Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (14): 2726-2739.doi: 10.3864/j.issn.0578-1752.2022.14.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed

BAI Fei1(),BAI GuiPing2,WANG ChunYun1,LI Zhen1,GONG DePing3,HUANG Wei4,CHENG YuGui5,WANG Bo1,WANG Jing1,XU ZhengHua1,KUAI Jie1(),ZHOU GuangSheng1   

  1. 1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070
    2. Xiangyang Academy of Agricultural Sciences, Xiangyang 441000, Hubei
    3. Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, Hubei
    4. Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei
    5. Yichang Academy of Agricultural Sciences, Yichang 420500, Hubei
  • Received:2021-10-22 Accepted:2022-01-28 Online:2022-07-16 Published:2022-07-26
  • Contact: Jie KUAI E-mail:982895622@qq.com;kuaijie@mail.hzau.edu.cn

Abstract:

【Objective】The rapeseed (Brassica napus L.) production district in the Yangtze River valley lacks sufficient radiation due to abundant rainfall during its growing season. In addition, the application of dense planting technology intensifies the competition for radiation among individuals. Insufficient radiation and poor soil texture have become main factors for restricting high yield of rapeseed in this area. In order to provide the theoretical support for stable yield and increased income, the effects of tillage depth on root growth and nutrient utilization of shaded rapeseed were studied. 【Method】 The experiment designed by the split-split plot method in three replications was conducted in the tested site of Huazhong Agricultural University in Wuhan, Hubei province, from 2019 to 2021. The experiment consisted of three factors arranged in a split-split plot design with 2 varieties: Xiangzayou 518 (XZY518) and Zheyou 50 (ZY50) in main plots, two levels of tillage depth: 5 cm (T5) and 20 cm (T20) in sub plots, and two levels of shading rate: 0% shading (S0) and 30% shading (S1) in sub-sub plots. The effects of different tillage depths on physical and chemical properties of soil, the antioxidant enzyme activity, nutrient absorption of the root and the dry matter accumulation of root and shoot were evaluated. 【Result】Deep tillage promoted the accumulation of organic matter, alkali-hydrolyzed nitrogen, available phosphorus, and available potassium in each layer of soil, with the largest increase (by 7.5%-42.3%) in 10-20 cm soil. Shading decreased the soil electrical conductivity, root surface area (decrease by 13.3%-36.6%), the utilization efficiency of nitrogen (decrease by 3.0%-28.4%) and root dry weight, while it increased the main root length, root to shoot ratio, lateral root proportion, and the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in roots. The increasing tillage depth in shading condition alleviated the reduction of soil water content, promoted taproot elongation, increased the activities of antioxidant enzymes (POD and SOD) and the root surface area, root to shoot ratio, lateral root ratio finally improved the utilization efficiency of nitrogen, and the accumulation of dry matter. The analysis of variance showed that the interaction between tillage depth and shading on root morphology, dry matter accumulation, antioxidant enzyme activity and nutrient utilization reached a significant or extremely significant difference. Compared with normal light, the root surface area were decreased by 24.9%-36.6% and 13.3%-19.2%, the utilization efficiency of nitrogen were decreased by 10.0%-28.4% and 3.0%-23.9% after shading under the shallow tillage and deep tillage, respectively. 【Conclusion】Under the weak light stress, the deep tillage increased soil nutrients and main root elongation, the ratio of lateral root and root surface area, the activity of antioxidant enzymes in the root, dry matter accumulation, and enhanced the nutrient absorption capacity and nitrogen use efficiency, also delayed the aging of the root system. As a result, all these factors promoted rapeseed growth.

Key words: rapeseed, shade, deep tillage, root, nutrient

Table 1

Nutrient content of the experimental site"

年份
Year
土壤深度
Soil depth (cm)
全氮
Total N (g·kg-1)
有机质
Organic matter (g·kg-1)
碱解氮
Alkeine-N (mg·kg-1)
速效磷
Olsen P (mg·kg-1)
速效钾
Available K (mg·kg-1)
2019-2020 0-10 1.06 18.0 118.1 20.1 190.1
10-20 0.86 11.7 104.2 11.2 140.4
20-30 0.79 12.2 99.1 7.5 134.7
2020-2021 0-10 1.04 16.5 131.9 20.8 177.6
10-20 0.86 12.4 111.1 9.3 122.2
20-30 0.74 11.3 99.0 6.1 110.0

Table 2

Effect of shading on the microclimate of inside the shade shelter"

年份
Year
处理
Treatment
光照强度
Light intensity (μmol·m-2·s-1)
湿度
Relative humidity (%)
气温
Air temperature (℃)
CO2浓度
CO2 concentration (μmol·mol-1)
2019-2020 S0 1621.6a 62.1a 24.1a 408.6a
S1 1135.5b 63.2a 25.1a 409.5a
2020-2021 S0 1649.4a 65.6a 24.6a 410.3a
S1 1097.7b 66.4a 25.5a 408.0a

Table 3

Effects of tillage depth on soil nutrients content after rapeseed harvested"

品种
Variety
翻耕深度
Tillage depth
土壤深度
Soil depth
(cm)
2019-2020 2020-2021
全氮
Total N
(g·kg-1)
有机质
Organic matter
(g·kg-1)
碱解氮
Alkeine-N
(m g·kg-1)
速效磷
Olsen P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
全氮
Total N
(g·kg-1)
有机质
Organic matter
(g·kg-1)
碱解氮
Alkeine-N
(mg·kg-1)
速效磷
Olsen P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
XZY518 T5 0-10 1.02a 11.68c 106.3bc 19.63cd 207.3 a 1.13b 15.68a 104.6bc 19.18b 247.0a
10-20 0.82bc 9.41e 81.9de 12.71f 166.0 de 0.90de 9.78d 84.6de 12.06de 203.0bc
20-30 0.64d 8.38f 83.7d 10.86f 153.0 de 0.68fg 9.56d 66.8fg 7.37f 182.3cde
T20 0-10 1.06a 12.37ab 109.8bc 31.94a 214.3a 1.10bc 10.87cd 111.6ab 18.69b 242.7a
10-20 1.00a 10.12d 101.1c 25.84b 201.0 ab 0.98cd 13.92b 106.3bc 12.55de 174.0de
20-30 0.78c 9.64e 88.3d 21.57c 198.0 abc 0.84de 10.18cd 91.2cde 9.59ef 160.3def
ZY50 T5 0-10 1.08a 12.12bc 113.9b 19.17cd 216.5 a 1.11bc 11.41c 119.1ab 18.49bc 226.7ab
10-20 0.83bc 9.23e 70.9ef 16.81de 166.0 de 0.84de 9.29de 94.7cd 12.13de 169.0de
20-30 0.63d 8.49f 69.7f 11.41f 146.3 e 0.63g 7.89e 60.2g 10.06ef 155.0ef
T20 0-10 1.08a 12.73a 132.5a 29.43ab 206.0 a 1.29a 11.74c 126.1a 25.52a 206.3bc
10-20 0.89b 10.30d 89.8d 20.39cd 178.5 bcd 0.95d 10.58cd 88.9de 14.90cd 186.3cd
20-30 0.67d 9.37e 71.5ef 14.05ef 172.3 cde 0.80ef 9.63d 79.0ef 11.93de 139.3f
方差分析Analysis of variance
品种 Variety (V) NS NS NS * NS NS ** NS ** **
翻耕深度 Tillage depth (TD) ** ** ** ** ** ** NS ** ** *
土壤深度Soil depth (SD) ** ** ** ** ** ** ** ** * **
V × TD NS NS NS ** NS NS NS NS NS NS
V × SD NS NS ** NS NS NS NS ** NS NS
TD × SD NS NS * NS * NS ** NS NS NS
V× TD × SD NS NS NS NS NS NS ** NS NS NS

Fig. 1

Effect of tillage depth and shading on soil physical and chemical properties at bolting stage of rapeseed XZY518: Xiangzayou 518; ZY50: Zheyou50; T5: Tillage 5 cm; T20: Tillage 20 cm; S0: 0% shading rate; S1: 30% shading rate; V: Variety; TD: Tillage depth; S: Shade; V, TD, S, V×TD, V×S, TD×S, V×TD×S mean the interaction between factors. The same as below"

Table 4

Effect of tillage depth and shading on underground dry matter accumulation and root-shoot ratio of rapeseed in different stages"

品种
Variety
翻耕深度
Tillage depth
遮阴
Shade
2019-2020 2020-2021
遮阴60d
Shade- 60d
遮阴终止后20d
Shade end- 20d
遮阴60d
Shade- 60d
遮阴终止后20d
Shade end- 20d
根系干重
Root biomass
(g/plant)
根冠比Root-shoot ratio (%) 根系干重
Root biomass
(g/plant)
根冠比Root-shoot ratio (%) 根系干重
Root biomass
(g/plant)
根冠比Root-shoot ratio (%) 根系干重
Root biomass
(g/plant)
根冠
比Root-shoot ratio (%)
XZY518 T5 S0 3.6ab 19.1c 3.3bc 11.0bc 2.5c 18.0ab 2.7c 9.1bcd
S1 3.3c 21.1b 2.9f 11.2b 2.2d 18.1a 2.2d 11.1a
T20 S0 3.7a 18.1c 3.6a 10.4c 2.7b 16.9c 3.5b 8.2d
S1 3.6ab 21.4b 3.2cd 12.3cd 2.6c 17.3bc 3.0c 8.6cd
ZY50 T5 S0 3.6ab 19.2c 3.2d 10.4c 2.5c 16.0d 2.7c 9.5bcd
S1 3.2c 22.1ab 3.0e 12.0a 2.2d 16.1d 2.2d 9.9abc
T20 S0 3.6ab 18.7c 3.4b 9.7d 3.0a 17.8ab 4.0a 9.6bc
S1 3.5b 22.9a 3.2d 10.7bc 2.8b 18.2a 3.7ab 10.2ab
方差分析Analysis of variance
品种 Variety (V) NS * * NS ** * ** NS
翻耕深度 Tillage depth (TD) ** NS ** ** ** ** ** *
遮阴 Shade(S) ** ** ** ** ** NS ** *
V×TD NS NS ** NS ** ** ** **
V×S NS * ** ** NS NS NS NS
TD×S ** * NS NS * NS NS NS
V×TD×S NS NS NS NS NS NS NS NS

Fig. 2

Effects of tillage depth and shading on root structure of rapeseed"

Fig. 3

Effects of tillage depth and shading on root antioxidant activity and MDA of rapeseed at different stages"

Fig. 4

Effects of tillage depth and shading on nitrogen, phosphorus, potassium nutrient utilization of rapeseed"

[1] KUAI J, SUN Y, ZUO Q, HUANG H, LIAO Q, WU C, LU J, WU J, ZHOU G. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Scientific Reports, 2015, 5(1): 18835.
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41(4): 485-489.
LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489. (in Chinese)
[3] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51(24): 4625-4632.
KUAI J, WANG J J, ZUO Q S, CHENG H L, GAO J Q, WANG B, ZHOU G S, FU T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the yangtze river basin of China. Scientia Agricultura Sinica, 2018, 51(24): 4625-4632. (in Chinese)
[4] 朱芸, 廖世鹏, 刘煜, 李小坤, 任涛, 丛日环, 鲁剑巍. 长江流域油-稻与麦-稻轮作体系周年养分收支差异. 植物营养与肥料学报, 2019, 25(1): 64-73.
ZHU Y, LIAO S P, LIU Y, LI X K, RENG T, CONG R H, LU J W. Differences of annual nutrient budgets between rapeseed-rice and wheat-rice rotations in the Yangtze River Basin. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 64-73. (in Chinese)
[5] 孙爽, 杨晓光, 赵锦, 陈阜. 全球气候变暖对中国种植制度的可能影响Ⅺ.气候变化背景下中国冬小麦潜在光温适宜种植区变化特征. 中国农业科学, 2015, 48(10): 1926-1941.
SUN S, YANG X G, ZHAO J, CHEN F. The possible effects of global warming on cropping systems in China XI. the variation of potential light-temperature suitable cultivation zone of winter wheat in China under climate change. Scientia Agricultura Sinica, 2015, 48(10): 1926-1941. (in Chinese)
[6] LI H, JIANG D, WOLLENWEBER B, DAI T, CAO W. Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 2010, 33(4): 267-275.
doi: 10.1016/j.eja.2010.07.002
[7] 顾蕴倩, 刘雪, 张巍, 亓春杰, 汤开磊, 赵杨, 张岩, 李刚, 王斌, 赵春江, 罗卫红. 灌浆期弱光逆境对小麦生长和产量影响的模拟模型. 中国农业科学, 2013, 46(5): 898-908.
GU Y Q, LIU X, ZHANG W, QI C J, TANG K L, ZHAO Y, ZHANG Y, LI G, WANG B, ZHAO C J, LUO W H. The simulation model of the effects of low level of radiation at milk filling stage on wheat growth and yield. Scientia Agricultura Sinica, 2013, 46(5): 898-908. (in Chinese)
[8] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29(5): 785-790.
REN W J, YANG W Y, XU J W, FAN G Q, MA Z H. Effect of low light on grains growth and quality in rice. Acta Agronomica Sinica, 2003, 29(5): 785-790. (in Chinese)
[9] MANDOLI D F, FORD G A, WALDRON L J, NEMSON J A, BRIGGS W R. Some spectral properties of several soil types: Implications for photomorphogenesis. Plant Cell and Environment, 1990, 13(3): 287-294.
doi: 10.1111/j.1365-3040.1990.tb01313.x
[10] AGUIAR A C, ROBINSON S A, FRENCH K. Friends with benefits: The effects of vegetative shading on plant survival in a green roof environment. PLoS ONE, 2019, 14(11): e0225078.
[11] RELLAN-ALVAREZ R, LOBET G, DINNENY J R. Environmental control of root system biology. Annual Review of Plant Biology, 2016, 67: 619-642.
doi: 10.1146/annurev-arplant-043015-111848
[12] 于晓波, 罗玲, 曾宪堂, 苏本营, 龚万灼, 雍太文, 杨文钰, 张明荣, 吴海英. 套作弱光胁迫对大豆苗期根系形态和生理活性的影响. 中国油料作物学报, 2015, 37(2): 185-193.
YU X B, LUO L, ZENG X T, SU B Y, GONG W Z, YONG T W, YANG W Y, ZHANG M R, WU H Y. Response of roots morphology and physiology to shading in maize-soybean, relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2015, 37(2): 185-193. (in Chinese)
[13] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53(17): 3479-3495.
WANG Q, ZHAO X Y, LIU D Y, YAN Z H, LI H P, DONG P F, LI C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495. (in Chinese)
[14] 于莎, 王友华, 周治国, 吕丰娟, 刘敬然, 马伊娜, 陈吉, 阿布都克尤木·阿不都热孜克. 花铃期遮阴对棉花氮素代谢的影响及其机制. 作物学报, 2011, 37(10): 1879-1887.
doi: 10.3724/SP.J.1006.2011.01879
YU S, WANG Y H, ZHOU Z G, LÜ F J, LIU J R, MA Y N, CHEN J, ABUDUKEYOUMU ABDRZK. Effect of shade on nitrogen metabolism and its mechanism in cotton plant at flowering and boll- forming stage. Acta Agronomica Sinica, 2011, 37(10): 1879-1887. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01879
[15] ZHOU T, WANG L, YANG H, GAO Y, LIU W, YANG W. Ameliorated light conditions increase the P uptake capability of soybean in a relay-strip intercropping system by altering root morphology and physiology in the areas with low solar radiation. Science of the Total Environment, 2019, 688: 1069-1080.
doi: 10.1016/j.scitotenv.2019.06.344
[16] 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018, 51(14): 2655-2663.
CHENG Y J, CHEN J X, WANG Z L, FAN Y F, CHEN S Y, LI Z L, LI Q L, LI Z C, YANG F, YANG W Y. Effects of light intensity and light quality on morphological and photosynthetic characteristics of soybean seedlings. Scientia Agricultura Sinica, 2018, 51(14): 2655-2663. (in Chinese)
[17] THORUP-KRISTENSEN K, HALBERG N, NICOLAISEN M, OLESEN J E, CREWS T E, HINSINGER P, KIRKEGAARD J, PIERRET A, DRESBOLL D B. Digging deeper for agricultural resources, the value of deep rooting. Trends in Plant Science, 2020, 25(4): 406-417.
doi: 10.1016/j.tplants.2019.12.007
[18] 陈金, 庞党伟, 韩明明, 尹燕枰, 郑孟静, 骆永丽, 王振林, 李勇. 耕作模式对土壤生物活性与养分有效性及冬小麦产量的影响. 作物学报, 2017, 43(8):1245-1253.
doi: 10.3724/SP.J.1006.2017.01245
CHEN J, PANG D W, HAN M M, YIN Y P, ZHENG M J, LUO Y L, WANG Z L, LI Y. Effects of tillage patterns on soil biological activity, availability of soil nutrients and grain yield of winter wheat. Acta Agronomica Sinica, 2017, 43(8): 1245-1253. (in Chinese)
doi: 10.3724/SP.J.1006.2017.01245
[19] SUSLOV M A. Dynamics of intercellular water transfer in the roots of intact Zea mays L. plants under elevated concentrations of atmospheric CO2. Plant Physiology and Biochemistry, 2020, 151: 516-525.
doi: 10.1016/j.plaphy.2020.04.007
[20] TANG H, CHEN X, GAO Y, HONG L, CHEN Y. Alteration in root morphological and physiological traits of two maize cultivars in response to phosphorus deficiency. Rhizosphere, 2020, 14:100201.
[21] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil Agrochemical Analysis. Beijing: China Agricultural Press, 2000. (in Chinese)
[22] SCHOLLENBERGER C J, SIMON R H. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Science, 1945, 59(1): 13-24.
doi: 10.1097/00010694-194501000-00004
[23] GU L, WANG H, WEI H, SUN H, LI L, CHEN P, ELASAD M, SU Z, ZHANG C, MA L, WANG C, YU S. Identification, expression, and functional analysis of the group IId WRKY subfamily in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9: 1684.
doi: 10.3389/fpls.2018.01684
[24] MU X, ZHAO Y, LIU K, JI B, GUO H, XUE Z, LI C. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. European Journal of Agronomy, 2016, 78: 32-43.
doi: 10.1016/j.eja.2016.04.010
[25] THORUP-KRISTENSEN K, HALBERG N, NICOLAISEN M, OLESEN J E, CREWS T E, HINSINGER P, DRESBØLL D B. Digging deeper for agricultural resources, the value of deep rooting. Trends in Plant Science, 2020, 25(4):406-417.
doi: 10.1016/j.tplants.2019.12.007
[26] 胡冰涛, 张龙江, 杨士红, 陈玉东, 周慧平. 稻田氮、磷损失与过程监测方法研究进展. 生态与农村环境学报, 2018, 34(9): 788-796
HU B T, ZHANG L J, YANG S H, CHENG Y D, ZHOU H P. Research advances on process and monitoring methods of nitrogen and phosphorus loss in paddy fields. Journal of Ecology and Rural Environment, 2018, 34(9): 788-796. (in Chinese)
[27] 谢迎新, 靳海洋, 李梦达, 翟羽雪, 王永华, 谢耀丽, 李向东, 夏来坤, 王晨阳, 郭天财, 贺德先. 周年耕作方式对砂姜黑土农田土壤养分及作物产量的影响. 作物学报, 2016, 42(10): 1560-1568.
doi: 10.3724/SP.J.1006.2016.01560
XIE Y X, JIN H Y, LI M D, ZHAI Y X, WANG Y H, XIE Y L, LI X D, XIA L K, WANG C Y, GUO T C, HE D X. Effect of annual tillage practices on soil nutrient and crop yield in lime concretion black soil farmland. Acta Agronomica Sinica, 2016, 42(10): 1560-1568. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01560
[28] 童文杰, 邓小鹏, 徐照丽, 马二登, 晋艳, 李军营. 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响. 中国生态农业学报, 2016, 24(11): 1464-1472.
TONG W J, DENG X P, XU Z L, MA E D, JING Y, LI J Y. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco. Chinese Journal of Eco- Agriculture, 2016, 24(11): 1464-1472. (in Chinese)
[29] 舒晓晓, 门杰, 马阳, 薛澄, 彭正萍, 雷光宇. 减氮配施有机物质对土壤氮素淋失的调控作用. 水土保持学报, 2019, 33(1): 186-191.
SHU X X, MENG J, MA Y, XUE C, PENG Z P, LEI G Y. Regulation of reduced nitrogen and organic matter application on nitrogen leaching. Journal of Soil and Water Conservation, 2019, 33(1): 186-191. (in Chinese)
[30] 杨雪, 逄焕成, 李轶冰, 任天志, 董国豪, 郭智慧, 王湘峻. 深旋松耕作法对华北缺水区壤质黏潮土物理性状及作物生长的影响. 中国农业科学, 2013, 46(16): 3401-3412.
YANG X, PANG H C, LI Y B, REN T Z, DONG G H, GUO Z H, WANG X J. Effects of deep rotary sub-soiling tillage on the physical properties and crop growth of the sticky loamy soil in north China. Scientia Agricultura Sinica, 2013, 46(16): 3401-3412. (in Chinese)
[31] 李玉洁, 王慧, 赵建宁, 皇甫超河, 杨殿林. 耕作方式对农田土壤理化因子和生物学特性的影响. 应用生态学报, 2015, 26(3): 939-948.
LI Y J, WANG H, ZHAO J N, HUANGPU C H, YANG D L. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland. Chinese Journal of Applied Ecology, 2015, 26(3): 939-948. (in Chinese)
[32] 张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述. 生态环境学报, 2019, 28(12): 2464-2472.
ZHANG X Q, YANG W F, XU Y J. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: A review. Ecology and Environmental Sciences, 2019, 28(12): 2464-2472. (in Chinese)
[33] 牛丽, 潘利文, 王彦坡, 刘天学. 不同基因型玉米根系对弱光胁迫的生理响应. 玉米科学, 2019, 27(2): 69-76.
NIU L, PAN L W, WANG Y P, LIU T X. Physiological response of the roots of two different genotypic maize under shade stress. Journal of Maize Sciences, 2019, 27(2): 69-76. (in Chinese)
[34] 王洪涛, 艾希珍, 郑楠, 姜飞, 李清明. 嫁接对低温弱光下辣椒幼苗膜脂过氧化及抗氧化酶活性的影响. 应用生态学报, 2010, 21(5): 1289-1294.
WANG H T, AI X Z, ZHENG N, JIANG F, LI Q M. Effects of graft on lipid peroxidation and antioxidative enzyme activities of capsicum annum seedlings under low temperature and weak light intensity. Chinese Journal of Applied Ecology, 2010, 21(5): 1289-1294. (in Chinese)
[35] 张瑞富, 杨恒山, 高聚林, 张玉芹, 王志刚, 范秀艳, 毕文波. 深松对春玉米根系形态特征和生理特性的影响. 农业工程学报, 2015, 31(5): 78-84.
ZHANG R F, YANG H S, GAO J L, ZHANG Y Q, WANG Z G, FAN X Y, BI W B. Effect of subsoiling on root morphological and physiological characteristics of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 78-84. (in Chinese)
[36] 周佳民, 徐世宏, 江立庚. 免耕对水稻根系生长及根际环境的影响(Ⅱ)免耕对水稻根系保护酶活性的影响. 中国农学通报, 2009, 25(14): 118-121.
ZHOU J M, XU S H, JIANG L G. Influence of no tillage on root growth and rhizosphere environment in rice (ⅱ) influence of no tillage on activities of antioxidant enzymes in root. Chinese Agricultural Science Bulletin, 2009, 25(14): 118-121. (in Chinese)
[37] HE J, SHI Y, ZHAO J, YU Z. Strip rotary tillage with a two-year subsoiling interval enhances root growth and yield in wheat. Scientific Reports, 2019, 9(1): 1-13.
doi: 10.1038/s41598-018-37186-2
[38] VERBON E H, LIBERMAN L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 2016, 21(3): 218-229.
doi: 10.1016/j.tplants.2016.01.013
[39] SU S H, GIBBS N M, JANCEWICZ A L, MASSON P H. Molecular mechanisms of root gravitropism. Current Biology, 2017, 27(17): 964-972.
[40] JIN K, WHITE P J, WHALLEY W R, SHEN J, SHI L. Shaping an optimal soil by root-soil interaction. Trends in Plant Science, 2017, 22(10): 823-829.
doi: 10.1016/j.tplants.2017.07.008
[41] 高佳, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照强度对夏玉米根系生长和产量的影响. 中国农业科学, 2017, 50(11): 2104-2113.
GAO J, SHI J G, DONG S T, LIU P, ZHAO B, ZHANG J W. Effect of different light intensities on root characteristics and grain yield ofsummer maize (Zea Mays L.) Scientia Agricultura Sinica, 2017, 50(11): 2104-2113. (in Chinese)
[42] BRUNEL-MUGUET S, BEAUCLAIR P, BATAILLÉ M P, AVICE J C, TROUVERIE J, ETIENNE P, OURRY A. Light restriction delays leaf senescence in winter oilseed rape (Brassica napus L.). Journal of Plant Growth Regulation, 2013, 32(3): 506-518.
doi: 10.1007/s00344-013-9317-9
[43] XU C L, TAO H B, WANG P, WANG Z L. Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence. Journal of Integrative Agriculture, 2016, 15(1): 63-75.
doi: 10.1016/S2095-3119(15)61047-4
[1] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[2] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[3] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[4] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[5] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[6] SHENG QianNan, YU XiaoHong, ZHOU Xiong, TIAN GuiSheng, WU HaiYa, GENG GuoTao, YAN JinYao, LI Jing, REN Tao, LU JianWei. Response of Biomass and Nutrient Competition Between Oilseed Rape and Weed to the Rate of N, P and K Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(3): 481-489.
[7] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[8] PENG WenLi, WANG Rui, CHEN XiaoLei, LIU AHui, ZHENG WeiDong. Effects of Varied Rapeseed Varieties and Cultivation Measures on Harvest Index [J]. Scientia Agricultura Sinica, 2023, 56(17): 3331-3346.
[9] LI MinJi, LI XingLiang, ZHANG Qiang, ZHOU Jia, YANG YuZhang, ZHOU BeiBei, ZHANG JunKe, WEI QinPing. Effects of Different Distances from Original Planting Row on Tree Growth and Fruit Yield of Young Trees of G935 Dwarf Rootstock Miyato Fuji Under Continuous Cropping [J]. Scientia Agricultura Sinica, 2023, 56(17): 3412-3419.
[10] LI Jing, QIAN Chen, LIN GuoBing, WANG Long, LI YiYang, ZHENG JingDong, YOU JingJing, LENG SuoHu, ZUO QingSong. Studies on the Suitable Nitrogen Supply Level of Rapeseed Blanket Seedling for Mechanized Transplanting [J]. Scientia Agricultura Sinica, 2023, 56(16): 3100-3109.
[11] LIU ZiGang, WEI JiaPing, CUI JunMei, WU ZeFeng, FANG Yan, DONG XiaoYun, ZHENG GuoQiang. Status, Existing Problems and Strategy Discussion on Northward Expansion of Winter Rapeseed in China [J]. Scientia Agricultura Sinica, 2023, 56(15): 2854-2862.
[12] GAO ZiYuan, HU JingAng, ZHANG BeiBei, GONG Biao. Screening and Comprehensive Evaluation of Tomato Rootstocks with High Efficiency of Phosphorus Utilization [J]. Scientia Agricultura Sinica, 2023, 56(14): 2761-2775.
[13] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[14] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[15] LI Ran, XU MingGang, SUN Nan, WANG JinFeng, WANG Fei, LI JianHua. Dynamics Characteristic of Straw Decomposition and Nutrient Release Under Different C/N Ratio [J]. Scientia Agricultura Sinica, 2023, 56(11): 2118-2128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!