) 162 135 60 108 60 150 75 37.5 15 75

Table 2

Composition of soil aggregates in the paddy soil under different rotations and fertilizations (%)"

处理
Treatment
>2 mm 1-2 mm 0.5-1 mm 0.25-0.5 mm 0.053-0.25 mm <0.053 mm >0.25 mm <0.25 mm
CK(F) 11.61±1.52a 10.66±0.88ab 13.47±0.68b 14.97±0.50b 20.05±1.50a 26.16±3.22b 50.71±2.91ab 46.21±2.90ab
NPK(F) 8.42±1.24b 7.62±0.49b 11.51±0.52b 15.02±0.72b 15.55±1.76b 40.18±1.05a 42.57±1.81b 55.73±1.51a
NPK(R) 4.97±0.21c 13.92±3.49a 17.75±2.72a 18.96±2.39a 15.22±0.93b 25.00±5.33b 55.59±6.71a 40.22±6.15b
NPK(SR+R) 8.43±1.27b 9.43±1.10ab 13.12±1.14b 16.36±0.88ab 17.90±1.06ab 31.61±3.90ab 47.34±3.61ab 49.52±3.56ab
NP50%K(SR+R) 8.80±0.58ab 10.06±0.47ab 12.89±0.90b 15.68±0.86ab 18.03±0.96ab 32.45±1.23ab 47.43±1.53ab 50.48±1.53ab

Fig. 1

Mean weight diameter and geometric mean diameter of soil aggregates in the paddy soil under different rotations and fertilizations Different small letters above the bars mean significant differences among treatments at 5% level. The same as below"

Fig. 2

Exchangeable and non-exchangeable potassium content in soil aggregates of the paddy soil under different rotations and fertilizations"

Fig. 3

Contribution rate of different fractions of soil aggregates to the bulk soil in potassium in the paddy soil under different rotations and fertilizations"

Table 3

Apparent balance of potassium in the paddy soil under different rotations and fertilizations (kg·hm-2·a-1)"

处理
Treatment
2017 2018
输入
K input
支出
K uptake
表观平衡
Apparent balance
输入
K input
支出
K uptake
表观平衡
Apparent balance
CK(F) 0.0 122.3 -122.3 0.0 102.2 -102.2
NPK(F) 240.0 157.1 82.9 240.0 178.6 61.4
NPK(R) 315.0 287.1 28.0 315.0 417.8 -102.8
NPK(SR+R) 472.0 261.8 210.1 525.7 381.5 144.2
NP50%K(SR+R) 287.2 245.9 41.3 353.9 386.3 -32.4
[1] TIMSINA J, CONNOR D J. Productivity and management of rice- wheat cropping systems: Issues and challenges. Field Crops Research, 2001, 69(2): 93-132. doi:10.1016/S0378-4290(00)00143-X.
doi: 10.1016/S0378-4290(00)00143-X
[2] FAN M S, JIANG R F, LIU X J, ZHANG F S, LU S H, ZENG X Z, CHRISTIE P. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Research, 2005, 91(2/3): 307-318. doi:10.1016/j.fcr.2004.08.006.
doi: 10.1016/j.fcr.2004.08.006
[3] 宋美芳, 胡义涛, 黄帅, 何俊峰, 陈佛文, 邹家龙, 李继福. 长期施钾对水旱轮作系统产量及土壤团聚体钾分布的影响. 南方农业学报, 2018, 49(6): 1082-1088. doi:10.3969/j.issn.2095-1191.2018.06.06.
doi: 10.3969/j.issn.2095-1191.2018.06.06
SONG M F, HU Y T, HUANG S, HE J F, CHEN F W, ZOU J L, LI J F. Effects of long term potassium fertilizer application on crop yield and potassium distribution in soil aggregates in paddy-upland rotation system. Journal of Southern Agriculture, 2018, 49(6): 1082-1088. doi:10.3969/j.issn.2095-1191.2018.06.06. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2018.06.06
[4] 杨滨娟, 孙松, 陈洪俊, 黄国勤. 稻田水旱轮作系统的能值分析和可持续性评价. 生态科学, 2017, 36(1): 123-131. doi:10.14108/j.cnki.1008-8873.2017.01.017.
doi: 10.14108/j.cnki.1008-8873.2017.01.017
YANG B J, SUN S, CHEN H J, HUANG G Q. Research on energy analysis and sustainability evaluation under paddy upland rotation systems. Ecological Science, 2017, 36(1): 123-131. doi:10.14108/j.cnki.1008-8873.2017.01.017. (in Chinese)
doi: 10.14108/j.cnki.1008-8873.2017.01.017
[5] 黄国勤, 熊云明, 钱海燕, 王淑彬, 刘隆旺, 赵其国. 稻田轮作系统的生态学分析. 土壤学报, 2006, 43(1): 69-78. doi:10.3321/j.issn:0564-3929.2006.01.010.
doi: 10.3321/j.issn:0564-3929.2006.01.010
HUANG G Q, XIONG Y M, QIAN H Y, WANG S B, LIU L W, ZHAO Q G. Ecological analysis of crop rotation systems in paddy field. Acta Pedologica Sinica, 2006, 43(1): 69-78. doi:10.3321/j.issn:0564-3929.2006.01.010. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2006.01.010
[6] CAKMAK I. Plant nutrition research: priorities to meet human needs for food in sustainable ways//Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium. Dordrecht: Springer Netherlands, 2002: 3-24. doi:10.1007/978-94-017-2789-1_1.
[7] 肖克, 唐静, 李继福, 邹家龙, 朱建强. 长期水稻-冬油菜轮作模式下钾肥的适宜用量. 作物学报, 2017, 43(8): 1226-1233. doi:10.3724/SP.J.1006.2017.01226.
doi: 10.3724/SP.J.1006.2017.01226
XIAO K, TANG J, LI J F, ZOU J L, ZHU J Q. Optimum amount of potassium fertilizer applied under continuous rice-rapeseed rotation. Acta Agronomica Sinica, 2017, 43(8): 1226-1233. doi:10.3724/SP.J.1006.2017.01226. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01226
[8] 王亚艺. 水稻—油菜轮作中钾肥效应及作物—土壤体系钾素动态变化研究[D]. 武汉: 华中农业大学, 2010.
WANG Y Y. Study on the effect of potassium and the dynamic change of potassium in rice-rapeseed rotation system[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
[9] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展. 中国生态农业学报, 2011, 19(2): 447-455. doi:10.3724/SP.J.1011.2011.00447.
doi: 10.3724/SP.J.1011.2011.00447
LIU Z L, YU W T. Review of researches on soil aggregate and soil organic carbon. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447-455. doi:10.3724/SP.J.1011.2011.00447. (in Chinese)
doi: 10.3724/SP.J.1011.2011.00447
[10] 陈恩凤, 关连珠, 汪景宽, 颜丽, 王铁宇, 张继宏, 周礼恺, 陈利军, 李荣华. 土壤特征微团聚体的组成比例与肥力评价. 土壤学报, 2001, 38(1): 49-53. doi:10.3321/j.issn:0564-3929.2001.01.007.
doi: 10.3321/j.issn:0564-3929.2001.01.007
CHEN E F, GUAN L Z, WANG J K, YAN L, WANG T Y, ZHANG J H, ZHOU L K, CHEN L J, LI R H. Compositional proportion of soil characteristic microaggregates and soil fertility evaluation. Acta Pedologica Sinica, 2001, 38(1): 49-53. doi:10.3321/j.issn:0564-3929.2001.01.007. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2001.01.007
[11] 郑子成, 何淑勤, 王永东, 李廷轩, 张锡洲, 徐盈. 不同土地利用方式下土壤团聚体中养分的分布特征. 水土保持学报, 2010, 24(3): 170-174. doi:10.13870/j.cnki.stbcxb.2010.03.032.
doi: 10.13870/j.cnki.stbcxb.2010.03.032
ZHENG Z C, HE S Q, WANG Y D, LI T X, ZHANG X Z, XU Y. Distrbution feature of soil nutrients in aggregate under different land use. Journal of Soil and Water Conservation, 2010, 24(3): 170-174. doi:10.13870/j.cnki.stbcxb.2010.03.032. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2010.03.032
[12] 陈凤, 刘莉, 潘晨, 王雨晴, 李燕丽, 邹家龙, 李继福. 秸秆还田配施钾肥对稻-油轮作产量及土壤团聚体钾分布的影响. 长江大学学报(自然科学版), 2019, 16(9): 71-78, 8. doi:10.16772/j.cnki.1673-1409.2019.09.013.
doi: 10.16772/j.cnki.1673-1409.2019.09.013
CHEN F, LIU L, PAN C, WANG Y Q, LI Y L, ZOU J L, LI J F. Effect of straw returning and K fertilizer application in yield of rice-oilseed rape rotation and K distribution in soil aggregates. Journal of Yangtze University (Natural Science Edition), 2019, 16(9): 71-78, 8. doi:10.16772/j.cnki.1673-1409.2019.09.013. (in Chinese)
doi: 10.16772/j.cnki.1673-1409.2019.09.013
[13] 陈轩敬, 梁涛, 赵亚南, 张跃强, 石孝均. 长期施肥对紫色水稻土团聚体中有机碳和微生物的影响. 中国农业科学, 2015, 48(23): 4669-4677. doi:10.3864/j.issn.0578-1752.2015.23.008.
doi: 10.3864/j.issn.0578-1752.2015.23.008
CHEN X J, LIANG T, ZHAO Y N, ZHANG Y Q, SHI X J. Influence of long-term fertilization managements on organic C and microorganism in different aggregates in purple paddy soil. Scientia Agricultura Sinica, 2015, 48(23): 4669-4677. doi:10.3864/j.issn.0578-1752.2015.23.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.23.008
[14] 刘振东. 粪肥配施化肥对华北褐土团聚体稳定性及养分含量的影响[D]. 北京: 中国农业科学院, 2013.
LIU Z D. The effect of manure and chemical fertilizer on distirbution of soil aggregates and nutrient contents[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[15] 杨琼会. 轮作和秸秆还田对水稻土团聚体及固碳特征的影响[D]. 绵阳: 西南科技大学, 2021.
YANG Q H. Effects of crop rotation and straw returning on paddy soil aggregates and carbon sequestration characteristics[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese)
[16] PUGET P, CHENU C, BALESDENT J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. European Journal of Soil Science, 2000, 51(4): 595-605. doi:10.1111/j.1365-2389.2000.00353.x.
doi: 10.1111/j.1365-2389.2000.00353.x
[17] 田慧. 大兴安岭不同类型冻土区土壤有机碳及团聚体分布特征研究[D]. 呼和浩特: 内蒙古农业大学, 2018.
TIAN H. Study on the distribution characteristics of soil organic carbon and aggregates in different permafrost regions of Daxing’ anling[D]. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese)
[18] 李辉信, 袁颖红, 黄欠如, 胡锋, 潘根兴. 不同施肥处理对红壤水稻土团聚体有机碳分布的影响. 土壤学报, 2006, 43(3): 422-429. doi:10.3321/j.issn:0564-3929.2006.03.010.
doi: 10.3321/j.issn:0564-3929.2006.03.010
LI H X, YUAN Y H, HUANG Q R, HU F, PAN G X. Effects of fertilization on soil organic carbon distribution in various aggregates of red paddy soil. Acta Pedologica Sinica, 2006, 43(3): 422-429. doi:10.3321/j.issn:0564-3929.2006.03.010. (in Chinese)
doi: 10.3321/j.issn:0564-3929.2006.03.010
[19] 邢旭明. 长期施肥对土壤团聚体组成及其主要养分赋存特征的影响[D]. 沈阳: 沈阳农业大学, 2015.
XING X M. Effects of long-term fertilization on soil aggregate composition and main nutrients distribution[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese)
[20] 李春越, 常顺, 钟凡心, 薛英龙, 苗雨, 王益, 党廷辉. 种植模式和施肥对黄土旱塬农田土壤团聚体及其碳分布的影响. 应用生态学报, 2021, 32(1): 191-200. doi:10.13287/j.1001-9332.202101.027.
doi: 10.13287/j.1001-9332.202101.027
LI C Y, CHANG S, ZHONG F X, XUE Y L, MIAO Y, WANG Y, DANG T H. Effects of fertilization and planting patterns on soil aggregate and carbon distribution in farmland of the Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 2021, 32(1): 191-200. doi:10.13287/j.1001-9332.202101.027. (in Chinese)
doi: 10.13287/j.1001-9332.202101.027
[21] 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992: 111-112.
National Soil Survey Office. China Soil Census Technology. Beijing: Agricultural Press, 1992: 111-112. (in Chinese)
[22] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[23] 姜灿烂, 何园球, 刘晓利, 陈平帮, 王艳玲, 李辉信. 长期施用有机肥对旱地红壤团聚体结构与稳定性的影响. 土壤学报, 2010, 47(4): 715-722.
JIANG C L, HE Y Q, LIU X L, CHEN P B, WANG Y L, LI H X. Effect of long-term application of organic manure on structure and stability of aggregate in upland red soil. Acta Pedologica Sinica, 2010, 47(4): 715-722. (in Chinese)
[24] 张鹏, 周泉, 黄国勤. 冬季不同种植模式对稻田土壤团聚体及其有机碳的影响. 核农学报, 2019, 33(12): 2430-2438. doi:10.11869/j.issn.100-8551.2019.12.2430.
doi: 10.11869/j.issn.100-8551.2019.12.2430
ZHANG P, ZHOU Q, HUANG G Q. Effects of winter different planting patterns on soil aggregates and organic carbon in paddy fields. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2430-2438. doi:10.11869/j.issn.100-8551.2019.12.2430. (in Chinese)
doi: 10.11869/j.issn.100-8551.2019.12.2430
[25] 江春玉, 刘萍, 刘明, 吴萌, 李忠佩. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态. 土壤学报, 2017, 54(1): 138-149. doi:10.11766/trxb201605060123.
doi: 10.11766/trxb201605060123
JIANG C Y, LIU P, LIU M, WU M, LI Z P. Dynamics of aggregates composition and C, N distribution in rhizosphere of rice plants in red paddy soils different in soil fertility. Acta Pedologica Sinica, 2017, 54(1): 138-149. doi:10.11766/trxb201605060123. (in Chinese)
doi: 10.11766/trxb201605060123
[26] SIX J, ELLIOTT E T, PAUSTIAN K. Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 2000, 64(3): 1042-1049. doi:10.2136/sssaj2000.6431042x.
doi: 10.2136/sssaj2000.6431042x
[27] 刘艳, 查同刚, 王伊琨, 王高敏. 北京地区栓皮栎和油松人工林土壤团聚体稳定性及有机碳特征. 应用生态学报, 2013, 24(3): 607-613. doi:10.13287/j.1001-9332.2013.0201.
doi: 10.13287/j.1001-9332.2013.0201
LIU Y, ZHA T G, WANG Y K, WANG G M. Soil aggregate stability and soil organic carbon characteristics in Quercus variabilis and Pinus tabulaeformis plantations in Beijing area. Chinese Journal of Applied Ecology, 2013, 24(3): 607-613. doi:10.13287/j.1001-9332.2013.0201. (in Chinese)
doi: 10.13287/j.1001-9332.2013.0201
[28] 郝翔翔, 杨春葆, 苑亚茹, 韩晓增, 李禄军, 江恒. 连续秸秆还田对黑土团聚体中有机碳含量及土壤肥力的影响. 中国农学通报, 2013, 29(35): 263-269.
HAO X X, YANG C B, YUAN Y R, HAN X Z, LI L J, JIANG H. Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil. Chinese Agricultural Science Bulletin, 2013, 29(35): 263-269. (in Chinese)
[29] 杨如萍, 郭贤仕, 吕军峰, 侯慧芝, 郭天文. 不同耕作和种植模式对土壤团聚体分布及稳定性的影响. 水土保持学报, 2010, 24(1): 252-256. doi:10.13870/j.cnki.stbcxb.2010.01.046.
doi: 10.13870/j.cnki.stbcxb.2010.01.046
YANG R P, GUO X S, LÜ J F, HOU H Z, GUO T W. Affects of distribution and stability on soil aggregate in different patterns of tillage and cropping. Journal of Soil and Water Conservation, 2010, 24(1): 252-256. doi:10.13870/j.cnki.stbcxb.2010.01.046. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2010.01.046
[30] 黄欠如, 胡锋, 袁颖红, 刘满强, 李辉信. 长期施肥对红壤性水稻土团聚体特征的影响. 土壤, 2007, 39(4): 608-613. doi:10.3321/j.issn:0253-9829.2007.04.021.
doi: 10.3321/j.issn:0253-9829.2007.04.021
HUANG Q R, HU F, YUAN Y H, LIU M Q, LI H X. Effects of long-term fertilization on aggregates characteristic of red paddy soil. Soils, 2007, 39(4): 608-613. doi:10.3321/j.issn:0253-9829.2007.04.021. (in Chinese)
doi: 10.3321/j.issn:0253-9829.2007.04.021
[31] ZHAO J S, CHEN S, HU R G, LI Y Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil and Tillage Research, 2017, 167: 73-79. doi:10.1016/j.still.2016.11.007.
doi: 10.1016/j.still.2016.11.007
[32] 杜立宇, 李天来, 梁成华, 赵宇光, 吴岩. 长期不同施肥处理对设施土壤团聚体组成及其稳定性的影响. 水土保持通报, 2012, 32(1): 38-41, 76. doi:10.13961/j.cnki.stbctb.2012.01.033.
doi: 10.13961/j.cnki.stbctb.2012.01.033
DU L Y, LI T L, LIANG C H, ZHAO Y G, WU Y. Effects of long-term different fertilizations on composition and stability of soil aggregates in a greenhouse soil. Bulletin of Soil and Water Conservation, 2012, 32(1): 38-41, 76. doi:10.13961/j.cnki.stbctb.2012.01.033. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2012.01.033
[33] 荣勤雷, 李若楠, 黄绍文, 周春火, 唐继伟, 王丽英, 张彦才. 不同施肥模式下设施菜田土壤团聚体养分和微生物量特征. 植物营养与肥料学报, 2019, 25(7): 1084-1096. doi:10.11674/zwyf.18472.
doi: 10.11674/zwyf.18472
RONG Q L, LI R N, HUANG S W, ZHOU C H, TANG J W, WANG L Y, ZHANG Y C. Characteristics of nutrients and microbial biomass in soil aggregates under different fertilization modes in greenhouse vegetable production. Journal of Plant Nutrition and Fertilizer, 2019, 25(7): 1084-1096. doi:10.11674/zwyf.18472 (in Chinese)
doi: 10.11674/zwyf.18472
[34] 张翰林, 郑宪清, 何七勇, 李双喜, 张娟琴, 吕卫光. 不同秸秆还田年限对稻麦轮作土壤团聚体和有机碳的影响. 水土保持学报, 2016, 30(4): 216-220. doi:10.13870/j.cnki.stbcxb.2016.04.037.
doi: 10.13870/j.cnki.stbcxb.2016.04.037
ZHANG H L, ZHENG X Q, HE Q Y, LI S X, ZHANG J Q, LÜ W G. Effect of years of straw returning on soil aggregates and organic carbon in rice-wheat rotation systems. Journal of Soil and Water Conservation, 2016, 30(4): 216-220. doi:10.13870/j.cnki.stbcxb.2016.04.037. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2016.04.037
[35] 李娜, 韩晓增, 尤孟阳, 许玉芝. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632. doi:10.16258/j.cnki.1674-5906.2013.09.019.
doi: 10.16258/j.cnki.1674-5906.2013.09.019
LI N, HAN X Z, YOU M Y, XU Y Z. Research review on soil aggregates and microbes. Ecology and Environmental Sciences, 2013, 22(9): 1625-1632. doi:10.16258/j.cnki.1674-5906.2013.09.019. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2013.09.019
[36] ZHANG B, HORN R. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 2001, 99(1/2): 123-145. doi:10.1016/S0016-7061(00)00069-0.
doi: 10.1016/S0016-7061(00)00069-0
[37] ZHANG Z B, ZHOU H, LIN H, PENG X. Puddling intensity, sesquioxides, and soil organic carbon impacts on crack patterns of two paddy soils. Geoderma, 2016, 262: 155-164. doi:10.1016/j.geoderma.2015.08.030.
doi: 10.1016/j.geoderma.2015.08.030
[38] 孙隆祥, 陈梦妮, 薛建福, 崔福柱, 郝建平, 郭秀卿, 杜天庆, 崔江辉, 张倍宁. 秸秆还田对麦粱两熟农田土壤团聚体特征的短期效应. 水土保持研究, 2018, 25(6): 36-44. doi:10.13869/j.cnki.rswc.2018.06.006.
doi: 10.13869/j.cnki.rswc.2018.06.006
SUN L X, CHEN M N, XUE J F, CUI F Z, HAO J P, GUO X Q, DU T Q, CUI J H, ZHANG B N. Short-term responses of soil aggregate characteristics to different annual straw incorperation rates in winter wheat-summer Sorghum cropping system. Research of Soil and Water Conservation, 2018, 25(6): 36-44. doi:10.13869/j.cnki.rswc.2018.06.006 (in Chinese)
doi: 10.13869/j.cnki.rswc.2018.06.006
[39] 雷永振, 邱卫文, 王祥珍, 赵凯, 张满珍, 张保烈, 孙芙英, 华利民. 玉米钾肥长期定位试验作物产量和土壤钾素的变化. 辽宁农业科学, 2003(4): 1-3. doi:10.3969/j.issn.1002-1728.2003.04.001.
doi: 10.3969/j.issn.1002-1728.2003.04.001
LEI Y Z, QIU W W, WANG X Z, ZHAO K, ZHANG M Z, ZHANG B L, SUN F Y, HUA L M. Variation of crop yield and soil potassium in long-term location experiment in maize. Liaoning Agricultural Sciences, 2003(4): 1-3. doi:10.3969/j.issn.1002-1728.2003.04.001 (in Chinese)
doi: 10.3969/j.issn.1002-1728.2003.04.001
[40] 柳开楼, 黄晶, 张会民, 李冬初, 韩天富, 蔡泽江, 王伯仁, 黄庆海. 长期施肥对红壤旱地团聚体特性及不同组分钾素分配的影响. 土壤学报, 2018, 55(2): 443-454. doi:10.11766/trxb201711050396.
doi: 10.11766/trxb201711050396
LIU K L, HUANG J, ZHANG H M, LI D C, HAN T F, CAI Z J, WANG B R, HUANG Q H. Effect of long-term fertilization on aggregation characteristics and distribution of potassium fractions in red soil. Acta Pedologica Sinica, 2018, 55(2): 443-454. doi:10.11766/trxb201711050396. (in Chinese)
doi: 10.11766/trxb201711050396
[41] 李娜. 长期定位施肥对棕壤钾素供应特征及有效性影响[D]. 沈阳: 沈阳农业大学, 2012.
LI N. Effect of long-term fertilization on supply of soil potassium and availability[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese)
[42] 谭德水, 金继运, 黄绍文, 李书田, 何萍. 不同种植制度下长期施钾与秸秆还田对作物产量和土壤钾素的影响. 中国农业科学, 2007, 40(1): 133-139. doi:10.3321/j.issn:0578-1752.2007.01.018.
doi: 10.3321/j.issn:0578-1752.2007.01.018
TAN D S, JIN J Y, HUANG S W, LI S T, HE P. Effect of long-term application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Scientia Agricultura Sinica, 2007, 40(1): 133-139. doi:10.3321/j.issn:0578-1752.2007.01.018. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2007.01.018
[43] 刘中良, 宇万太, 周桦, 徐永刚, 黄宝同. 长期施肥对土壤团聚体分布和养分含量的影响. 土壤, 2011, 43(5): 720-728. doi:10.13758/j.cnki.tr.2011.05.013.
doi: 10.13758/j.cnki.tr.2011.05.013
LIU Z L, YU W T, ZHOU H, XU Y G, HUANG B T. Effects of long-term fertilization on aggregate size distribution and nutrient content. Soils, 2011, 43(5): 720-728. doi:10.13758/j.cnki.tr.2011.05.013. (in Chinese)
doi: 10.13758/j.cnki.tr.2011.05.013
[44] 李露露, 李婷, 郎山鑫, 魏巍, 缪利, 李智平, 席铫. 植茶年限降低土壤团聚体稳定性并促进大团聚体中钾素释放. 植物营养与肥料学报, 2020, 26(7): 1188-1197. doi:10.11674/zwyf.19460.
doi: 10.11674/zwyf.19460
LI L L, LI T, LANG S X, WEI W, MIAO L, LI Z P, XI Y. Tea plantation ages decrease the stability of soil aggregates and increase the release of potassium from large aggregates. Journal of Plant Nutrition and Fertilizer, 2020, 26(7): 1188-1197. doi:10.11674/zwyf.19460. (in Chinese)
doi: 10.11674/zwyf.19460
[45] 谢建昌, 周健民. 我国土壤钾素研究和钾肥使用的进展. 土壤, 1999(5): 244-254.
XIE J C, ZHOU J M. Progress in soil potassium research and potassium fertilizer use in China. Soils, 1999(5): 244-254. (in Chinese)
[46] 袁嫚嫚, 邬刚, 胡润, 耿维, 王家宝, 曹哲伟, 孙义祥. 稻油轮作下秸秆还田配施化肥对作物产量及肥料利用率的影响. 生态学杂志, 2018, 37(12): 3597-3604. doi:10.13292/j.1000-4890.201812.011.
doi: 10.13292/j.1000-4890.201812.011
YUAN M M, WU G, HU R, GENG W, WANG J B, CAO Z W, SUN Y X. Effects of straw returning plus fertilization on crop yield and fertilizer use efficiency in rice-rapeseed rotation system. Chinese Journal of Ecology, 2018, 37(12): 3597-3604. doi:10.13292/j.1000-4890.201812.011. (in Chinese)
doi: 10.13292/j.1000-4890.201812.011
[47] 白怡婧, 刘彦伶, 李渝, 黄兴成, 张雅蓉, 蒋太明, 秦松. 长期不同轮作模式对黄壤团聚体组成及有机碳的影响. 土壤, 2021, 53(1): 161-167. doi:10.13758/j.cnki.tr.2021.01.022.
doi: 10.13758/j.cnki.tr.2021.01.022
BAI Y J, LIU Y L, LI Y, HUANG X C, ZHANG Y R, JIANG T M, QIN S. Effects of different long-term rotation patterns on aggregate composition and organic carbon in yellow soil. Soils, 2021, 53(1): 161-167. doi:10.13758/j.cnki.tr.2021.01.022. (in Chinese)
doi: 10.13758/j.cnki.tr.2021.01.022
[48] 张顺涛, 任涛, 周橡棋, 方娅婷, 廖世鹏, 丛日环, 鲁剑巍. 油/麦-稻轮作和施肥对土壤养分及团聚体碳氮分布的影响. 土壤学报, 2021, .
ZHANG S T, REN T, ZHOU X Q, FANG Y T, LIAO S P, CONG R H, LU J W. Effects of rapeseed/wheat-rice rotation and fertilization on soil nutrients and distribution of aggregate carbon and nitrogen. Acta Pedologica Sinica, 2021, . (in Chinese)
[49] 李新悦, 李冰, 莫太相, 王昌全, 万艺媛, 陈写畅, 李和明. 长期秸秆还田对水稻土团聚体及氮磷钾分配的影响. 应用生态学报, 2021, 32(9): 3257-3266. doi:10.13287/j.1001-9332.202109.022.
doi: 10.13287/j.1001-9332.202109.022
LI X Y, LI B, MO T X, WANG C Q, WAN Y Y, CHEN X C, LI H M. Effects of long-term straw returning on distribution of aggregates and nitrogen, phosphorus, and potassium in paddy. Chinese Journal of Applied Ecology, 2021, 32(9): 3257-3266. doi:10.13287/j.1001-9332.202109.022. (in Chinese)
doi: 10.13287/j.1001-9332.202109.022
[1] PANG JinWen, WANG YuHao, TAO HongYang, WEI Ting, GAO Fei, LIU EnKe, JIA ZhiKuan, ZHANG Peng. Effects of Different Biochar Application Rates on Soil Aggregate Characteristics and Organic Carbon Contents for Film-Mulching Field in Semiarid Areas [J]. Scientia Agricultura Sinica, 2023, 56(9): 1729-1743.
[2] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[5] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[6] ZHOU MingXing, DAI ZiJun, FAN Jun, FU Wei, HAO MingDe. Effect of No-Tillage Combined with Mulching on the Structure and Organic Carbon Content of Aggregates in Heilu Soil of the Weibei Dry Plateau [J]. Scientia Agricultura Sinica, 2023, 56(12): 2329-2340.
[7] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[8] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[9] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[10] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[11] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[12] MIAO FangFang,MIAN YouMing,PU XueKe,WU ChunHua,ZHOU YongJin,HOU XianQing. Effects of Tillage with Mulching on Soil Aggregate Structure and Water Use Efficiency of Potato in Dry-Farming Area of Southern Ningxia [J]. Scientia Agricultura Sinica, 2021, 54(11): 2366-2376.
[13] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[14] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[15] GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping,WANG LiChun. Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area [J]. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!